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Abstract—Human monkeypox is a persistent global health
challenge, ranking among the most common illnesses worldwide.
Early and accurate diagnosis is critical to developing effective
treatments. This study proposes a comprehensive approach to
monkeypox diagnosis using deep learning algorithms, including
Vision Transformer, MobileNetV2, EfficientNetV2, ResNet-50,
and a hybrid model. The hybrid model combines ResNet-50, Mo-
bileNetV2, and EfficientNetV2 to reduce error rates and improve
classification accuracy. The models were trained, validated, and
tested on a specially curated monkeypox dataset. EfficientNetV2
demonstrated the highest training accuracy (99.94%), validation
accuracy (97.80%), and testing accuracy (97.67%). ResNet-50
achieved 99.87% training accuracy, 99.85% validation accuracy,
and 97.18% testing accuracy. MobileNetV2 reached 95.47% train-
ing accuracy, with validation and testing accuracies of 79.51%
and 78.18%, respectively. Designed to mitigate overfitting, the
Vision Transformer achieved 100% training accuracy, 87.51%
validation accuracy, and 99.41% testing accuracy. Our hybrid
model yielded 99.33% training accuracy and 99.09% testing
accuracy. The Vision Transformer emerged as the most promising
model due to its robust performance and high accuracy, followed
closely by the hybrid model. Explainable AI (XAI) techniques,
such as Grad-CAM, were applied to enhance the interpretability
of predictions, providing visual insights into the classification pro-
cess. The results underscore the potential of Vision Transformer
and hybrid deep learning models for accurate and interpretable
monkeypox diagnosis.

Keywords—Monkeypox; vision transformer; hybrid model;
transfer learning; explainable artificial intelligence

I. INTRODUCTION

In order to manage outbreaks, it is essential to detect mon-
keypox accurately and promptly. Vision transformer models,
transfer learning[1], [2], and deep learning [3], [4] provide
effective ways to improve diagnostic accuracy from image
data. Clinical examination and laboratory testing are frequently
used in traditional diagnostic techniques, however, they can
be time-consuming and less available in remote or underde-
veloped places. Because models can be taught to accurately

identify the distinctive characteristics of monkeypox lesions,
deep learning [5], [6] makes monkeypox detection quicker and
more scalable [7]. Transfer learning, which enables models to
use pre-trained weights from sizable datasets, is particularly
advantageous when it comes to monkeypox because there is
a dearth of labeled data. Even with a limited monkeypox
dataset [8], accurate models may be deployed thanks to this
technique, which builds on previously obtained knowledge
to enable faster training and higher accuracy. The detection
method is further improved by the employment of vision
transformers, which are renowned for their capacity to grasp
intricate spatial relationships by processing images as patches.
Vision transformers, as opposed to conventional convolutional
networks [3], [9], [10], are able to identify global patterns
in the image, which enables the model to concentrate on
certain lesion features that could otherwise go unnoticed.
This capacity is especially crucial for preventing misdiagnosis,
improving patient outcomes, and distinguishing monkeypox
from other skin disorders that look similar. When combined,
these deep learning techniques [11] not only provide a more
affordable and easily available diagnostic option, but they also
aid in early detection and containment initiatives, which has a
big influence on public health by enabling quick action in the
event of an outbreak.

The main objective of image-based monkeypox disease
detection is to facilitate early, precise, and easily accessible
diagnosis, which is crucial for efficient outbreak management
and patient treatment. Healthcare professionals can swiftly
detect monkeypox lesions by using image-based AI models,
which enables the early isolation and treatment of infected
people to stop the spread of the disease [12], [13]. Another
important goal is to provide diagnostic tools in settings with
low resources and remote locations, where access to standard
lab-based testing may be difficult [14], [15]. To avoid mis-
diagnosis and guarantee that patients receive the right care,
models that can reliably differentiate monkeypox from other
comparable skin disorders, including chickenpox or measles,
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must be developed. Since there is a dearth of picture data
related to monkeypox, it is crucial to use transfer learning
[16] to build trustworthy models from small datasets. This will
enable pre-trained models to identify distinctive characteristics
of monkeypox. Additionally, by offering a scalable method for
monitoring and forecasting outbreaks, AI-based monkeypox
detection can help public health initiatives by facilitating
prompt reaction and containment [17]. These goals support
a strong and workable approach to controlling monkeypox,
boosting readiness for infectious disease risks, and improving
health outcomes.

The main contributions of this study are:

1) Improved model resilience, a bespoke dataset was
created using random images that simulated a variety
of real-world situations.

2) We enhanced feature extraction and detection by
using ResNet-50’s deep residual connections to cate-
gorize monkeypox lesions with accuracy.

3) MobileNetV2 was utilized for lightweight, effective
detection, making diagnostics accessible on mobile
or low-resource devices in remote locations.

4) EfficientNetV2 was used to maximize efficiency by
striking a balance between decreased computation
and detection accuracy for effective model operation.

5) We enhanced the model’s capacity to distinguish
monkeypox from related skin disorders by using
Vision Transformer to gather global and patch-based
picture information.

