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Abstract—Coronary artery stenosis (CAS) is a critical 

cardiovascular condition that demands accurate localization for 

effective treatment and improved patient outcomes. This study 

addresses the challenge of enhancing CAS localization through a 

comparative analysis of deep learning techniques applied to 

electrocardiogram (ECG), photoplethysmograph (PPG), and their 

combined signals. The primary research question centers on 

whether the fusion of ECG and PPG signals, analyzed through 

advanced deep learning architectures, can surpass the accuracy of 

individual modalities in localizing stenosis in the left anterior 

descending (LAD), left circumflex (LCX), and right coronary 

arteries (RCA). Using a dataset of 7,165 recordings from CAS 

patients, three models—CNN, CNN-LSTM, and CNN-LSTM-

ATTN—were evaluated. The CNN-LSTM-ATTN model achieved 

the highest localization accuracy (98.12%) and perfect AUC scores 

(1.00) across all arteries, demonstrating the efficacy of multimodal 

signal integration and attention mechanisms. This research 

highlights the potential of combining ECG and PPG signals for 

non-invasive CAS diagnostics, offering a significant advancement 

in real-time clinical applications. However, limitations include the 

relatively small dataset size and the focus on single-lead ECG and 

PPG signals, which may affect the generalizability to broader 

populations. Future studies should explore larger datasets and 

multi-lead signal integration to further validate the findings. 

Keywords—Coronary artery stenosis; deep learning; ECG; 
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I. INTRODUCTION 

Coronary artery stenosis, and other cardiovascular diseases, 
remain a major cause of death globally, and thus present a major 
public health concern [1]. Accurate and timely diagnosis of 
these conditions, as well as continuous monitoring, are crucial 
for effective treatment and management, ultimately improving 
patient outcomes [2]. Coronary artery stenosis, a common and 
serious manifestation of cardiovascular disease, has been the 
subject of extensive research, with a focus on developing 
accurate, non-invasive, and accessible detection methods that 
can enable early intervention and better disease management 
strategies [3], [4]. This research emphasis underscores the 

importance of advancing the field of cardiovascular disease 
diagnosis and monitoring to address this pressing global health 
concern. 

ECG have long been used in the diagnosis and monitoring 
of cardiac conditions, and recent advancements in machine 
learning have shown promising results in ECG-based detection 
and classification of various cardiovascular diseases. For 
example, changes in the ECG waveform, such as ST-segment 
depression or T-wave inversion, can be indicative of 
myocardial ischemia caused by coronary artery stenosis [5]. A 
study by [6] explores cardiovascular disease (CVD) prediction 
using machine learning techniques on ECG and physiological 
data, finding that an artificial neural network (ANN) model 
achieves the highest predictive accuracy (90%) by utilizing 
significant parameters such as the R-R interval, RMSSD, blood 
pressure, and cholesterol levels, highlighting its potential as a 
non-invasive diagnostic tool for early CVD detection. Deep 
learning models trained on ECG data have demonstrated the 
ability to detect and localize specific patterns associated with 
different regions of coronary artery disease, such as LAD 
artery, LCX artery, or RCA obstructions [7]. 

In contrast, photoplethysmographic is an opto-electrical 
technique that uses light to quantify hemodynamic changes that 
is an important aspect of cardiovascular analysis. PPG signals 
can capture blood volume changes in the peripheral 
vasculature, which can be indicative of changes in the 
cardiovascular system, such as those associated with coronary 
artery disease [8], [9]. For example, [10] investigates 
photoplethysmography (PPG) as a non-invasive alternative to 
assess coronary artery disease (CAD) severity, finding that a 
Discriminant Analysis classifier achieved 88.46% accuracy in 
detecting severe stenosis, thus highlighting PPG’s potential for 
CAD pre-diagnosis in resource-limited or pandemic-impacted 
environments. In addition, the analysis of PPG waveforms has 
shown potential in detecting and monitoring conditions like 
coronary artery stenosis, as it can provide insights into the 
vascular dynamics and hemodynamic changes related to this 
cardiovascular disorder [11]. 
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Deep learning, a powerful subset of machine learning, has 
emerged as a promising approach for the analysis of various 
biomedical signals, including electrocardiograms and 
photoplethysmography [12]. These techniques have the ability 
to extract complex patterns and features from the data, enabling 
accurate classification and localization of cardiovascular 
conditions, such as coronary artery stenosis [13]. Among the 
deep learning methods, Convolutional Neural Networks have 
demonstrated good efficiency for identification of both ECG 
and PPG signals for diagnostics of coronary artery disease 
location [14]. By leveraging the hierarchical feature extraction 
capabilities of CNNs, researchers have been able to develop 
robust models for identifying characteristic patterns in cardiac 
data that are indicative of coronary artery stenosis [15]. 

