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Abstract—Rice plays a vital role in the food stock. But
sometimes this crop leaf falls into disease. And, the amount of
food consumed will decrease due to leaf disease. So, discovering
the rice leaf disease is necessary to improve rice productivity.
Currently, many researchers use deep learning methods to solve
this problem. Unfortunately, their research results were less
accurate. In this paper, we construct transfer learning models to
diagnose and categorize illnesses affecting rice leaves. To further
improve the model performance, we construct three ensemble
learning models to combine various architectures. In order to
bring transparency to the disease diagnostic process, we explore
the explainable AI (XAI) problem of the visual object detector and
integrate Gradient-weighted Class Activation Mapping (Grad-
CAM) into three ensemble models to generate explanations
for individual object detections for assessing performance. The
results of Ensemble Learning indicate that merging different
architectures can be effective in disease diagnosis, as evidenced
by their best accuracy of 99.78% which is better than other state-
of-the-art works. This research demonstrates that the integration
of deep learning and transfer learning models yields improved
prediction interpretability and classification accuracy of rice leaf
disease. So, we established a dependable method of deep, transfer,
and ensemble learning for the diagnosis of diseases affecting rice
leaves.

Keywords—Rice leaf; ensemble-learning; explainable AI; dis-
ease diagnosis; transfer learning

I. INTRODUCTION

Over half of the world’s population depends on rice produc-
tion as their primary staple, making it essential for global food
security [1], [2], [3]. Because it sustains livelihoods, particu-
larly in Asia where it is a significant source of employment
and revenue, it has a significant impact on people [4], [5].
Efficient rice cultivation has a crucial role in maintaining and
enhancing lives globally by ensuring food stability, economic
well-being, and socio-economic development [6].

Finding rice leaf disease is a vital job in agriculture since
rice is one of the most important crops in the world and
feeds millions of people as a staple diet. Brown spot, leaf

blast, and bacterial blight are just a few of the diseases that
can severely limit rice crop productivity, resulting in financial
losses and food poverty. By using targeted treatments or
preventive measures, farmers can take appropriate corrective
action to preserve crop health and maximize production. Early
and precise detection of these diseases using rice leaf images
can assist farmers in doing just that. The scalability and
effectiveness of image analysis in rice leaf disease detection
make it a valuable tool. Conventional approaches to disease
identification are laborious, arbitrary, and prone to mistakes as
they frequently depend on the manual inspection of specialists.
However, a quick, reliable, and scalable solution is provided
by automated detection that makes use of computer vision and
machine learning algorithms. Advanced models have demon-
strated significant potential in accurately classifying rice leaf
illnesses from images. These models include ensemble learning
models (e.g. combining VGG16, ResNet50, InceptionV3, and
EfficientNet) and deep learning architectures (e.g. CNNs) [7],
[8]. By including Explainable AI methods such as Grad-
CAM, these models become more visible and users are able
to see which leaf portions are responsible for the predictions
made by the model [9]. This guarantees that academics and
farmers alike can rely on the technology and obtain practical
knowledge about the well-being of rice crops, which in turn
promotes improved disease control and more environmentally
friendly farming methods [10], [11].

By including Explainable AI methods such as Grad-CAM,
these models become more visible and users are able to see
which leaf portions are responsible for the predictions made by
the model. This guarantees that academics and farmers alike
can rely on the technology and obtain practical knowledge
about the well-being of rice crops, which in turn promotes
improved disease control and more environmentally friendly
farming methods [12].

The main goal of rice leaf disease identification using rice
leaf images is to create an automated, precise, and effective
system that can recognize and categorize illnesses that impact

www.ijacsa.thesai.org 862 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

rice harvests. Reduced reliance on costly, time-consuming,
and error-prone manual expert inspection is the aim of uti-
lizing sophisticated image processing and machine learning
approaches [13], [14], [15]. By early detection of illnesses
including bacterial blight, brown spot, and leaf blasts, this
method hopes to give farmers the information they need to take
preventative measures that can stop the disease’s progress and
lessen crop loss. Another goal is to provide a scalable solution
that can be implemented at various agricultural scales and
geographical locations to increase the overall productivity and
sustainability of rice growing. The system employs deep learn-
ing models [16], [17], [18], such as CNNs, in conjunction with
ensemble learning techniques that integrate the capabilities of
models like VGG16, ResNet50, and InceptionV3, to achieve
a high degree of disease detection accuracy while maintaining
resilience in a range of environmental circumstances and image
characteristics. The goal also includes improving these models’
interpretability by using Explainable AI techniques like Grad-
CAM, which let users see the specific regions of the rice
leaf that the algorithm targeted for prediction. This openness
strengthens farmer confidence in the system and gives them a
greater knowledge of the health of their crop [19], which in
turn improves disease control procedures and promotes more
sustainable agricultural results.