6) We created a hybrid model with enhanced diagnostic
accuracy and dependability by combining ResNet-50,
MobileNetV2, and EfficientNetV2.

7) We interpreted model predictions using explainable
AI methodologies, offering visual justifications for
clear, reliable diagnostics.

In this study, the previous research on existing work is
described in Section II, and the proposed working framework
is then detailed in Section III. The later Section IV denotes
the result analysis, and finally, the conclusion and future plan
are explained in the last Section V of this paper.

II. PREVIOUS STUDIES

In recent years, researchers have been trying to prevent the
monkeypox disease and they are finding different types of solu-
tions. Hence, some related publications are found online about
the solutions to human monkeypox detection. We mentioned
and explained some of them.

Bala et al. [18] proposed a deep CNN-based monkey-
pox disease detection system. Their study summary is that
MonkeyNet, a novel deep learning-based model, was created
to identify monkeypox from skin images. Its accuracy was
93.19% on the original dataset and 98.91% on an augmented
dataset. In order to facilitate model training and testing, this
study made the “Monkeypox Skin Images Dataset (MSID)”
publicly available. Grad-CAM graphics help doctors diagnose
monkeypox early and accurately by highlighting affected areas.

Dahiya et al. [19] explained monkeypox disease detection
using a deep learning model. They used CNN and YOLO

V5. Using the monkeypox dataset online, they obtain 98.18%
accuracy in image classification.

Haque et al. [20] described to find out the monkeypox
disease from the images with deep-transfer learning and at-
tention mechanisms. They used online images and obtained a
validation accuracy of 83.89%.

Sitaula et al. [21] proposed a method to find out the
monkeypox virus detection with seven deep learning model as
well as their ensemble method. They used publicly available
data and applied seven pre-trained models initially. Later, to
improve the performance they used an ensemble method of
deep learning. The highest accuracy of their proposed work is
87.13%.

Ali et al. [8] proposed a method to detect human monkey-
pox from online collected image data. Their study was deep
learning-based. Using online data, their classification rate is
82.96%.

Rahman et al. [22] explained federated and deep learning-
based monkeypox disease detection from private limited data.
Their study summary is-Accurate identification of monkeypox
is difficult because it was deemed a global public health emer-
gency after the COVID-19 epidemic. For efficient monkeypox
classification, this paper suggests a safe, federated learning
system that makes use of deep learning models such as Mo-
bileNetV2, Vision Transformer, and ResNet-50. With 97.90%
accuracy using the ViT-B32 model, the method improves data
security while guaranteeing accurate disease classification.

Azar et al. [23] proposed a deep neural network-based
system to detect monkeypox from the images. Their study
summary-this study created a deep learning model based on
DenseNet201 to identify skin scans as either normal, chicken-
pox, monkeypox, or measles in response to the 2022 outbreak.
The model performed exceptionally well, attaining 95.18%
accuracy in a four-class scenario and 97.63% accuracy in a
two-class scenario. To enhance model interpretability and help
clinicians trust and comprehend the decision-making process,
LIME and Grad-CAM were used. This model performs better
than previous research, particularly in F1-Score, and provides
information on the afflicted skin areas that are essential for
diagnosis.

Altun et al. [7] proposed a method to detect monkeypox
from sensor-based data with deep-transfer learning. Their work
summary is that-in order to target possible pandemic scenarios,
this study sought to create a deep learning-based monkeypox
detection algorithm that is both quick and accurate. VGG19,
DenseNet121, ResNet-50, EfficientNetV2, MobileNetV3, and
Xception models were used to create a new CNN model
with hyperparameter tuning and transfer learning. With an F1-
score of 0.98, AUC of 0.99, accuracy of 0.96, and recall of
0.97, the optimized MobileNetV3 model exhibited the greatest
performance, proving the usefulness of deep learning in quick
disease classification.

Ahsan et al. [24] demonstrate a deep learning-based mon-
keypox disease detection from input data. This study evaluated
six deep learning models, including Inception ResNetV2 and
Mobile NetV 2, for early illness detection utilizing transfer
learning in light of widespread worries about monkeypox as
a possible pandemic danger. The altered models demonstrated
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their diagnostic capabilities with accuracies ranging from 93%
to 99%. By identifying important characteristics linked to the
development of monkeypox, LIME was used to improve model
transparency.

Uysal et al. [25] explained a hybrid deep learning method
to identify monkeypox disease from image data. In order
to identify monkeypox from skin photos in a multi-class
dataset (monkeypox, chickenpox, measles, and normal), this
study created a hybrid AI model by merging CSPDarkNet,
InceptionV4, MnasNet, MobileNetV3, RepVGG, SE-ResNet,
Xception, and LSTM. Following data augmentation, the hy-
brid model demonstrated strong performance in differentiating
monkeypox from related diseases, with 87% test accuracy and
a Cohen’s kappa value of 0.8222.

