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Abstract—Accurate and efficient diagnostic methods are es-
sential for crop health monitoring due to the substantial impact
of tomato leaf diseases on crop yield and quality. Traditional
machine learning models, such as convolutional neural networks
(CNNs), have shown promise in plant disease classification; how-
ever, they often require extensive data preprocessing and struggle
with complex variations in leaf appearance. This study introduces
TLDViT (Tomato Leaf Disease Vision Transformer), a Vision
Transformer model specifically designed for the classification of
tomato leaf diseases. TLDViT reduces the need for preprocessing
by learning disease-specific features directly from raw images,
leveraging Vision Transformers’ ability to capture long-range
dependencies within images. We evaluated TLDViT on the Plant
Village Dataset, which includes healthy and diseased samples
across multiple classes. For comparative analysis, two Vision
Transformer models, ViT-r50-l32 and ViT-l16-fe, were tested.
Among these, ViT-r50-l32 achieved the highest performance,
surpassing both ViT-l16-fe with an accuracy of 98%. These
findings highlight TLDViT’s potential as an effective tool for crop
health monitoring and automated plant disease diagnosis.

Keywords—Tomato Leaf Disease; Vision Transformer (ViT);
crop health monitoring; plant disease classification

I. INTRODUCTION

Agriculture is fundamental to global food security, and
enhancing crop health management is crucial for maintaining
production and reducing economic losses. Tomato (Solanum
lycopersicum) is among the most extensively farmed crops
globally, however it is very vulnerable to several foliar dis-
eases, such as early blight, late blight, and leaf mold. These
illnesses, mostly induced by pathogens including fungus, bac-
teria, and viruses, result in substantial decreases in production
and quality [1], [2]. Accurate early detection and classification
of these illnesses is essential for facilitating prompt and
focused therapies, which may help reduce future transmis-
sion and harm. Conventional techniques for diagnosing plant
diseases depend significantly on manual visual assessment
and expert expertise, which are labor-intensive, expensive,
and susceptible to subjective inaccuracies [3]. Advances in
artificial intelligence (AI) and machine learning (ML) have
shown potential to overcome these constraints through the
automation of disease diagnosis. Convolutional neural net-
works (CNNs), a prevalent deep learning methodology, have
shown efficacy in recognizing intricate patterns in plant disease
imagery, attaining high accuracy in classification tests across
several crop illnesses [4]. The authors of [3] used CNNs
on an extensive dataset of plant diseases, achieving classi-
fication accuracies of 90% across 26 distinct crops. In [4],
authors introduced advanced CNN architectures to improve the
categorization of plant diseases, particularly those impacting

tomatoes, but with considerable preprocessing and computing
demands. These studies highlight the promise of CNNs while
also exposing significant obstacles, including their reliance
on large labeled datasets, susceptibility to overfitting, and
constraints in capturing non-local connections in images [5].
Researchers have investigated different models and strategies
to enhance the resilience and efficiency of plant disease clas-
sification systems, addressing these constraints. The author in
[6] integrated handmade features with deep learning models,
enhancing the robustness of CNNs against variability in image
data, while [7] supplemented restricted datasets with synthetic
images to elevate CNN performance. Notwithstanding these
efforts, CNN-based models exhibit constraints in their ability
to apprehend global spatial linkages within images, a factor
that is especially critical in plant disease categorization, where
symptoms may appear in non-contiguous areas on the leaf.

In recent years, Vision Transformers (ViT) have surfaced
as a formidable alternative to CNNs for identification of
images tasks [8], [9], [10], [11]. In contrast to CNNs, which
depend on local convolutional filters for hierarchical feature
extraction, ViT use self-attention processes to capture long-
range relationships over the whole image. The global attention
mechanism enables ViT to comprehend spatial connections
from a comprehensive viewpoint, making them especially
adept at image processing tasks that need acute sensitivity to
spatial intricacies. The author in [12] shows that ViT may
get superior performance on extensive image classification
datasets, surpassing CNNs in both precision and efficiency.
In [13], the author emphasized the promise of ViT in applica-
tions necessitating intricate spatial analysis, including medical
imaging and remote sensing. The author in [14] used Vision
Transformers for agricultural disease detection, proving their
efficacy in identifying disease patterns in crops such as rice
and wheat; nevertheless, research on their application to tomato
leaf diseases is still scarce.