The key contributions of this paper are as follows:

1 We explored the disease of rice leaf images from
two datasets using separate deep and transfer learning
models.

2 We customized and applied three ensemble learning
techniques from deep and transfer learning.

3 We proposed an ensemble learning model with the
highest accuracy and lowest data loss rate.

4 We used Explainable AI to evaluate the input image
and with the proposed ensemble learning.

5 Finally, we proposed new algorithms for generated
ensemble learning algorithms.

The remaining parts of this paper are formatted as follows:
Section II explains the previous studies of existing work
that were published recently. While Section III describes the
research technique used in this work, Section IV provides the
experimental results of this work. Section V demonstrates the
conclusion and future work of this study.

II. PRIOR STUDIES

Many researchers have published solutions for rice leaf
disease diagnosis using different types of algorithms such as
deep learning, machine learning, ensemble learning, etc. Some
recent publications are mentioned here.

S. Ghosal and K. Sarkar et al. [20], proposed a VGG-16-
based CNN architecture to detect different rice leaf diseases
accurately and they used their own collected dataset containing
about 500 images and achieved 92.46% of accuracy. In the
paper et al.[21], authors applied several image processing
techniques such as RGB to HSV conversion, background
subtraction, segmentation, etc., and then implemented an auto-
mated system using a deep neural network for rice leaf disease
detection and achieved an average accuracy of 92% using their
self-collected dataset of 209 images. J. Chen, D. Zhang, Y. A.
Nanehkaran, and D. Li et al. [22] proposed a system for the

detection of various rice leaf diseases combining DenseNet
pre-trained with ImageNet and Inception module on an image
dataset collected by Fujian Institute of Subtropical Botany,
Xiamen, China and achieved an outstanding accuracy of no
less than 94.07% for each type of disease category.

M. A. Islam et al. [23] worked with four types of paddy
disease to detect it early and accurately. They applied sev-
eral deep learning CNN models such as VGG-19, Inception-
Resnet-V2, ResNet-101, and Xception and their experimental
result shows that Inception-Resnet-V2 performed better with
92.68% accuracy. Several image processing techniques [24]
were applied by the authors to extract important features from
images that describe the most significant characteristics and
then classified the images as rice leaf disease category using
XGBoost and SVM algorithms and got about 86.58% accuracy.
They created their own dataset for the experiment and used a
public dataset for testing. They extract features from images
using several image processing techniques [25] and applied
CNN models VGG16, ResNet50, and DenseNet121 to detect
rice leaf disease accurately and 91.63% accuracy is achieved
by the model DenseNet121.

To detect rice leaf disease automatically considering vari-
ous leaf sizes author applied deep learning-based CNN model
ResNet and YOLOv4 [26] on a public dataset of 4960 images
and YOLOv4 models show better performance with mAP
value 91.14%. In the paper et al. [27], the author applied
various CNN techniques for rice leaf disease detection such
as VGG16, VGG19, Xception, ResNet, and the 5-layer convo-
lution model, and finally, it is shown that the 5-layer convo-
lution model achieved the highest accuracy 78.2% in compare
to other models. CNN models DenseNet121, DenseNet169,
MobileNetV2, and VGG16 are employed [28] on the public
dataset from Kaggle containing the 5932 images for rice leaf
disease detection, and DenseNet169 and moboleNetV2 show
the highest performance with 94.30% accuracy. In the paper
et al. [29] collected 1500 images from Feni, Bangladesh to
detect rice leaf disease and applied CNN model YOLOv5 and
achieved 76% mAP value.

A new machine learning approach Nu-SVM model is
employed [30] on a Kaggle dataset to detect rice leaf disease
and the experimental result shows 52.12% to 53.81% of vali-
dation accuracy. In the paper et al. [31], the author employed
various filter-based feature transformation techniques for rice
leaf disease detection accurately. They used a public rice leaf
dataset from Kaggle and it showed that in the experiment
the KNN model achieved the highest balance accuracy of
90%. DNet-SVM: XAI is proposed [32] by the authors to
detect sugarcane disease detection and they used a public
sugarcane dataset from kaggle. DNet-SVM: XAI detects and
predicts sugarcane disease early and explains its prediction
reason. They also applied another deep learning model such as
VGG16, VGG19, and Inception, etc., and compared the result
with the proposed model. The proposed model outperformed
in comparison to other models. Rice crop disease detection
is very important and to detect rice crop disease early author
applied the CNN model for detection and LIME to explain
its interpretability [33]. The experimental result shows that the
proposed models achieved 91.60% accuracy.