Saleh et al. [26] proposed a new approach to detect
monkeypox from image data. They used AI, Chimp algorithm
etc. The two-phase AI-based Human Monkeypox Detection
(HMD) strategy is presented in this article as a means of
early monkeypox detection. Weighted Naı̈ve Bayes, Weighted
K-Nearest Neighbors, and a deep learning model through
weighted voting are all combined in the Detection Phase
(DP) to create an Ensemble Diagnosis (ED) model. The first
phase, the Selection Phase (SP), uses an Improved Binary
Chimp Optimization (IBCO) algorithm for optimal feature
selection. With an accuracy of 98.48%, precision of 91.1%, and
recall of 88.91%, HMD outperforms contemporary diagnostic
techniques.

Almufareh et al. [27] explained how to detect monkeypox
from two different datasets with transfer learning. As a safer
substitute for conventional PCR testing, this work suggests
a non-invasive, computer-vision-based approach for detecting
monkeypox by employing deep learning to analyze skin lesion
photos. The method’s high sensitivity, specificity, and balanced
accuracy, as established by tests on the MSLD and MSID
datasets, make it an attractive option for general usage, partic-
ularly in places with inadequate lab infrastructure. IoT and AI
are used in this method to provide safe, contactless diagnostics.

Table I is the summary of the mentioned work that was
published in 2022, 2023, and 2024. After analyzing, we see
that the previous work has limitations in some cases, such
as that they almost used deep learning, transfer learning,
and a hybrid model to classify the monkeypox data without
explainability. But, we proposed a new method named Vision
Transformer and a hybrid model with explainable AI with
the best accuracy [see Table I]. So, our work is superior to
theirs because our proposed work has the best accuracy from
them. Particularly, we reached 100% accuracy using the vision
transformer model without any overfitting and 99.33% using
deep hybrid learning. So, we can say that our proposed work
is the best work till now.

III. METHODS

The overall workflow diagram of monkeypox disease de-
tection and classification is illustrated in Fig. 1. In this part,
we will discuss data collection, preprocessing, image augmen-
tation, image separation, using of different types of deep and
transfer learning models with details and proposed framework,
and finally, we will explain explainable AI results applied to
input image and predicted image. From, data collection to the

result performance of each model, the sequential explanation
is included.

A. Data Collection

We collected the image dataset from the online website
such as Kaggle and we customized the data for later
use https://www.kaggle.com/datasets/mdmokshedurrahman/
monkeypox-image-dataset. This dataset has a total of six
classes with one directory. We separated the data for training
and testing. The total amount of image data is 7,532 and the
classes are “Chickenpox”, “HFMD”, “Measles”, “Healthy”,
“Cowpox”, and “Monkeypox”. The images are in different
color modes. The sample dataset is shown in Fig. 2.

B. Image Preprocessing

Preprocessing images is an essential step in getting data
ready for visual transformer models and transfer learning,
particularly in applications like the diagnosis of monkeypox
disease [28]. To start, pictures are gathered and their sizes are
standardized to guarantee consistency, usually shrinking them
to 224x224 pixels [29]. Convergence during model training
is accelerated by normalization, which involves scaling pixel
values to a range between 0 and 1 or standardizing them to
have a mean of 0 and a standard deviation of 1.

C. Image Augmentation

In machine learning applications [30], [31] such as transfer
learning, ensemble learning [32], and vision transformers,
image augmentation is crucial for enhancing model perfor-
mance by producing a variety of data variants. Rotation,
flipping, scaling, cropping, and other techniques expand the
amount of the dataset, which improves model generalization
and lowers overfitting, particularly in small or unbalanced
datasets [33]. Augmentation enables pre-trained models to
successfully adjust to new datasets in transfer learning. By
encouraging each model to concentrate on unique features,
applying different augmentations across models for ensem-
ble learning lowers prediction variance. Augments like patch
shuffling and random cropping within vision transformers
(ViTs) improve the model’s resistance to visual fluctuations
by enhancing its capacity to capture global patterns. Aug-
mentation improves generalization overall, allowing models to
better handle changes in real-world data. In our dataset, we
applied the some rules for image augmentation [34]. We set
the parameter as follows:

train-datagen= image.ImageDataGenerator(
rescale=1./255,
shear-range=0.2,
zoom-range=0.2,
horizontal-flip=True)
test-dataset=image.ImageDataGenerator(rescale=1./255)

D. Image Partitioning

After finishing the preprocessing and augmentation method
to the image data, we separate the data for training, validation,
and testing[35], [36]. We partitioned the data as follows:
total image for training: 5,273
total image for validation: 2,259 and
total image for validation: 2,259
That is, we separated the total images into three categories.
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TABLE I. SUMMARY OF THE RELATED WORK

Reference Dataset Used Methods Accuracy XAI
[18] MSID Dataset Deep-CNN 98.91% Yes
[19] Monkeypox detection dataset Deep Learning, YOLOV5 98.18% No
[20] Online image data Deep learning and Attention Mechanism 83.89% No
[21] Online dataset Deep learning ensembles 87.13% Yes
[8] Collected from online portal Deep learning 82.96% No
[22] Their own data Deep learning and federated learning 97.90% No
[23] Kaggle data Deep neural network 97.63% Yes
[7] Real-time data Deep-transfer learning 99% No
[24] Puclic data Deep learning 99% Yes
[25] Puclicly availabe data Hybrid Deep Learning 87% No
[26] Public dataset AI, Chimp Algorithm and DL 98.48% No
[27] MSLD, MSID Online data Transfer learning 94% No
Proposed Approach Online recent data Vision Transformer, Hybrid Model 100%

for ViTs,
99.33% for
Hybrid

Yes

Fig. 1. System architecture.