LSTM networks, have also shown promise in the analysis 
of ECG and PPG signals for the detection and monitoring of 
coronary artery disease [16]. LSTM models overcome the 
limitation of capturing long range of temporal dependencies 
and hence suitable for processing these continuous 
physiological signals [17]. Some recent works have proved that 
LSTM networks can capture ECG and PPG patterns related to 
coronary artery stenosis, indicating that deep learning structures 
might contribute for the localization and diagnosis of this 
cardiovascular disease [18]. 

Moreover, it is also understood that the application of 
attention-based mechanisms in deep learning systems can 
potentially improve the assessment and visualization of 
coronary artery disease based on these multiple modal signals 
[19]. Attention-based architectures, such as Transformer 
models, have shown promising results in healthcare 
applications by allowing the models to focus on the most 
relevant features and patterns in the data, which can be crucial 
for the precise localization of coronary artery stenosis [20]. 

The combination of ECG and PPG data may provide a more 
comprehensive understanding of the cardiovascular system, 
potentially leading to improved accuracy in the localization of 
coronary artery stenosis. This study aims to conduct a 
comparative analysis of deep learning approaches using ECG, 
PPG, and the combined ECG-PPG modalities to enable 
accurate and non-invasive localization of coronary artery 
stenosis, which could enhance early diagnosis and management 
of this critical cardiovascular condition. 

In the following sections, this paper details the methodology 
for signal acquisition, dataset preparation, and preprocessing, 
followed by the development and evaluation of three deep 
learning architectures: CNN, CNN-LSTM, and CNN-LSTM-
ATTN. A comprehensive comparative analysis of these models 
using ECG, PPG, and combined ECG-PPG signals is presented, 
highlighting the advantages of multimodal signal fusion and 
attention mechanisms. Finally, the results are discussed in 
relation to prior studies, and conclusion was made with insights 
into the clinical implications of our findings and potential 
directions for future research. This structure aims to provide 
readers with a clear roadmap of the study, fostering deeper 
engagement with the content. 

II. RELATED WORKS 

Tao et al. [21] developed an automatic ischemic heart 
disease (IHD) detection and localization system using 
magnetocardiography (MCG) signals and machine learning 
methods. They used 164 features derived from the MCG 
recordings and divide into three groups, which are time domain 
feature, frequency domain feature, information theory feature, 
and compared the performance of many classifiers.  Their 
ensemble model of SVM and XGBoost achieved high 
performance in IHD detection, with an accuracy of 94.03%, 
precision of 86.56%, recall of 94.78%, and an AUC of 0.98. For 
stenosis localization in the LAD, LCX, and RCA, they 
employed 18 time-domain features with XGBoost, achieving 
accuracies of 74%, 68%, and 65%, respectively. The study 
demonstrated that features related to T-wave repolarization 
synchronicity and magnetic field patterns were critical in both 
detection and localization, providing a non-invasive, fast, and 
accurate tool for clinical use. 

In their work, Huang et al. [22] propose the creation of an 
AI-based ECG algorithm that will help predict and indicate the 
location of angiography-verified CAD. The study employs a 
CNN model to examine 12-lead ECG data of patients with CAD 
who have been verified through ICA. The dataset consists of 
clinical data from 2303 CAD patients and ECG data of 1053 
healthy patients as well as 12,954 ECG records. The CNN 
model provided an AUC of 0.869 to identify CAD, and specific 
AUC of 0.885, 0.816, 0.776 to detect stenosis in LAD, LCX, 
RCA respectively. The AUC of the model reached 0.973 in the 
case when ECGs demonstrated features of myocardial 
ischemia. The study proves that the AI-based algorithm on the 
ECG signal as the primary diagnostic tool can be effective and 
non-invasive for identifying severe CAD and localized stenosis. 