Deep learning models VGG16, SqueezeNet, and Incep-
tionV3 were employed in [34] for rice leaf disease detection
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and the proposed model SqueezeNet achieved the highest
accuracy of 93%. P. Kulkarni and S. Shastri at el. [35] proposed
a novel deep learning-based CNN model that is applied for
the automatic detection of rice leaf disease. They used a
public dataset from Kaggle and the author achieved about 95%
accuracy in the experiment. In the classification of corn leaf
diseases, the proposed VGG16 model augmented with LRP
[36] performed better than earlier cutting-edge models. The
outcomes of the simulation showed that the model not only
produced findings with a high degree of accuracy but also high-
lighted important areas in the images that were classified. The
authors introduce an improved YOLOv8 [37] that combines
EIoU loss and α-IoU loss to replace the original Box Loss
function and enhance the rice leaf disease detection system’s
performance. Finally, they compare YOLOv8 performance
with YOLOv5 and YOLOv7 and it is shown that their proposed
model performed better with 89.90% accuracy.

The limitation of previous studies was less accurate. In
most of the publications, they used pretrained models of deep
learning and transfer learning to detect and classify rice leaf
disease. The use of Explainable AI was rare.

We employed the “Rice Leaf Disease Detection” dataset
from Kaggle and some effective deep learning methods such
as CNN, VGG-16, and InceptionV3 in our suggested work
shown in Table I, which exhibits higher accuracy than earlier
studies. Machine learning, deep learning, and advanced image
processing techniques have greatly expanded the field of rice
leaf disease detection and recognition. These advancements
improve prompt intervention and detection accuracy. However,
issues like environmental unpredictability and dataset restric-
tions still exist. In order to enhance sustainable rice cultivation
and further improve detection systems, future research should
focus on these concerns.

III. PROPOSED FRAMEWORK AND SYSTEM
ARCHITECTURE

The proposed working flow diagram of rice leaf disease
diagnosis and classification is illustrated in Fig. 1 where data
collection to result in findings is described sequentially.

A. Dataset

For experimental implementation, we collected image
datasets from different types of online sources. We used two
datasets from online. One is “Rice Leafs Disease Dataset”1.
This data has a total of two different directories as training
and validation with 6 classes. The total images contain 2,627 in
six classes. The classes are Bacterial Leaf Blight, Brown Spot,
Healthy, Leaf Blast, Leaf Scald, and Narrow Brown Spot. Each
class has 350 images for training and 88 images for validation.

Another dataset name is “Rice Leaf Diseases Detection”2.
This dataset is released at the beginning of 2024. This dataset
is also divided into two divisions training and validation. Each
directory has a total of 10 classes such as bacterial-leaf-blight,
brown-spot, healthy, leaf-blast, leaf-scald, narrow-brown-spot,
neck-blast, rice-hispa, sheath-blight, and tungro. Each class has

1https://www.kaggle.com/datasets/dedeikhsandwisaputra/rice-leafs-disease-
dataset

2https://www.kaggle.com/datasets/loki4514/rice-leaf-diseases-detection

a total of 1,385 images for training and 350 for validation.
The total dataset has 17, 350 images for both training and
validation. Fig. 2 and 3 describe the sample dataset for two
different types of images.

B. Feature Extraction and Image Processing

To remove noise, reduce dimensions, and make it suitable
for model training, we change the shape of the images into
224*224 dimensions after converting the grayscale. To extract
the features of the images, the Lanczos interpolation method.
We later normalized the images by dividing 255.0 between the
pixel values of 0 and 1.

Basically, two feature extraction methods were used here
[38]. These are: (1) Shaped based technique, and (2) Transform
based Technique.

The dataset is labeled using One-hot encoding techniques
for each class in two datasets. Data labeling makes it easy to
train and validate the model. Based on the unique class name,
the images are labeled with a one-hot encoding method in this
study [39].

C. Image Preprocessing

As the preprocessing part of the data, we made changes to
the images as:

1 Resize of the images into 224*224
2 Set batch size=32 and classmode=’categorical’ for the

multi-class classification.
3 Array conversion with the help of Numpy.
4 Input shape is 224*224*3.

Such preprocessed images are shown in Fig. 4; where six
images from six classes are combined into a single form [40].