E. Proposed Neural Network Framework

For image classification, deep learning models are suitable.
These models can detect the disease more accurately. In
this study, we applied some deep learning models such as
EfficientNetV2 and MobileNetV2 [37]. A separate explanation
is below.

1) EfficientNetV2: Monkeypox may be successfully
detected by picture analysis using EfficientNetV2, a cutting-
edge deep-learning model created for image classification
applications [38]. By employing a compound scaling
technique that consistently increases network depth, width,
and resolution, EfficientNetV2’s fundamental concept is
its capacity to strike a compromise between accuracy and
processing efficiency. The model is perfect for processing
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Fig. 2. Dataset sample.

medical images where accuracy is crucial because of its
architecture, which allows it to extract complex information
from images at a reduced computational cost. EfficientNetV2
may be optimized on a dataset of photos of monkeypox
by utilizing transfer learning, which enables it to pick up
unique patterns and characteristics that are suggestive of
the illness. Its capacity to generalize from sparse data is
further improved by its sophisticated training methods, such
as progressive training, which begins with images of lower
quality and progressively raises the resolution during training.
In order to facilitate early diagnosis and prompt action in
clinical settings, EfficientNetV2 provides a potent solution for
precisely identifying monkeypox lesions in pictures. In this
study, we used monkeypox image data to detect and classify
the disease from those images. Total images were separated
into six classes. In this model, we set the parameters as
follows:
batch-size = 32
img-height = 224
img-width = 224
lr-rate = 1e-3
lr-mode = ’cos’
epochs = 30
For the training, we set the parameter as follows”
validation-split=0.2,
subset=”training”,
seed=123,
image-size=(img-height, img-width),
batch-size=batch-size
For the validation, we have,
data0dir,
validation0split=0.2,
subset=”validation”,

seed=123,
image0size=(img0height, img0width),
batch-size=batch-size

2) MobileNetV2: The lightweight deep learning model Mo-
bileNetV2 was created especially for mobile and edge devices,
which makes it ideal for real-time applications like identifying
monkeypox in medical photos. MobileNetV2’s fundamental
concept is based on depthwise separable convolutions, which
drastically cut down on the number of parameters and cal-
culations needed to analyze data quickly without sacrificing
accuracy. Through a sequence of linear bottleneck layers
that promote effective information flow and the retention of
significant visual details, this architecture improves the model’s
capacity to learn key elements from images. MobileNetV2
may be optimized on a specific dataset of monkeypox photos
by using transfer learning techniques, which will allow it
to recognize the distinct patterns and traits linked to the
illness. Because of its small size, the model may be used
on gadgets with minimal processing power, like smartphones
or portable medical imaging equipment, guaranteeing that
medical practitioners can make good use of it in a variety
of contexts. Consequently, MobileNetV2 offers a quick and
easy way to identify monkeypox, which helps with prompt
diagnosis and efficient treatment of the illness. In this study,
we set the parameter as follows:
batch-size = 32
img-height = 224
img-width = 224
lr-rate = 1e-3
lr-mode = ’cos’
epochs = 15

For the training data, we used,
train-split=0.2,
subset=”training”,
seed=123,
image-size=(img-height, img-width),
batch-size=batch-size

For the validation of data, we difine,
validation-split=0.2,
subset=”validation”,
seed=123,
image-size=(img-height, img-width),
batch-size=batch-size

3) ResNet-50: An excellent option for identifying
monkeypox in a six-class image dataset is ResNet-50, a potent
transfer learning architecture that performs exceptionally well
in image classification tasks. ResNet-50’s fundamental concept
is its creative use of residual connections, which mitigate
the vanishing gradient issue that sometimes arises in very
deep networks while enabling the model to learn intricate
features [39]. These residual connections make it easier to
train deeper networks by allowing gradients to have direct
paths during backpropagation, which enhances the model’s
capacity to recognize complex patterns in images. ResNet-50
can be refined in the context of monkeypox detection using
a broad dataset that comprises several classes associated
with the disease, such as distinct lesion phases or other skin
disorders. This flexibility improves classification accuracy
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by enabling the algorithm to pick up subtle visual cues that
distinguish monkeypox from related illnesses. ResNet-50 is
also well-suited for managing sparse or unbalanced datasets,
which are typical in medical imaging, due to its resilience to
overfitting. In the end, ResNet-50 offers a dependable method
for precisely identifying monkeypox lesions by utilizing
its depth and architectural improvements, which helps with
prompt diagnosis and efficient patient treatment in clinical
settings [40]. In this study, we used the below parameter for
ResNet-50 model training and also validation.
batch-size = 32
img-height = 224
img-width = 224
lr-rate = 1e-3
lr-mode = ’cos’
epochs = 30
For the training, we set the parameter as follows:
validation-split=0.2,
subset=”training”,
seed=123,
image-size=(img-height, img-width),
batch-size=batch-size
For the validation, we used the parameter list as follows:
validation-split=0.2,
subset=”validation”,
seed=123,
image-size=(img-height, img-width),
batch-size=batch-size

The basic architecture of the ResNet 50 model for this
study is illustrated in Fig. 3.