Roopa and Harish [23] proposed an automated system for 
localizing thrombus in coronary arteries using 12-lead ECG 
signals and an Information Fuzzy Network (IFN). Their method 
utilizes ECG feature extraction techniques, including the 
Stockwell Transform and Nearest-Neighbor Interpolation, to 
identify key features like ST-segment deviations, time 
intervals, and peak amplitudes in the ECG waveform. An initial 
rule-based system is then used to separate ischemic and non-
ischemic signals and to determine the culprit artery, which 
might be LAD, RCA, LCX or another artery. This experimental 
study showed that the proposed system has an accuracy of 
92.30%; sensitivity of 87.50%; and specificity of 100%; thus, it 
could be a valuable noninvasive solution for diagnosing 
coronary artery blocks and supporting clinical decision making. 

Previous studies on CAD localization have primarily 
focused on using single physiological signals, including MCG 
and ECG, alongside traditional machine learning models like 
XGBoost and CNNs. However, the integration of multimodal 
signals, particularly ECG and PPG, remains underexplored. 
Furthermore, while advanced deep learning techniques, such as 
LSTM networks and attention mechanisms, are increasingly 
recognized for their ability to capture both spatial and temporal 
dependencies, their application in CAD localization is limited. 
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The existing literature often lacks the incorporation of 
attention-based models that can dynamically focus on the most 
relevant signal features, potentially enhancing diagnostic 
accuracy. Additionally, few comparative analyses have been 
conducted to evaluate the relative effectiveness of ECG, PPG, 
and their combined modalities for CAD localization. Moreover, 
most studies have focused on offline models, with limited 
exploration of real-time clinical applications. This study 
addresses these gaps by employing deep learning models that 
integrate CNNs, LSTMs, and attention mechanisms to analyze 
multimodal signals, offering a comprehensive and more 
accurate approach to CAD localization with potential for real-
time clinical implementation. 

III. MATERIALS AND METHODS 

A. Study Population 

This research involved a cohort of patients diagnosed with 
significant coronary artery disease, as confirmed through 
angiography. Participants, aged 20 to 65 years, were selected 
based on the presence of severe stenosis, which was 
quantitatively assessed using coronary angiography. Only 
individuals with no prior history of CAD were included. The 
study received ethical clearance from the Research Ethics 
Committee of Universiti Kebangsaan Malaysia 
(UKMPPI/111/8/JEP-2020-806), and all participants provided 
written informed consent. 

B. Data Collection 

The study followed a protocol for recording both ECG and 
PPG signals concurrently from participants, as illustrated in 
Fig. 1. A total of 60 patients with confirmed significant 
coronary artery disease through angiography were included, 
resulting in a dataset containing 7,156 simultaneous single-lead 
ECG and PPG recordings. The patients were categorized into 
three groups based on their angiography findings: All those 
patients who had stenosis in LAD, LCX, and RCA arteries were 
included in this study. 

In the LAD group, 27 patients provided 3,884 concurrent 
single-beat ECG and PPG recordings. The LCX group 
consisted of 16 patients, contributing 1,565 recordings, while 
the RCA group included 17 patients, resulting in 1,707 
recordings. Fig. 2 displays sample single-beat ECG and PPG 
signals for each artery group (LAD, LCX, and RCA). 

The dataset was derived from the MAX86150EVS 
ECG/PPG module, which recorded standard single-lead ECG 
and PPG signals at a 400 Hz sampling rate for 10 minutes per 
patient. Signal processing techniques, such as baseline wander 
removal, smoothing, and segmentation, were applied to isolate 
individual cardiac cycles and enhance the quality of single-beat 
signals. This resulted in a final dataset of 7,165 simultaneous 
single-beat ECG and PPG waveforms, each consisting of 187 
data points per sample. This dataset is used in the next sections 
to develop and evaluate various deep learning models. 