D. Data Augmentation

We augmented the dataset 1 to increase the number of
images [41], [42]. The increased amount of data will increase
the detection and training accuracy of the model [43]. If the
dataset is vast then augmentation is not needed but dataset 1,
has only 2,627 images. That’s why, we used the augmentation
method for dataset increasing. We set the parameter details in
the augmentation part as follows:

rescale=1.0/255.0,

horizontal-flip=True,

zoom-range=0.2,

shear-range=0.2

But dataset-2 has around 17,350 image data. This amount
is enough for the model training. However, dataset-2 has
satisfactory data, so, it does not need to augment this data [44].
We ignored to augment. The augmented images for dataset 1
are shown in Fig. 5, where six individual images from six
classes are merged into a single image.
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TABLE I. COMPARATIVE ANALYSIS BETWEEN EXISTING WORK WITH PROPOSED WORK

Reference Dataset Used Methods Accuracy XAI
[20] Private (500) CNN, VGG-16 92.46% No
[21] Private (209) DNN, KNN Avg. 92.6% No
[22] Private (500) Fujian Institute of Subtropical

Botany, Xiamen, China
DENS-INCEP, VGGNet-19, ResNet-50,
DenseNet-201, InceptionV3, VGG19-SVM

94.07% No

[24] UCI rice leaf disease dataset XGBoost, SVM 86.58% No
[25] Private (386) VGG16, ResNet50, DenseNet121 91.63% No
[26] Rice Leaf Dataset (4960) ResNet, YOLOv4 —– No
[27] Kaggle Dataset (1600) VGG16, VGG19, Xception, ResNet, 5-layer

Convolution
78.20% No

[28] Kaggle Dataset (5932) DenseNet121, DenseNet169, MobileNetV2,
VGG16

74.30% No

[29] Private Dataset (1500) YOLOv5 —– No
[30] Rice Leafs Dataset from Kaggle Nu-SVM 53.81% No
[31] Kaggle Dataset RFC, KNN, LDA, HGBC etc. 90% No
[32] Sugarcane (14000) from Kaggle DNet-SVM, VGG16,VGG19, ResNet, Incep-

tion, DenseNet, DNet-SVM
94% Yes

[33] Kaggle Dataset CNN and LIME 90.60% Yes
[34] Rice Leaf Dataset VGG16, SqueezeNet, and InceptionV3 93% No
[35] Kaggle Dataset CNN 95% No
[36] Corn Leaf Dataset (4188) VGG16, LRP 94% Yes
[37] Private Dataset (1634) YOLOv8 89.90% No
Proposed Work Rice Leaf Diseases Diagnosis Deep-transfer learning ensembles 99.78%% Yes

.

.

Dataset

Online Source 1

Online Source 2 Online Source 3

Feature Extraction

Image Preprocessing

Image Augmentation

Raw ImagesResNet -50ResNet -50

VGG-16

VGG-19 Ensemble 1

Diagnosis & 
Classification 

Apply Explainable AI Testing Image

Testing and AI applied Results

Classified Result

InceptionV3

Efficient Net  B2

Ensemble 2

ResNet -50

VGG-16
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(VGG-16 
+CNN)

Fig. 1. Proposed system architecture.
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Bacterial leaf blight Brown spot
Healthy

Leaf blast Leaf scald Narrow brown spot

Fig. 2. Dataset-1 sample with six classes.

Bacterial leaf blight Brown spot Healthy Leaf blast Leaf scald

Narrow brown spot Neck blast Rice hispa Seath blight Tungro

Fig. 3. Dataset-2 sample with 10 classes.

E. Feature Extraction Based on Deep Learning

For model training and validation, we used a deep learning
model CNN in this study. This model is suitable for im-
age classification. Preprocessed and augmented images were
trained and validated by this model. CNN model is applied
to two datasets separately. It is constructed with an input
layer, a fully connected layer, some convolutional layers, and
max pooling layers [45]. The input layer takes images as
input, convolutional layers use a 3*3 filter or kernel for image
filtering. The Max pooling layer receives the output from the
convolutional layer and processes it. After processing, the
output will go through the fully connected layer. The fully
connected layer combines the output from the max-pooling
layer and makes a single form in the Dense layer. Dense layers
flatten the previous layers for making a single form or it is used
for combining [46], [16]. The basic organization of the CNN
architecture of rice leaf image classification is shown in Fig.