Fig. 3. Proposed ResNet 50 model architecture.

4) Vision Transformer: By adapting transformer-based
designs, which were initially created for natural language
processing, to visual data, the Vision Transformer (ViT)
model(google/vit-base-patch16-224) offers a fresh method for
image analysis [41]. ViT interprets images as a series of tiny
patches, collecting global dependencies throughout the image,
in contrast to convolutional neural networks (CNNs), which
rely on local feature extraction [42]. It is especially useful
for differentiating intricate visual patterns linked to illnesses
like monkeypox because of its capacity to comprehend spatial
relationships. ViT can learn the distinct visual indicators of
monkeypox lesions, such as shape, texture, and distribution,
across different phases and classes by training on a collection
of monkeypox images. This method is useful for detecting
monkeypox because it enables the model to understand both
little details and more general contextual patterns, which

helps it distinguish monkeypox from other skin disorders that
are similar. Furthermore, ViT can concentrate on pertinent
image regions thanks to its attention mechanism, which could
improve interpretability in medical diagnostics. All things
considered, Vision Transformer offers a potential tool for
detecting monkeypox by fusing high accuracy with knowledge
of the spatial patterns that characterize the illness [43]. In
our study, we follow the working mechanism of the Vision
Transformer model shown in Fig. 4.

Fig. 4. Working procedure of the vision transformer model.

Initially, we customized the dataset for the transformer. The
parameter set as:
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]), ])

After transforming, we defined the base model and re-
initialized the features. Freezing the layers, we did training
setup and parameter dividing for the training and validation.

5) Hybrid Model: To obtain better performance and more
accuracy, we used a hybrid version of three models. The hybrid
model is generated from averaging the output from ResNetV2,
MobilNetV2, and EfficientNetV2 [44]. This hybrid model
technique detects and classifies monkeypox across six different
image classes by averaging the outputs of three sophisti-
cated deep-learning architectures: ResNetV2, MobileNetV2,
and EfficientNetV2. Every one of these types has special
advantages: While MobileNetV2 offers lightweight efficiency,
making it highly responsive and appropriate for real-time
processing with limited CPU resources, ResNetV2’s residual
connections enable the capture of intricate image features and
deep hierarchical patterns. In contrast, EfficientNetV2 offers
a balanced scaling technique that simultaneously modifies
network depth, width, and resolution to improve accuracy
and efficiency. The hybrid model leverages the combined
advantages of each architecture by averaging the predictions
from these three networks. This integration lessens the biases
present in any one model, producing a more robust and
balanced outcome that is particularly helpful for managing the
many visual traits of monkeypox lesions in various classes
[45]. Even with the variances found in a medical picture
dataset, the hybrid model can function effectively thanks to the
averaging technique, which may enhance generalization and
lower mistakes. In the end, this team approach improves the
accuracy and dependability of monkeypox detection, offering
a complete tool to assist medical professionals in diagnosing
and categorizing the illness. In this combined model, we set the
features for the training data and also the same for validation
as follows:
validation-split=0.2,
subset=”training”,
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seed=123,
image-size=(224, 224),
batch-size=32)
For the base model, the parameters are:
weights=’imagenet’,
include-top=False,
input-shape=(224, 224, 3)

The basic organization of the proposed hybrid model is
illustrated in Fig. 5.

Fig. 5. Working procedure of proposed hybrid model.

In Fig. 5, for the section of Normalization, we set the
parameter as:
Rescaling=1./255,
map(lambda x, y: (normalization-layer(x),
y)).cache().prefetch(buffer-size=tf.data.AUTOTUNE)
We optimized the some parameters such as:
Input(shape=(224, 224, 3))
optimizers.Adam(learning-rate=1e-3),
losses.SparseCategoricalCrossentropy(from-logits=True),
metrics=[’accuracy’]
epochs=30

F. Explainable AI Approach

We use Grad-CAM (Gradient-weighted Class Activation
Mapping) to show the relevant areas in monkeypox images
as part of our Explainable AI feature extraction method
for monkeypox detection [46]. The interpretability technique
Grad-CAM improves the transparency of deep learning models
by assisting in determining which aspects of an image have
the greatest influence on a model’s prediction. This method
highlights the main characteristics in the images used for mon-
keypox categorization across several classes by implementing
Grad-CAM for a ResNet-based model [21]. First, a Grad-
CAM class is created, which initializes a gradient model by
choosing the network’s last convolutional layer and attaching
it to the output layer of the model. Grad-CAM computes
the gradient of the output class (predicted as monkeypox
or another) in relation to the feature mappings in the final
convolutional layer after an input picture has been run through
the model. The features that are important for the model’s
categorization are shown by these gradients [47]. A heatmap
highlighting the significant regions of the image that influenced
the model’s prediction is produced after pooling the gradients
and appropriately weighting the feature maps. In order to
create a superimposed visualization, the calculated heatmap
is enlarged to the original image proportions, colored using a
“jet” colormap, and then superimposed on the original image.