C. Dataset Preparation and Preprocessing 

Prior to proceeding with the deep learning models, the 
collected data is partitioned into three distinct datasets: the ECG 
dataset, the PPG dataset, and the combined ECG and PPG 
dataset. These datasets share the same number of samples and 

targets. The purpose of this division is to enable the training and 
evaluation of deep learning models on the individual modalities 
as well as the combined modality. For the combined ECG and 
PPG dataset, each sample comprises a concatenation of both the 
ECG and PPG signals into a single feature vector. This 
integration aims to leverage the complementary information 
present in the ECG and PPG signals to potentially enhance the 
overall performance of the CAD stenosis localization task. Fig. 
3 shows examples of the concatenated ECG and PPG signals 
belonging to the classes, namely LAD, LCX, and RCA. 

In the experiment, the datasets are split into subsets with the 
training, validation, and test data that should not overlap, 70% 
of the dataset for training, 10% for validation and the remaining 
20% for testing. It is noteworthy to mention that the training 
and test sets are completely disjoint in terms of patient-wise 
separation, adhering to best practices for evaluating deep 
learning models. All three groups of datasets are subjected to 
the same train-validation-test split ratios. 

The three datasets seem to be unbalanced, with the LAD 
group containing a significantly larger number of samples 
compared to the LCX and RCA groups. Such distribution skew 
could result into biased deep learning models and performance 
of the models when trained and tested on the datasets [22]. As 
a result, to address this problem, we resorted to applying down 
sampling where we sampled a proportionate sample of the 
majority class to create a new smaller set of samples that was 
equivalent in size to the other two classes. Fig. 4 shows bar 
chart representations of the distribution of samples before and 
after the down-sampling process for each group. 

 
Fig. 1. Data collection procedure. 
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Fig. 2. ECG and PPG data samples for a patient with blockages in the LAD, 

LCX, and RCA arteries. 

 
Fig. 3. Combined ECG and PPG samples for a patient with blockages in (a) 

LAD, (b) LCX, and (c) RCA arteries. 

 
Fig. 4. (a) Dataset showing class imbalance prior to the balancing process, 

and (b) Dataset with balanced classes after the data balancing procedure. 

D. Model Build-up 

In this study, a series of deep learning models were 
developed to classify CAD stenosis location using ECG, PPG 
the combination of both signals. These models were developed 
using Google Colaboratory (Colab), a cloud-based platform 
that provides access to powerful GPU resources and 
comprehensive deep learning libraries, such as TensorFlow and 
PyTorch. To effectively process the complex time-series data, 
three models were explored: a CNN-based model, a hybrid 
CNN-LSTM model, and an advanced CNN-LSTM-ATTN 
model. Each architecture was designed to leverage different 
aspects of deep learning, namely spatial feature extraction, 
temporal dependency modeling, and attention-based focus 
mechanisms, to improve classification accuracy. 

The initial model utilizes a CNN, designed to automatically 
extract features from raw ECG and PPG signals. This is a 
simple sequence model starting with one-dimensional 
convolutional layer (Conv1D) with 32 filters and 3×1 kernel, 
that is then passed through a max-pooling (MaxPooling1D) to 
minimize the dimensionality of the formed feature maps. The 
convolutional layers identify local features in the input signals; 
max-pooling reduces dimensionality and masks significant 
characteristics. Further, subsequent feature maps are subjected 
to flatten layer and then fed to the fully connected layer 
containing 128 units with ReLU activation followed by softmax 
output layer for classification into three diagnostic categories. 
This CNN model efficiently captures spatial patterns in the 
signals, establishing a strong baseline for coronary artery 
disease classification. 