6. CNN model parameter details are shown in Table II.

TABLE II. CNN MODEL PARAMETER DETAILS IN EVERY LAYER

Layer (type) Output Shape Parameter
input-1 (InputLayer) [(None, 224, 224, 3)] 0
block1-conv1(Conv2D) (None, 224, 224, 64) 1792
block1-conv2(Conv2D) (None, 224, 224, 64) 36928
block1-pool(MaxPooling2D) (None, 112, 112, 64) 0
block2-conv1(Conv2D) (None, 112, 112, 128) 73856
block2-conv2(Conv2D) (None, 112, 112, 128) 147584
block2-pool(MaxPooling2D) (None, 56, 56, 128) 0
block3-conv1(Conv2D) (None, 56, 56, 256) 295168
block3-conv2(Conv2D) (None, 56, 56, 256) 590080
block3-conv3(Conv2D) (None, 56, 56, 256) 590080
block3-pool(MaxPooling2D) (None, 28, 28, 256) 0
block4-conv1(Conv2D) (None, 28, 28, 512) 1180160
block4-conv2(Conv2D) (None, 28, 28, 512) 2359808
block4-conv3(Conv2D) (None, 28, 28, 512) 2359808
block4-pool(MaxPooling2D) (None, 14, 14, 512) 0
block5-conv1(Conv2D) (None, 14, 14, 512) 2359808
block5-conv2(Conv2D) (None, 14, 14, 512) 2359808
block5-conv3(Conv2D) (None, 14, 14, 512) 2359808
block5-pool(MaxPooling2D) (None, 7, 7, 512) 0
flatten(Flatten) (None, 25088) 0
dense (Dense) (None, 2) 50178
Total params: 0 14,764,866
Trainable params: 0 50,178
Non-trainable params: 0 14,714,688

F. Feature Extraction Based on Transfer Learning

To implement the proposed work, we used total five transfer
learning algorithms such as VGG16, VGG19, ResNet-50,
InceptionV3, and EfficientNetV2-M. These models apply to
two different datasets separately. For vast datasets, transfer
learning models are suitable for the best accurate training
and validation. Most of the algorithms work are similar way.
However, we described them separately below.

1) VGG16: It is the variants of the deep learning model
and updated version of the CNN model. This model has basic
16 layers. That is why, it is called VGG16. It consists of some
layers such as the Input layer, Convolution layers, Max-pooling
layer, Dense layer, and Output layer [47]. A 3*3 laplacian
mask was applied here. The image input shape is 224*224 with
RGB Channel. Then input image is processed by convolution
and max pooling layer [48], [49]. Finally, layers are combined
into a single layer named as dense layer. It produces the final
output of the model. During trainable. all layers are frozen. The
activation function is “softmax” used here [50]. The parameters
for the VGG16 is set as:

optimizer=‘rmsprop’,

loss=‘categorical-crossentropy’,

metrics=[‘accuracy’]

The summary parameter details of VGG16 is illustrated in
Table III.

2) VGG19: VGG19 is also a transfer learning model, used
for classification. It has basic 19 layers. So, it is called, VGG19
[51]. It can classify a total of 1,000 classes of objects. So, this
model is highly applicable to vast datasets. It is the incremental
version of VGG16 [52], [53]. We used two separate datasets.
The first dataset has 2,627 images. The second dataset has
10 image classes and around 17,350 image data. So, we used
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Fig. 4. Preprocessed image sample.

Fig. 5. Augmented images for dataset 1.

1. Bacterial 
leaf blight

2. Brown 
spot

3. Healthy
4. Leaf blast
5. Leaf scald
6. Narrow 

brown 
spot

7. Neck blast

Rice Leaf Image Data

7. Neck blast
8. Rice hispa
9. Sheath 

blight
10. Tungro

Fig. 6. CNN Architecture for rice leaf disease diagnosis.
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TABLE III. VGG16 MODEL PARAMETER DETAILS

Layer (type) Output Shape Parameter
vgg16 (Functional) (None, 7, 7, 512) 14714688
flatten-1 (Flatten) (None, 25088) 0
dense-2 (Dense) (None, 512) 12845568
dropout-1 (Dropout) (None, 512) 0
dense-3 (Dense) (None, 10) 5130
Total params: 0 27565386
Trainable params: 0 12850698 )
Non-trainable params: 0 14714688

it to get the highest accuracy. This model can classify the
object with high accuracy. It takes the input image as 224*224
in standard format. This model consists of some layers. The
layers are Convolution, Max pooling, fully connected, input,
and dense layer. The dense layer is used to flatten the previous
layers and it provides the output image [54]. The parameter
details of VGG19 are shown in Table IV.