Medical practitioners may more easily validate the model’s
focus areas and comprehend predictions thanks to this overlay,
which shows the portions of the image that the algorithm
looks for in order to detect monkeypox. By making the
model’s decision-making process more clear, these explainable
strategies increase confidence in the model’s application for
medical imaging diagnosis and categorization of monkeypox.

IV. RESULTS

In this section, we discussed the result of the deep learning
model in Monkeyfox disease detection [16]. Particularly, we
explored the results of EfficientNetV2 and MobileNetV2.

From the above part, we know that EfficientNetV2 is used
in the monkeypox image dataset and has a total of six classes.
The basic parameter details of EfficientNetV2 is shown in
Table II.

TABLE II. EFFICIENTNETV2 PARAMETER DETAILS

Layer (type) Output Shape Param
input-layer-18 (Input-
Layer)

(None, 224, 224, 3) 0

efficientnetv2-l (Func-
tional)

(None, 7, 7, 1280) 117,746,848

conv2d-7 (Conv2D) (None, 7, 7, 512) 5,898,752
global-average-
pooling2d-7

(None, 512) 0

dense-14 (Dense) (None, 256) 131,328
dense-15 (Dense) (None, 6) 1,542
Total params: 123,778,470 0
Trainable params: 6,031,622 0
Non-trainable params: 117,746,848

In this model,
Training accuracy is 99.94%
Training loss is 0.38%.
The validation accuracy is 97.80% and
The validation loss is 6.72%.
The testing accuracy is: 97.67%
The testing loss is: 6.94%.
The training accuracy and validation accuracy are shown in
Fig. 6 and the training loss and validation loss are shown in
Fig. 7.

Fig. 6. Train accuracy vs. Validation accuracy of EfficientNetV2.
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Fig. 7. Train loss vs. Validation loss of EfficientNetV2.

The classification report of the EfficientNetV2 is illustrated
in Table III.

TABLE III. CLASSIFICATION REPORT OF EFFICIENTNETV2 MODEL

Class-Name Precision Recall F1-Score Support
Chickenpox 0.95 0.96 0.95 140
Chickenpox 0.95 0.96 0.95 140
Cowpox 1.00 0.97 0.98 120
HFMD 0.99 0.98 0.98 345
Healthy 0.99 0.99 0.99 251
Measles 0.99 0.94 0.96 98
Monkeypox 0.97 0.99 0.98 549
accuracy 0 0 0.98 1503
macro avg 0.98 0.97 0.97 1503
weighted avg 0.98 0.98 0.98 1503

We used MobileNetV2 in image data for detecting mon-
keypox. After applying the model, we have the following
parameter list shown in Table IV.

TABLE IV. MOBILENETV2 PARAMETER DETAILS

Layer (type) Output Shape Param
input-layer-14 (Input
Layer)

(None, 224, 224, 3) 0

mobilenetv2-1.00-224 (None, 7, 7, 1280) 2,257,984
conv2d-5 (Conv2D) (None, 7, 7, 512) 5,898,752
global-average-
pooling2d-5

(None, 512) 0

dense-10 (Dense) (None, 256) 131,328
dense-11 (Dense) (None, 6) 1,542

In this model, we got,
Training accuracy is 95.47%
Training loss is 16.2%.
The validation accuracy is 79.51% and
The validation loss is 64.62%.
The testing accuracy is: 78.18%
and the testing loss is: 20%.
The classification report of MobileNetV2 is shown in Table V.

We used one Transfer Learning model named ResNet-50
to detect the monkeypox from the image data. After applying
this model, we have the model parameter summary shown in
Table VI.

TABLE V. CLASSIFICATION REPORT OF MOBILENETV2 MODEL

Class-Name Precision Recall F1-Score Support
Chickenpox 0.95 0.96 0.95 140
Chickenpox 1.00 0.97 0.98 140
Cowpox 1.00 0.97 0.98 120
HFMD 0.99 0.98 0.98 345
Healthy 0.99 0.99 0.99 251
Measles 0.99 0.94 0.96 98
Monkeypox 0.97 0.99 0.98 549
accuracy 0 0 0.98 1503
macro avg 0.98 0.97 0.97 1503
weighted avg 0.98 0.98 0.98 1503

TABLE VI. RESNET-50 PARAMETER DETAILS

Layer (type) Output Shape Param
input-layer-12 (Input
Layer)

(None, 224, 224, 3) 0

ResNet-50
(Functional)

(None, 7, 7, 2048) 23,587,712

conv2d-4 (Conv2D) (None, 7, 7, 512) 9,437,696
global-average-
pooling2d-4

(None, 512) 0

dense-8 (Dense) (None, 256) 131,328
dense-9 (Dense) (None, 6) 1,542

Training accuracy is 99.87%%
Training loss is 0.43%.
The validation accuracy is 99.85% and
The validation loss is 0.39%.
The testing accuracy is: 97.18%
and the testing loss is: 4%.
The classification report of this model is shown in Table VII
and the ROC Curve of this model is shown in Fig. 8.