The second model enhances the CNN by incorporating 
LSTM layers to capture temporal dependencies in the 
sequential ECG and PPG data. Following the convolutional and 
max-pooling layers, two LSTM layers, each with 50 units, are 
added. The first LSTM layer is set to return sequences, enabling 
the second LSTM layer to process both short- and long-term 
dependencies within the signal data. This combination of CNN 
and LSTM layers allows the model to extract spatial features 
while also understanding their temporal progression, thereby 
boosting its ability to classify coronary artery disease based on 
dynamic signal changes. A final dense layer with softmax 
activation generates a probability distribution across the three 
diagnostic categories. 

The third and most advanced architecture incorporates an 
attention mechanism to further enhance the model’s ability to 
focus on the most relevant portions of the input signals. The 
model begins with a convolutional layer with 32 filters and a 
max-pooling layer, followed by an LSTM layer with 50 units 
and return_sequences=True. After the LSTM layer, an attention 
mechanism is applied to dynamically weigh the importance of 
each time step in the signal, allowing the model to focus on the 
most significant information. This attention mechanism 
improves the interpretability of the model by highlighting the 
critical sections of the ECG and PPG signals that contribute to 
the classification. The attention-weighted features are then 
flattened and passed to a softmax output layer for final 
classification. The architectural representation of the model is 
represented in Fig. 5 after performing data balancing process 
and the overall flow of the study is represented in Fig. 6. 
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By combining CNNs for spatial feature extraction, LSTMs 
for temporal modeling, and attention mechanisms for focused 
learning, these architectures present a robust approach to CAD 
classification. The CNN-based model provides a solid baseline 
by capturing local signal patterns, while the CNN-LSTM 
hybrid improves the model’s ability to learn temporal 

dependencies. The CNN-LSTM-ATTN model further enhances 
performance by focusing on the most relevant parts of the 
signals, making it the most comprehensive and accurate 
architecture for the task of CAD diagnosis based on ECG and 
PPG signals. 

 
Fig. 5. Architecture for coronary artery blockage localization prediction model for (a) CNN, (b) CNN+LSTM, (c) CNN+LSTM+ATTN. 
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Fig. 6. Model architecture for predicting the localization of coronary artery blockages.

E. Training Process 

The training process for each model involves the use of the 
Adam optimizer with a learning rate of 0.001 and a batch size 
of 32. The categorical cross-entropy loss function is applied to 
optimize the models during training. To reduce the risk of 
overfitting, a dropout layer with a 0.2 rate is introduced after 
the first fully connected layer in all models. Moreover, the 
practice of early stopping is used to terminate the learning 
process when there is a failure to get any improvements in the 
validation error. The models are trained for up to 100 epochs, 
with the best-performing model, based on validation accuracy, 
saved for final evaluation on the test set. 

F. Evaluation Metrics 

The study aimed to evaluate an AI-enhanced ECG as a 
means of identifying the location of coronary artery stenosis 
from single-lead standard ECG recordings, together with 
comparison based on full lead set. The testing and the 
performance of the proposed deep learning models was 
assessed in terms of accuracy metric, area under the receiver 
operating characteristic curve (AUC-ROC) and the confusion 
matrix. 

The measurement of accuracy is the extent to which 
samples have been classified correctly; it is the number of 
correctly predicted over the total samples. This is the ratio of 
true positive calculated by dividing it by all the positive cases 
that have been identified as positive by the application. 
Precision and recall are measurement indicators used in this 
study. Precision deals with the number of actually positive 
cases found to be positive by the application, calculated by 
dividing the true positive value by the actual positive samples. 
The true positive rate depicts the ratio of the actual positive 
samples to the total numbers of positive samples that were 
classified as such the false positive rate depicts the ratio of the 
negative samples that were classified as positive. Also, the true 
negative rate expresses the share of real negative patterns that 
correctly classified and the false negative rate describes the 
percentage of actual positive patterns that misleading classified 
as negative. 

The area that the curve corresponding to the ROC forms, in 
short AUC-ROC serves as a rich measure that encapsulates the 
ability of a classification model in terms of its ability of class 
separation. Also known as Receiver Operating Characteristic, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 12, 2024 

743 | P a g e  

www.ijacsa.thesai.org 

this metric measures the true positives along the true negatives 
across the range of classification thresholds that gives a 
balanced measure of a model’s discriminative abilities. 