This paper presents TLDViT (Tomato Leaf Disease Vision
Transformer), a Vision Transformer model particularly devel-
oped for the classification of tomato leaf diseases, motivated by
recent breakthroughs. Our methodology utilizes the ViT archi-
tecture’s capacity to capture long-range relationships, allowing
it to identify nuanced and intricate disease patterns that CNNs
may overlook. TLDViT, in contrast to CNN-based methods
that need considerable preprocessing and data augmentation,
is designed to immediately learn disease-specific features from
minimally processed images, enhancing its adaptability and
efficiency for practical agricultural applications.

Our study provides multiple contributions to the field of
automated plant disease identification. The proposal introduces
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TLDViT, a new Vision Transformer model tailored for the
classification of tomato leaf diseases. Furthermore, two Vi-
sion Transformer models, ViT-r50-l32 and ViT-l16-fe, were
employed to establish a comparative framework, ensuring
that all models were trained on the Plant Village Dataset
for consistency and robustness. A comprehensive comparison
of model performances demonstrated that TLDViT exhibits
superior accuracy compared to CNN-based methods and the
two Vision Transformer models, underscoring its efficacy
in this context. The study illustrates the benefits of Vision
Transformers in agricultural diagnostics, emphasizing their
sensitivity to spatial details, which is crucial for precise disease
identification. These contributions enhance the application of
Vision Transformers in plant disease detection and establish a
basis for wider use in agricultural diagnostics.

The rest of the paper is structured as follows: Section II
introduces the Literature Review, where we discuss related
work on plant disease classification, highlighting the advan-
tages and limitations of existing deep learning approaches,
including Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs). The proposed methodology for classify-
ing tomato leaf diseases is presented in Section III, which also
covers the TLDViT model architecture, training procedures,
and data preparation. The findings and discussion, together
with performance comparisons and analysis, are presented in
Section IV. Finally, Section V concludes the paper and outlines
future research directions.

II. LITERATURE REVIEW

The latest developments in deep learning have markedly
improved systems for the identification and categorization of
plant diseases. Numerous research have investigated alternate
methods to enhance the precision and efficacy of these systems.
Initial approaches mostly depended on manually produced
features and traditional machine learning methodologies [15],
[16]. Convolutional neural networks (CNNs) exhibit excep-
tional performance in image-based illness classification; yet,
their dependence on considerable preprocessing and difficulty
in capturing global picture dependencies provide significant
problems [17]. Hybrid models that combine CNNs with al-
ternative architectures have shown enhanced robustness to
fluctuations in picture quality [18], [19]. The advent of Vision
Transformers (ViTs) has offered a persuasive alternative to
CNNs for agricultural applications. Vision Transformers use
self-attention processes to record long-range dependencies,
allowing for the analysis of complex spatial patterns in pictures
[20], [21]. Applications of Vision Transformers (ViTs) in the
identification of plant diseases, including those affecting rice,
wheat, and grapes, have shown enhanced efficacy relative to
conventional Convolutional Neural Networks (CNNs) [22].
Recent research has used transfer learning with transformer
architectures to address data scarcity challenges in agricultural
datasets [23]. The integration of transformers with real-time
systems and edge devices is becoming prevalent, with the
objective of implementing disease detection models directly
in agricultural fields for practical use [24]. Nevertheless, few
research has concentrated especially on tomato leaf diseases,
highlighting the need for a specialized Vision Transformer
model to fill this void.

III. PROPOSED APPROACH-BASED TOMATO LEAF
DISEASE CLASSIFICATION

This section describes our method to diagnosing tomato
leaf illnesses using TLDViT (Tomato Leaf Disease Vision
Transformer), a hybrid Vision Transformer model designed
to capture both localized and global patterns in leaf photos.
TLDViT combines ResNet-50’s feature extraction powers with
Vision Transformers’ self-attention capabilities, resulting in
a robust tool for detecting and recognizing disease signs
in tomato leaves. We describe the major processes in our
technique below, which include data preparation, model con-
struction, training, and evaluation.

A. Data Preprocessing

Data preprocessing is a crucial phase to guarantee the qual-
ity and uniformity of the pictures used for training the TLDViT
model. The dataset consists of images of tomato leaves,
classified into six categories: Healthy, Bacterial Spot, Early
Blight, Late Blight, Septoria Leaf Spot, and Yellow Leaf Curl
Virus. The dataset used for this study is the publicly available
Plant Village Dataset [25], which provides a comprehensive
set of labeled images representing various plant diseases. This
dataset is widely used for plant disease classification tasks and
offers high-quality images that ensure accurate training and
evaluation of the TLDViT model. All images are scaled to
224x224 pixels to standardize input dimensions, so minimizing
computing effort while preserving enough information for pre-
cise categorization. Each pixel intensity is standardized to the
interval [0, 1], enhancing the stability of the training process
and facilitating more effective model learning. To improve
the model's resilience and mitigate overfitting, many data
augmentation methods are used, such as rotation, horizontal
flipping, and brightness modifications. These changes create
variances in the dataset, allowing TLDViT to generalize well
across diverse lighting and ambient circumstances, which is
essential for practical use.