TABLE IV. VGG19 MODEL PARAMETER DETAILS IN EVERY LAYER

Layer (type) Output Shape Parameter
input-2 (InputLayer) [(None, 224, 224, 3)] 0
block1-conv1 (Conv2D) (None, 224, 224, 64) 1792
block1-conv2 (Conv2D) (None, 224, 224, 64) 36928
block1-pool (MaxPooling2D) (None, 112, 112, 64) 0
block2-conv1 (Conv2D) (None, 112, 112, 128) 73856
block2-conv2 (Conv2D) (None, 112, 112, 128) 147584
block2-pool (MaxPooling2D) (None, 56, 56, 128) 0
block3-conv1 (Conv2D) (None, 56, 56, 256) 295168
block3-conv2 (Conv2D) (None, 56, 56, 256) 590080
block3-conv3 (Conv2D) (None, 56, 56, 256) 590080
block3-conv4 (Conv2D) (None, 56, 56, 256) 590080
block3-pool (MaxPooling2D) (None, 28, 28, 256) 0
block4-conv1 (Conv2D) (None, 28, 28, 512) 1180160
block4-conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4-conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4-conv4 (Conv2D) (None, 28, 28, 512) 2359808
block4-pool (MaxPooling2D) (None, 14, 14, 512) 0
block5-conv1 (Conv2D) (None, 14, 14, 512) 2359808
block5-conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5-conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5-conv4 (Conv2D) (None, 14, 14, 512) 2359808
block5-pool (MaxPooling2D) (None, 7, 7, 512) 0
flatten-1 (Flatten) (None, 25088) 0
dense-1 (Dense) (None, 6) 150534
Total params: 0 20174918
Trainable params: 0 150534
Non-trainable params: 0 20024384

3) InceptionV3: This model is another powerful transfer
learning model for image data classification. There are eleven
inception modules, two max-pooling layers, five convolutional
layers, one average pooling layer, one fully connected layer,
and one max-pooling layer in InceptionV3[55]. We used this
model for rice leaf disease diagnosis and classification. For two
separate datasets, we applied this model. Though it takes more
time than other models, it can be classified accurately than
other models. The basic parameter details of this algorithm
are lengthy. So, we are ignoring the parameter details. It has
a total of 48 layers [56].

4) ResNet-50: A deep convolutional neural network (CNN)
architecture with 50 layers, ResNet-50 is intended for com-
puter vision and image recognition applications. Recursive
learning, also known as “skip connections”, was presented, in
which the network learns residuals, or the variations between

input and output layers [57]. This facilitates more effective
training of deeper models by addressing the vanishing gradient
issue that arises in very deep networks. Convolutional, pooling,
and fully connected layers are the building blocks of ResNet-
50, which are arranged in residual blocks [58]. It has achieved
state-of-the-art results in several vision tasks and has been
widely utilized for transfer learning, having been trained on
big datasets such as ImageNet. Reputably, the model strikes
a balance between computational efficiency and depth. We
used this model for two separate datasets in rice leaf image
classification.

5) EfficientNetV2-M: EfficientNetV2-M is a powerful
transfer learning algorithm, used for large-scale image data.
A member of the EfficientNet family, EfficientNetV2-M is
renowned for striking an ideal balance in image recognition
tasks between computational efficiency and model perfor-
mance. By adopting a more sophisticated scaling technique
and methodically increasing breadth, depth, and resolution,
it improves accuracy and speed over the original Efficient-
Net. Depthwise separable convolutions and more sophisti-
cated methods such as Fused-MBConv are combined by
EfficientNetV2-M to minimize computing expenses without
sacrificing precision. Large-scale picture classification tasks
are especially well-suited for this model, which offers shorter
training periods and smaller model sizes than its predecessors.
It is adaptable for a range of computer vision applications
because it has been pretrained on big datasets like. However,
to classify the rice leaf images, we used this model for two
separate datasets. Due to the lengthy of layers, we are ignoring
the parameter details of this model [59].

To implement the working process and evaluate the perfor-
mance, we proposed a new algorithm followed in Algorithm
1.

G. Ensemble Learning

Using the pretrained deep and transfer learning models, we
got the disease detection accuracy to be more than 95% but
not reach 99.99%. We tried multiple ensembling techniques
because it was unknown to us which ensemble would be the
proper model for this type of work. So, we used three types
of ensemble methods [60], [51]. To improve the training and
validation accuracy by more than 95%, sometimes we used
some models in a single structure known as ensemble learn-
ing. Bagging and Boosting are the commonly used ensemble
techniques for image classification [61]. The main purpose of
ensemble learning is:

1 improving the training and validation accuracy,
2 decrease the data loss amount,
3 find out the optimum solution of time and space

complexity,
4 find out the proper detection, prediction, and diagno-

sis,
5 increase the system speed, etc.