TABLE VII. CLASSIFICATION REPORT OF RESNET-50 MODEL

Class-Name Precision Recall F1-Score Support
Chickenpox 0.97 0.86 0.91 140
Cowpox 0.97 0.98 0.98 120
HFMD 0.98 0.97 0.98 345
Healthy 0.97 0.98 0.97 251
Measles 0.96 0.95 0.95 98
Monkeypox 0.96 0.98 0.97 549
accuracy 0 0 0.97 1503
macro avg 0.97 0.95 0.96 1503
weighted avg 0.97 0.97 0.97 1503

The accuracy and loss curve of this model is illustrated in
Fig. 9.

Using Vision Transformer (google/vit-base-patch16-224)
for detecting monkeypox disease, we have the following
results.
The number of epochs: 20
Training accuracy is 100%
Training loss is 0.00%.
The validation accuracy is 87.51% and
The validation loss is 0.37%.

The classification report is shown in Table VIII and the
confusion matrices of this model is shown in Fig. 10 where
true label vs predicted label and actual label vs. predicted lable
is illustrated. The multiclass ROC Curve and Precision-recall
curve is explained in Fig. 11 and 12.
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Fig. 8. The ROC curve for ResNet-50 model.

TABLE VIII. CLASSIFICATION REPORT OF VISION TRANSFORMER
MODEL

Class-Name Precision Recall F1-Score Support
Chickenpox 0.64 0.86 0.73 110
Cowpox 0.96 0.93 0.94 91
HFMD 0.94 0.97 0.96 229
Healthy 0.95 0.86 0.90 175
Measles 0.96 0.89 0.92 80
Monkeypox 0.88 0.84 0.87 445
accuracy 0 0 0.88 1130
macro avg 0.89 0.89 0.89 1130
weighted avg 0.89 0.89 0.89 1130

We combined three models to improve the accuracy and
reduce the error rate as well as loss amount. Hence, ResNet-
50, MobileNetV2, and EfficientNetV2 models are averaging
into a single unit named as Hybrid model. After applying this
technique, we have the following results:
The number of epochs: 30
Training accuracy is 99.33%
Training loss is 2.11%.
The validation accuracy is 90.09% and
The validation loss is 40.62%.

The summary of the parameter is listed in Table IX and
the classification report of this model is shown in Table X.

TABLE IX. HYBRID MODEL PARAMETER DETAILS

Layer (type) Output Shape Param Connected to
input-layer-14 (In-
put Layer)

(None, 224,
224, 3)

0 -

functional-15 (None, 6) 24,113,798 input-layer-
32[0. . .

functional-16 (None, 6) 2,587,462 input-layer-
32[0. . .

functional-17 (None, 6) 118,076,3. . . input-layer-
32[0. . .

average-1 (Average) (None, 6) 0 functional-
15[0]. . .
functional-
16[0]
functional-
17[0]. . .

The accuracy and loss curve is shown in Fig. 13 and the
confusion matrix is shown in Fig. 14.

TABLE X. CLASSIFICATION REPORT OF HYBRID MODEL

Class-Name Precision Recall F1-Score Support
Chickenpox 0.94 0.77 0.85 140
Cowpox 0.99 0.87 0.92 120
HFMD 0.98 0.85 0.91 345
Healthy 0.94 0.91 0.93 251
Measles 0.83 0.83 0.83 98
Monkeypox 0.84 0.98 0.91 549
accuracy 0 0 0.90 1503
macro avg 0.92 0.77 0.89 1503
weighted avg 0.91 0.90 0.90 1503

The results summary of the proposed model are shown in
Table XI.

TABLE XI. RESULT SUMMARY OF USED METHODS

Model Training Accu-
racy

Validation Ac-
curacy

Testing Accu-
racy

EfficientNetV2 99.94% 97.80% 97.67%
MobileNetV2 95.47% 79.51% 78.18%
ResNet-50 99.87% 99.85% 97.18%
Vision Transformer 100% 87.51% 99.41%
Hybrid Model 99.33% 90.09% 99.09%

A. Exploring Grad-CAM

We applied explainable AT to the predicted image to
explain it based on trained images. If we use any monkeypox-
positive image for the explanation, then based on the train-
ing and predicted value, the machine can explain the image
using the heat-map method [48]. Using the Grad-CAM, the
system can explain the input image for clearance. One suitable
example is shown in Fig. 15. Especially, this image is the
monkeypox positive input image, the system will use a heat
map to analyze and explain it. Finally, the system is successful,
saying that it is the monkeypox positive image [49]. Table XII
shows evaluation metrics for Grad-CAM for hybrid model.