Fig. 1 depicts the class distributions of tomato leaf disease
images before to and after to data augmentation. Before aug-
mentation (blue bars), the dataset comprised a total of 10,958
images unevenly allocated among six categories: Bacterial
Spot (1,925 images), Early Blight (1,702 images), Healthy
(1,920 images), Late Blight (1,705 images), Septoria Leaf Spot
(1,745 images), and Yellow Leaf Curl Virus (1,961 images).
Following augmentation (orange bars), the dataset dramatically
increased to 13,603 images, enhancing class equilibrium. The
post-augmentation dataset comprises 2,084 photos of Bacterial
Spot, 2,352 images of Early Blight, 2,358 photographs of
Healthy specimens, 2,267 images of Late Blight, 2,140 images
of Septoria Leaf Spot, and 2,402 images of Yellow Leaf Curl
Virus. This augmentation approach guarantees a more equi-
table dataset, which is essential for training machine learning
models to generalize proficiently across all categories.

The used dataset is partitioned into three subsets: training
(70%), validation (20%), and test (10%), allowing an equitable
assessment of the model’s efficacy on novel data. The training
set is used to train the model, the validation set is applied
for hyperparameter optimization and monitoring throughout
training, and the test set offers a conclusive evaluation of the
model's classification accuracy across six categories.
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Fig. 1. Tomato class distribution.

B. TLDViT Model (Tomato Leaf Disease Vision Transformer)

The Vision Transformer (ViT) architecture, as presented in
Fig. 2, has been customized to classify tomato leaf maladies
into six categories: Healthy, Bacterial Spot, Early Blight, Late
Blight, Septoria Leaf Spot, and Yellow Leaf Curl Virus. The
model is highly effective in capturing complex disease patterns
by combining local feature extraction with global context
modeling.

1) Image patch division and flattening: The first phase is
partitioning each input picture of a tomato leaf into a grid of
smaller segments. A 224 x 224-pixel image may be divided
into 32 x 32 pixel patches, resulting in 49 patches arranged
in a 7 x 7 grid. Subsequently, each patch is transformed into
a one-dimensional vector. This patch-based method collects
intricate local details inside each leaf segment, enabling the
model to identify localized disease indicators such as spots,
discolorations, and texture alterations unique to certain ill-
nesses.

2) Linear projection of flattened patches: The flattened
patches undergo a linear projection layer, converting each patch
into a high-dimensional vector appropriate for further process-
ing in the Vision Transformer. This transformation produces a
series of patch embeddings that preserve the localized features
of each patch while mapping them into a higher-dimensional
space, allowing the model to interpret the picture as a sequence
instead of a grid.

3) Positional embedding and class token: Positional em-
beddings are included into each patch embedding to maintain
the spatial configuration of patches inside the original image.
The positional embeddings provide the model with data on
the location of each patch inside the image, which is essential
for comprehending spatial links among illness symptoms.
Furthermore, an additional learnable class token is attached
to the series of patch embeddings. The class token engages
with the patch embeddings throughout the transformer layers
and ultimately retains the information required to generate the
final classification label.

4) Transformer encoder: The fundamental component of
the design is the Transformer Encoder, including numerous
layers that integrate self-attention mechanisms with feed-
forward neural networks. Each encoder layer has many essen-
tial components: The Multi-Head Self-Attention mechanism,

which allows the model to concentrate on several sections of
the leaf concurrently, therefore capturing both local intricacies
and overarching patterns within the picture. This multi-head
attention enables the model to discern intricate relationships
across patches, facilitating the identification of disease-related
patterns that may be distributed over different areas of the leaf.
Normalization (Norm) layers are used to stabilize the learning
process and mitigate overfitting by guaranteeing that inputs
to each layer possess a standardized distribution, facilitating
model convergence and enhancing generalization. Subsequent
to the self-attention mechanism, a Multi-Layer Perceptron
(MLP) introduces non-linear changes to the representations,
therefore augmenting the model’s capacity to discern intricate
patterns pertinent to each illness type and boosting classifi-
cation precision. This encoder architecture enables the model
to analyze the whole image as a series of patches, use self-
attention to discern correlations both internally and externally
among the patches. This is especially beneficial in the catego-
rization of plant diseases, where symptoms may manifest in
scattered patterns or as nuanced textural alterations on the leaf.