The confusion matrix is used to display accuracy of the 
model in terms of the three diagnostics types. It gives an 
account of the right and wrong classifications made by the 
model, which aids in determination of its efficiency for each 
class. This characteristic of the confusion matrix helps to 
analyze the advantages and disadvantages of the model in terms 
of identifying the various conditions of coronary artery disease. 

IV. RESULTS AND DISCUSSION 

To enhance the model's performance, we carried out several 
experiments to assess the effectiveness of various deep learning 
architectures in classifying CAD stenosis locations using ECG, 
PPG and combination of ECG and PPG signals. The 
architectures examined in this study comprised a baseline CNN 
network, a hybrid CNN-LSTM model, and a CNN-LSTM-
ATTN model. Table I provides a summary of the performance 
metrics, including classification accuracy and AUC, for each of 
these models on the test set. Additionally, the corresponding 
ROC curve and confusion matrix based on the best model 
obtained are illustrated in Fig. 7. 

In Table I, the results highlight the comparative 
performance of three deep learning models for CAD stenosis 
localization using ECG, PPG, and their combined signals. 
These models include a CNN, a hybrid CNN-LSTM model, and 
an advanced CNN-LSTM-ATTN. 

TABLE I. PERFORMANCE METRICS OF THE THREE MODELS UTILIZED IN 

THIS STUDY 

Signal Model Accuracy 
AUC 

LAD LCX RCA 

ECG 

CNN 94.25% 0.99 0.98 0.99 

CNN + 

LSTM 
95.53% 0.99 0.99 0.99 

CNN + 

LSTM + 

ATTN 
97.61% 0.99 0.98 0.99 

PPG 

CNN 86.10% 0.95 0.96 0.96 

CNN + 

LSTM 
91.97% 0.97 0.99 0.98 

CNN + 

LSTM + 

ATTN 
92.25% 0.97 0.98 0.98 

Combined 

ECG & 

PPG 

CNN 94.69% 0.96 0.97 0.97 

CNN + 

LSTM 
92.47% 0.98 0.99 0.98 

CNN + 

LSTM + 

ATTN 
98.12% 1.00 1.00 1.00 

For ECG-based detection, the CNN model achieved an 
accuracy of 94.25%, AUC scores ranging from 0.98 to 0.99 
across the three coronary arteries: LAD, LCX, and RCA. 
Integrating the LSTM layer improved accuracy to 95.53%, 

indicating the added value of temporal feature extraction, while 
AUC scores remained consistently high. 

The introduction of the attention mechanism (CNN-LSTM-
ATTN) led to a significant performance boost, achieving 
97.61% accuracy and maintaining near-perfect AUC values for 
all three arteries, underscoring the ability of the attention 
mechanism to focus on the most relevant features in the data. 

For PPG signals, the CNN model started with a lower 
accuracy of 86.10%, yet the inclusion of LSTM and attention 
mechanisms progressively improved the results. The CNN-
LSTM model raised accuracy to 91.97%, and the CNN-LSTM-
ATTN model further increased it to 93.32%, while AUC scores 
improved, especially for the LCX and RCA arteries. 

When the ECG and PPG signals were combined, the results 
demonstrated the most substantial improvement. The CNN 
model reached 94.69% accuracy, and while the CNN-LSTM 
model saw a slight dip in accuracy to 92.47%, the addition of 
the attention mechanism significantly enhanced performance, 
resulting in 98.12% accuracy and perfect AUC scores of 1.00 
for all three coronary arteries. This illustrates the clear 
advantage of combining both signal modalities, which, coupled 
with advanced deep learning techniques, maximized diagnostic 
accuracy and precision. 

Overall, the results indicate that while individual signals 
(ECG or PPG) provide valuable diagnostic insights, combining 
both signals with sophisticated deep learning architectures, 
especially with attention mechanisms, offers superior 
performance in localizing coronary artery stenosis. The CNN-
LSTM-ATTN model demonstrates exceptional potential for 
clinical application, offering a non-invasive, highly accurate 
method for detecting blockages in major coronary arteries. 