However, in this study, we ensembled deep learning and
transfer learning to find out the above requirements. We made
three ensembles from six separate models such as CNN,
VGG16, VGG19, InceptionV3, ResNet-50, EfficientNetV2-M
[62]. Three ensembles are described below.
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Algorithm 1 Proposed Algorithm for Rice Leaf Disease
Detection

#Rice Leaf Images used as Dataset
DataX : Training, V alidation, Testing
InputImage← (256, 64, 3)
Algorithms :← CNN, InceptionV 3, ResNet50,
V GG16, V GG19, EfficientNetV 2M
ITR← NumberofIterations
ACC ← Performancematrix
ALG← Numberofalgorithms
#Feature Extraction using Deep and Transfer Learning Al-
gorithms
ML←ModelLayer
M ← Epochs
#Deep and Transfer Learning Model Training:
for 1 to M do

for each ML do
for each Sample in X do

calculate A from X by Conv. Process
end for

end for
end for
Ensemble Learning Call
E1← Ensemblelearning1
E2← Ensemblelearning2
E3← Ensemblelearnin3
#Number of Iteration
for 1 to ITR do

1. Train Model with N Number of batch size
2. Feature Extraction through hidden layers
3. Forward propagations
4. Backword propagation for updating weights
5. Model validation with validation data to check overfit-
ting

end for
Model Evaluation:
1. Evaluate the model with test data
2. Store the model performance in Acc variable

1) Ensemble Learning-1: Ensemble Learning-1 is devel-
oped from transfer learning models. To make this, we used
5 transfer learning models [63]. They are VGG16, VGG19,
InceptionV3, ResNet-50, and EfficientNetV2-M. After bagging
them, we got a new model named “Ensemble learning-1”.
Though it requires more time than other single models, it can
classify and diagnose the disease more correctly than other
normal models [64], [65]. The basic structure of the newly
developed ensemble model-1 is illustrated in Fig. 7 and the
parameter list is shown in Table V. Algorithm 2 is the proposed
new algorithm for ensemble learning-1 used in this study. It is
developed based on the fusion of VGG16, VGG19, ResNet-50,
InceptionV3, and EfficientNetV2-M [66], [67].

2) Ensemble Learning-2: Another transfer learning combi-
nation of the three models is developed into a single structure
known as “ensemble learning-2”. We made it, after voting
the VGG16, Inception V3, and ResNet-50 [68]. This structure
is simpler than Ensemble learning-1. Also, it is suitable for
high accuracy of the model training and validation. Though its
parameter list is vast, hence it can classify the image data and
can detect the diagnosis[69]. The basic structure of ensemble-2

Algorithm 2 Proposed Algorithm for Ensemble Learning-1

ITR← NumberofIterations
ACC ← Performancematrix
ALG← Numberofalgorithms
#Ensemble Models
E1← FusionofALG
ALG← ResNet50, EfficienNetV 2M, InceptionV 3,
V GG16, V GG19
for 1 to ITR do

1. Preprocess the input features of fusion model

2. Customize the layers in the model

3. Freezing the base model

4. Optimize the parameters in the model

5. Train the model by dataset

6. Model validation with validation data to check overfit-
ting.

end for

#Number of Iteration
for 1 to ITR do

1. Train Model with N Number of batch size

2. Feature Extraction through hidden layers

3. Forward propagations

4. Backword propagation for updating weights

5. Model validation with validation data to check overfit-
ting

end for

is described in Fig. 8 and the parameter list is shown in Table
VI. Algorithm-3 describes the combined algorithm proposed
for this model. It is the appropriate model in this structure.

3) Ensemble Learning-3: Ensemble learning-3 is devel-
oped from one deep learning and one transfer learning model.
By CNN and VGG16 combinations, ensemble-3 is made [70].
It saves memory and space complexity also. Its structure is
simple and easy to implement [71], [72]. The basic structure
is shown in Fig. 9 and the parameter list is also shown in
Table VII. Algorithm 4 explained the basic working process
of this fusion model from deep learning and transfer learning.
We proposed the algorithm in this stage for rice leaf disease
diagnosis at high accuracy and it is more effective now [73].

IV. RESULT ANALYSIS AND DISCUSSION

In this section, we will discuss different types of algorithm
performance applied in our study. Particularly, we will explain
training, validation, and testing accuracy for each model as
well as loss. Graphical representation also will be described
here such as Plot details, Curves [74], Confusion Matrix, Clas-
sification report, Correctly classified and misclassified images,
AI-based testing image report, etc. After all, a comparison of
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Fig. 7. Basic Architecture of proposed ensemble learning-1 model for rice leaf disease diagnosis.