5) MLP head and classifier: The class token’s embed-
ding is supplied into a Multi-Layer Perceptron (MLP) head
and subsequently into a classifier, which generates the final
prediction, after passing through the transformer layers. The
classifier attributes the image to one of the six classes, thereby
designating the leaf as healthy or indicating the specific type
of disease present. The MLP head is the ultimate stage in the
processing process, incorporating all the information acquired
by the transformer layers to provide a precise diagnosis.

This ViT architecture is particularly effective for the clas-
sification of tomato leaf diseases because it can manage both
local and global image features. The self-attention mechanism
enables the model to interpret relationships across the en-
tire image, while the patch-based approach captures detailed
visual features within small sections, which is essential for
identifying disease-specific symptoms. The distinction between
diseases that may appear visually similar but have unique
patterns or spread across various areas of the leaf is dependent
on the combination of local and global context.

C. Training Methodology

In order to optimize the performance of TLDViT, we
implement a systematic training approach that incorporates
exhaustive evaluation techniques, optimization, and regulariza-
tion. In order to reduce prediction errors across all disease
classes, categorical cross-entropy loss is implemented, as this
is a multi-class classification problem. The Adam optimizer
is employed with an initial learning rate of 0.0001, which is
progressively reduced by a learning rate scheduler as training
progresses. This approach assists in the stabilization of the
model and the enhancement of convergence, while also pre-
venting overshooting. The high model complexity necessitates
the use of regularization methods, such as dropout layers inside
the transformer component, to prevent overfitting. In order
to avoid superfluous epochs and overfitting, early stopping is
sometimes used. This involves monitoring validation accuracy
and ending training as performance stabilizes. To achieve
a happy medium between computing efficiency and enough
iteration for learning, the model is trained with a batch size of
64 for 25 epochs.
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Fig. 2. TLDViT architecture.

Fig. 3. Accuracy and loss curve of ViT-r50-l32 model.

We evaluate TLDViT’s efficacy in accurately categorizing
tomato leaf diseases using the following metrics: accuracy,
F1-score, precision, recall, and confusion matrix. Making
ensuring the model satisfies all criteria, this assessment checks
it thoroughly. Additionally, we use ROC curves as a measure
to evaluate the model's performance across multiple thresholds,

especially when distinguishing across interrelated illness types.
To find out how well the model can distinguish between classes
at various decision thresholds, we build ROC curves for each
class and then measure the area under the curve (AUC). The
following equations introduced the performance evaluations:
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Fig. 4. Accuracy and loss curve of ViT-l16-fe model.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 Score = 2× Precision × Recall
Precision + Recall

(4)

• True Positives (TP): Correctly predicted positive sam-
ples.

• True Negatives (TN): Correctly predicted negative
samples.

• False Positives (FP): Incorrectly predicted positive
samples.

• False Negatives (FN): Incorrectly predicted negative
samples.

IV. EXPERIMENTAL RESULTS

The experimental findings of the proposed TLDViT model
for categorizing tomato leaf diseases into six labels are shown
in this section. These categories are Healthy, Bacterial Spot,
Early Blight, Late Blight, Septoria Leaf Spot, and Yellow
Leaf Curl Virus. For the purpose of conducting a complete
evaluation, we evaluate the performance of the model using

a number of different measures, such as accuracy, precision,
recall, F1-score, and area under the ROC curve (AUC).

A. Classification Accuracy and Loss

Fig. 3 shows that training and testing accuracy increase
with epochs in the ViT-r50-l32 model, stabilizing at high
values. Within a few epochs, the model converges, with
training accuracy around 99% and testing accuracy close be-
hind. Regularly decreasing loss curves for training and testing
indicate good learning without overfitting. The tight alignment
of training and testing performance implies that ViT-r50-l32
can generalize to new data and discriminate tomato leaf disease
classes. Fig. 4 shows that ViT-l16-fe has slower convergence
and larger loss values during training, suggesting a weaker
generalization capacity than ViT-r50-l32. Although ViT-l16-fe
is accurate, it lacks the stability and minimum loss of ViT-r50-
l32. These findings show that ViT-l16-fe is effective but may
not capture disease-specific aspects as well as ViT-r50-l32.