Table II presents a comparative analysis between the best 
model obtained from the study and three previous studies—Tao 
et al. [21], Huang et al. [22], and Roopa and Harish [23]—in 
terms of accuracy and Area Under the Curve (AUC) for 
coronary artery stenosis (CAS) localization. The proposed 
model, which employs a CNN-LSTM-ATTN architecture 
integrating both ECG and PPG signals, achieves an impressive 
overall accuracy of 98.12%, substantially outperforming earlier 
models. In terms of AUC, the model demonstrates exceptional 
performance, achieving perfect scores of 1.00 for detecting 
stenosis in LAD, LCX, and RCA. However, Tao et al.’s 
XGBoost based model, which employed magnetocardiography, 
yielded lower AUC of 0.74, 0.68, and 0.65 for these arteries, 
respectively. Huang et al.’s CNN model, only with ECG 
signals, achieved the AUCs of 0.89, 0.82, and 0.78 for LAD, 
LCX, and RCA respectively. At the same time, Roopa and 
Harish proposed an ECG-based model that yielded an accuracy 
of 92.3%, but AUC values were not disclosed. The exceptional 
performance of the proposed model achieved because the 
proposed model relies on the fusion of the ECG and PPG 
signals; the two methods improve both the feature extraction 
and temporal models. Moreover, attention mechanisms help to 
pay more attention to useful signal characteristics, which in turn 
contributes to better definition of the location of blockages in 
coronary arteries.
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Fig. 7. Confusion matrices and ROC curves of the best models obtained (CNN+LSTM+ATTN) for (a) ECG, (b) PPG, and (c) combination of ECG and PPG 

signals.

TABLE II. COMPARISON OF PERFORMANCE WITH PRIOR STUDIES 

Author, Year Data AI Model Acc.(%) 
AUC 

LAD LCX RCA 

Tao et al., 2018 [21] MCG XGBoost 
NA 

0.74 0.68 0.65 

Huang et al., 2022 [22] 12 lead ECG InceptionV3 0.89 0.82 0.78 

Roopa and Harish, 2019 [23] 12 lead ECG IFN 92.3 NA 

Proposed work 
Combined simultaneous 

single lead ECG and PPG 
CNN + LSTM + ATTN 98.12  1.00 1.00 1.00 
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V. CONCLUSION 

This paper proposes a method to diagnose and examine 
coronary artery stenosis (CAS) using ECG and PPG signals, 
further aided by deep learning algorithms. The comparison 
between three models—CNN, CNN-LSTM, and CNN-LSTM-
ATTN—verifies that the effects of applying progressive AI 
structures upon CAS localization are prominent. The results 
demonstrate that both ECG and PPG signals are informative 
individually; however, when combined and processed through 
the CNN-LSTM-ATTN model, the highest classification 
accuracy of 98.12% and AUC scores of 1.00 were achieved for 
stenosis in LAD, LCX, and RCA. 

These findings underscore the necessity of fusing multiple 
physiological signals to enhance CAS localization 
predictability and highlight the effectiveness of the CNN-
LSTM-ATTN model in capturing spatial and temporal 
characteristics of multiple physiological signals while 
selectively attending to essential features. This approach shows 
great potential for non-invasive diagnosis of coronary artery 
diseases and the localization of obstructive lesions, which 
current clinical imaging techniques may inadequately address. 

However, the study is not without limitations. The dataset 
used was relatively small, with data collected from a single 
hospital, which may limit the generalizability of the findings. 
Additionally, the study focused solely on single-lead ECG and 
PPG signals, excluding the potential benefits of multi-lead 
configurations or other physiological signals. Future research 
should explore larger, more diverse datasets and investigate the 
integration of additional modalities to further validate and 
enhance the proposed method. Moreover, real-time clinical 
implementation remains a challenge that warrants further 
development to ensure the practicality and reliability of the 
approach in routine healthcare settings. 

In conclusion, while the proposed method demonstrates 
promising results for non-invasive CAS diagnostics, addressing 
these limitations will be crucial for broader adoption and impact 
in clinical practice. 
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