B. Comparison with Previous Studies

The comparison presented in Table XIII highlights the
effectiveness of the proposed models in achieving state-of-the-
art performance for monkeypox diagnosis. Our study demon-
strated superior accuracy with Vision Transformers (ViTs)
achieving 99.41% and the hybrid model achieving 99.09%.
These results outperform many of the existing studies, such
as [18] (98.91%) and [7] (99%), showcasing the robustness of
our approach.

The incorporation of Vision Transformers proved partic-
ularly impactful due to their ability to capture global de-
pendencies within the input data, which is critical for nu-
anced image classification tasks. The hybrid model further
enhanced performance by combining the strengths of ResNet-
50, MobileNetV2, and EfficientNetV2, enabling better feature
extraction and classification accuracy.

Compared to prior studies, such as [20] and [8], which
reported lower accuracies of 83.89% and 82.96%, respectively,
our models exhibited a significant improvement. Additionally,
while models like [21] and [23] incorporated Explainable AI
(XAI) techniques, their accuracies (87.13% and 97.63%) were
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Fig. 9. Accuracy and loss curve of ResNet-50 model.

TABLE XII. EVALUATION METRICS FOR GRAD-CAM FOR HYBRID MODEL

Evaluation Metric Grad-CAM Explanation
Ground Truth Mask Overlap 97% Percentage of overlap between the ground truth mask and the highlighted region.
Feature Coverage 0.97 Proportion of the image covered by the highlighted features in the explanation.
Relevant Activation 96% Percentage of activation in relevant areas.
Feature Relevance 0.96 Relevance of features in the explanation, corresponding to the model’s decision.
Similarity (Mean Absolute Error) 0.89 Mean absolute error between the predicted and actual class.
Consistency Error 0.89 Error in consistency when input is perturbed or modified.

Fig. 10. Confusion matrix of vision transformer in true label vs. Predicted
label.

lower than ours, demonstrating that our integration of Grad-
CAM not only enhanced interpretability but also maintained
high performance.

Explainability remains a critical aspect of monkeypox
diagnosis, as accurate predictions alone are insufficient in
sensitive medical applications. Our use of Grad-CAM enabled
a detailed understanding of model decisions, providing visual
insights into key features contributing to the classification. This
is a step forward in building trust and transparency in AI-based
healthcare solutions, addressing concerns in studies like [24]
and [26], which either did not integrate XAI or lacked detailed
visualization.

Fig. 11. ROC Curve for vision transformer model.

V. CONCLUSION AND FUTURE RESEARCH

This study demonstrates the potential of deep learn-
ing models, particularly Vision Transformer and hybrid ap-
proaches, in achieving accurate and interpretable monkeypox
diagnosis. Among the models tested, the Vision Transformer
emerged as the most effective, achieving high accuracy across
training, validation, and testing phases while maintaining ro-
bustness against overfitting. The hybrid model, combining
ResNet-50, MobileNetV2, and EfficientNetV2, also delivered
competitive performance, highlighting the benefits of leverag-
ing diverse architectural strengths. The integration of Grad-
CAM enhanced the interpretability of the models, provid-
ing valuable insights into their decision-making processes, a
critical requirement for clinical applications. These findings
highlight the role of AI-driven solutions in enabling early and
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Fig. 12. Precision-recall curve for vision transformer model.

TABLE XIII. COMPARISON WITH PREVIOUS STUDIES

Reference Accuracy XAI
[18] 98.91% Yes
[19] 98.18% No
[20] 83.89% No
[21] 87.13% Yes
[8] 82.96% No
[22] 97.90% No
[23] 97.63% Yes
[7] 99% No
[24] 99% Yes
[25] 87% No
[26] 98.48% No
[27] 94% No
Our Study 99.41%

for ViTs,
99.09% for
Hybrid

Yes

precise monkeypox diagnosis, thereby aiding timely contain-
ment and treatment. One of the limitations of this study is
that the dataset was taken from an online publication from
the clinical sector, and to detect the proper place of mon-
keypox, the segmentation method can be applied in real-time
image data. Future research will cover this technique. Future
research should focus on enhancing the generalizability of the
proposed models by expanding the dataset to include diverse
populations, imaging conditions, and clinical real-time data.
Additionally, improving model efficiency for deployment in
resource-constrained environments will be crucial for enabling
widespread adoption. Incorporating other explainability tech-
niques, such as LIME or SHAP, could provide deeper insights
into model predictions, fostering greater trust among clinicians.
Exploring federated learning frameworks may further enhance
privacy and scalability, allowing collaborative training across
institutions without compromising data security. Longitudinal
studies spanning various demographic and clinical contexts
will help validate model reliability over time. Moreover, in-
tegrating multi-modal data, such as clinical biomarkers and
patient metadata, could improve diagnostic accuracy and pro-
vide a more holistic understanding of monkeypox.
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