The results of this study reveal that ViT-r50-l32 outper-
forms ViT-l16-fe in accuracy and loss measures, evidenced by
its fast convergence, elevated final accuracy, and reduced loss
levels throughout training and testing. The exceptional efficacy
of ViT-r50-l32 indicates that its integration of a ResNet-50
backbone with Vision Transformer layers is especially adept
at collecting complex illness characteristics, enabling more
precise differentiation across disease categories. The constant
and consistent performance shown in both training and testing
reinforces the resilience of ViT-r50-l32.
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B. Performance Comparison of Tomato Leaf Disease

Table I shows the classification performance of two models,
ViT-r50-l32 and ViT-l16-fe, on tomato leaf disease categories,
including Precision, Recall, F1-Score, and Overall Accuracy.
F1-Scores of 0.95 or better are achieved by the ViT-r50-l32
model in all categories. It has excellent precision and recall for
“Late Blight” and “Septoria Leaf Spot,” an F1-Score of 1.00
for both, and an accuracy of 0.98, showing good generalization.
Though scoring lower in several areas, the ViT-l16-fe model
performs well. For “Late Blight” it has an F1-Score of 0.94
owing to a minor loss in accuracy, but it has good precision
and recall across most classes, especially for “Yellow Leaf Curl
Virus” with 1.00 precision. Though somewhat lower than ViT-
r50-l32, ViT-l16-fe has solid classification performance with
an accuracy of 0.97. In conclusion, both models have good
accuracy and F1-Scores across all categories, although ViT-
r50-l32 may be preferable for tomato leaf disease classification
in this dataset.

TABLE I. PERFORMANCE CLASSIFICATION OF TLDVIT MODELS

Model Class Precision Recall F1-Score

ViT-r50-l32

Bacterial Spot 0.93 0.98 0.95
Early Blight 1.00 0.96 0.98
Late Blight 1.00 1.00 1.00
Septoria Leaf Spot 1.00 1.00 1.00
Yellow Leaf Curl Virus 0.96 1.00 0.98
Healthy 1.00 0.96 0.98
Overall Accuracy 0.98

ViT-l16-fe

Healthy 0.96 1.00 0.98
Bacterial Spot 0.98 0.92 0.95
Early Blight 0.98 1.00 0.99
Late Blight 0.90 0.98 0.94
Septoria Leaf Spot 1.00 0.95 0.98
Yellow Leaf Curl Virus 1.00 0.96 0.98
Overall Accuracy 0.97

Fig. 5 displays the Precision-Recall (PR) curve for the ViT-
r50-l32 model, which classified tomato leaf diseases well. Each
curve symbolizes a disease: Healthy, Bacterial Spot, Early
Blight, Late Blight, Septoria Leaf Spot, and Yellow Leaf Curl
Virus. The legend shows each category’s average accuracy
score. Due to its near-perfect accuracy and recall across all
classes, the model can reliably categorize each illness type
without substantial false positives or negatives. All classes'
aggregate performance is tinted blue, with an average accuracy
of 0.997. The model excels on “Early Blight” and “Yellow
Leaf Curl Virus,” scoring 1.000 in precision-recall, while the
remaining classes score 0.995–0.999. This curve shows the
ViT-r50-l32 model’s resilience and accuracy, making it ideal
for identifying and differentiating tomato leaf diseases.

Fig. 6 illustrates the Multi-Class Receiver Operating Char-
acteristic (ROC) curve for the ViT-r50-l32 model, which is
the most effective model for classifying tomato leaf diseases.
Each curve denotes one of the six disease categories: Healthy,
Bacterial Spot, Early Blight, Late Blight, Septoria Leaf Spot,
and Yellow Leaf Curl Virus. The values presented in the
legend represent the area under the curve (AUC) for each
category. The model attains an AUC score of 1.00 for each
class and for the micro-average ROC curve, demonstrating
optimal performance in differentiating among the various
disease categories. The ROC curve indicates that the model
can achieve a true positive rate (sensitivity) of 1.0 while
keeping The false positive rate near 0 across all categories.
The observed accuracy indicates that ViT-r50-l32 is a reliable

Fig. 5. Precision-Recall (PR) curve of ViT-r50-l32 model.

model for classifying tomato leaf diseases, as evidenced by
the absence of misclassifications in the ROC metrics. The
diagonal dashed line indicates a random classifier (AUC = 0.5),
while the model’s ROC curves positioned significantly above
this line demonstrate its robust predictive performance. The
optimal AUC scores demonstrate the model's high accuracy
and robustness, positioning it as an effective tool for the
detection.

Fig. 6. ROC curve of ViT-r50-l32 model.

The confusion matrix for the ViT-r50-l32 tomato leaf
disease classification model shows high true positive counts for
each disease category, as depicted in Fig. 7. Bacterial Spot has
42 accurate categories and a few Healthy misclassifications.
Early Blight is properly categorized 46 times, mostly in
Late Blight. One Early Blight occurrence was misclassified,
whereas Late Blight had 49 proper classifications. With 47
and 44 accurate classifications and no substantial misclassifi-
cations, Septoria Leaf Spot and Leaf Curl Virus perform well.
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Fig. 7. Confusion matrix of ViT-r50-l32 model for differentiation of tomato
leaf diseases.

Healthy is accurately labeled 47 times, with Bacterial Spot
misclassified. Some classifications, such Healthy and Bacterial
Spot, are somewhat confusing, suggesting model refining or
hyperparameter tweaks might improve classification accuracy.

In Fig. 8, the ViT-r50-l32 model classifies six tomato
leaf types from the Plant Village Dataset, including healthy
and sick samples, using test images. The model accurately
distinguishes Bacterial Spot, which has dark, irregular spots;
Early Blight, which has concentric rings on yellowed areas;
Healthy leaves, which are uniformly green and symptom-
free; Late Blight, which has large, darkened lesions; Septo-
ria Leaf Spot, which has small, circular lesions with light
centers and dark edges; and Yellow Leaf Curl Virus, which
shows curled, yellowed edges The model can distinguish these
groups, suggesting its potential for early illness identification
and treatment.

Fig. 8. Classification results of ViT-r50-l32 model.

C. Comparative Study

Table II presents a comparative analysis of tomato leaf
disease classification models, emphasizing the performance
metrics of various methodologies. The authors [26] used a
CNN-based model (Inception-V3 and DenseNet-121), attain-
ing an accuracy of 95.08%, with precision, recall, and F1-
score metrics closely matched at 95.10%, 95.05%, and 95.07%,
respectively. In addition, the authors in [27] introduced the
TomFormer model, which amalgamates transformer-based ar-
chitectures, achieving an accuracy of 87%, with somewhat
reduced precision (87.50%), recall (86.50%), and F1-score

(87.00%) relative to CNN-based models. Our proposed model,
ViT-r50-l32, utilizes Vision Transformers to attain exceptional
performance, achieving an accuracy of 98%, precision of
98.30%, recall of 98.33%, and an F1-score of 98.20%, thereby
illustrating its efficacy and resilience in tomato leaf disease
classification tasks.

TABLE II. COMPARATIVE STUDY WITH RELATED APPROACHES

Study Accuracy (%) Precision (%) Recall (%) F1-Score (%)
[26] 95.08 95.10 95.05 95.07
[27] 87 87.50 86.50 87.00
TLDViT Model 98 98.30 98.33 98.20

V. CONCLUSION

This paper presents TLDViT, a Vision Transformer model
explicitly developed for classifying tomato leaf diseases using
images from the Plant Village Dataset. TLDViT exhibited
effective classification capabilities across six categories: Bac-
terial Spot, Early Blight, Healthy, Late Blight, Septoria Leaf
Spot, and Yellow Leaf Curl Virus. In our assessments, we
used two Vision Transformer models ViT-r50-l32 and ViT-
l16-fe for comparative analysis. Among them, ViT-r50-l32
surpassed the other model, demonstrating enhanced accuracy
and resilience across the illness categories. These findings
underscore TLDViT’s potential, in conjunction with ViT-r50-
l32, for facilitating the early detection and control of crop
diseases, which is essential for sustainable agriculture and
food security. We propose the development of a mobile or
field-deployable application for real-time disease diagnostics,
facilitating the rapid identification of tomato leaf diseases
by farmers and agronomists on-site, hence enabling prompt
intervention and management.

Future work will optimize TLDViT for mobile and edge
devices for real-time crop health monitoring in the field. We
also want to combine this model into a mobile or field-
deployable application for real-time disease diagnostics to help
farmers and agronomists quickly identify tomato leaf diseases
and control them. Other efforts include domain adaptation to
improve model performance in varied environmental settings
and adding new plant species and disease categories to the
dataset.
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