TABLE V. ENSEMBLE LEARNING-1 PARAMETER DETAILS

Layer (type) Output Shape Parameter Connected to
input-2 (InputLayer) [(None, 224, 224, 3)] 0 []
preprocess-vgg16 (Lambda) (None, 224, 224, 3) 0 [’input-12[0][0]’]
preprocess-inception (Lambda) (None, 224, 224, 3) 0 [’input-12[0][0]’]
preprocess-resnet (Lambda) (None, 224, 224, 3) 0 [’input-12[0][0]’]
preprocess-vgg19 (Lambda) (None, 224, 224, 3) 0 [’input-12[0][0]’]
preprocess-efficientnet (Lambda) (None, 224, 224, 3) 0 [’input-12[0][0]’]
vgg16 (Functional) (None, 512) 14714688 [’preprocess-vgg16[0][0]’]
inception-v3 (Functional) (None, 2048) 21802784 [’preprocess-inception[0][0]’]
resnet50 (Functional) (None, 2048) 23587712 [’preprocess-resnet[0][0]’]
vgg19 (Functional) (None, 512) 20024384 [’preprocess-vgg19[0][0]’]
efficientnetv2-m (Functional) (None, 1280) 53150388 [’preprocess-efficientnet[0][0]’]
concatenate-features (Concatenate) (None, 6400) 0 [five-models [0][0]]
dense-1 (Dense) (None, 1024) 6554624 [’concatenate-features[0][0]’]
dropout-1 (Dropout) (None, 1024) 0 [’dense-1[0][0]’]
dense-2 (Dense) (None, 512) 524800 [’dropout-1[0][0]’]
dropout-2 (Dropout) (None, 512) 0 [’dense-2[0][0]’]
output-layer (Dense) (None, 6) 3078 [’dropout-2[0][0]’]
Total params: 140362458 0 0
Trainable params: 7082502 0 0
Non-trainable params: 133279956 0 0

Fig. 8. Basic Architecture of proposed ensemble learning-2 model for rice leaf disease diagnosis.

each model for two datasets will be added for analysis [75],
and a comparison table will be created for recently published
existing work with the proposed work [76].

A. Transfer Learning Models Performance

In the proposed study, we used five transfer learning
models such as VGG16, VGG19, InceptionV3, ResNet-50,
and EfficientNetV2-M. The performance of these models is
explained below.

1) VGG16: VGG16 is applied for the diagnosis of rice leaf
disease from images. However, its structure is not easy and

it needs more time due to the deep layers. We got accuracy
for training, validation, and testing are 98.94%, 93.97%, and
92.70%, respectively. The training and validation loss amounts
were 7.69% and 12.16%, respectively. The training, validation,
testing, and loss curves for epochs 50 are shown in Fig. 10.
The confusion matrix and classification report are illustrated in
Fig. 11 and Table VIII, respectively. The classification report
and confusion matrix are generated for 50 epochs and we used
two datasets with 0.001 learning rate. To analyze and see the
details we just explain for one dataset. For both datasets, we
mention the accuracy in the Table XVII below. The ROC curve
and Precision-recall curve for dataset-1 are illustrated in Fig.
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TABLE VI. ENSEMBLE LEARNING-2 PARAMETER DETAILS

Layer (type) Output Shape Parameter Connected to
input-layer-31 (Input-Layer) (None, 224, 224,3) 0 -
preprocess-vgg16 (Lambda) (None, 224, 224,3) 0 input-layer-31[0......]
preprocess-inceptionv3 (Lambda) (None, 224, 224,3) 0 input-layer-31[0.....]
preprocess-resnet (Lambda) (None, 224, 224, 3) 0 input-layer-31[0....]
vgg16 (Functional) (None, 512) 14,714,688 preprocess-vgg16
inceptionv3 (Functional) (None, 2048) 21,802,784 preprocess-inceptionv3
resnet50 (Functional) (None, 2048) 23,587,712 preprocess-resnet
concatenate-features (concatenate) (None, 4608) 0 vgg16[0][0], inceptionv3[0][0...], resnet50[0][0]
dense-1 (Dense) (None, 1024) 4,719,616 concatenate-features
dropout-1 (Dropout) (None, 1024) 0 dense-1[0][0]
dense-2 (Dense) (None, 512) 524,800 dropout-1[0][0]
dropout-2 (Dropout) (None, 512) 0 dense-2[0][0]
output-layer (Dense) (None, 6) 3,078 dropout-2[0][0]
Total params: 65,352,678 0 0
Trainable params: 5,247,494 0 0
Non-trainable params: 60,105,184 0 0

TABLE VII. ENSEMBLE LEARNING-3 PARAMETER DETAILS

Layer (type) Output Shape Parameter Connected to
input-9 (InputLayer) [(None, 224, 224, 3)] 0 []
input-10 (InputLayer) [(None, 224, 224, 3)] 0 []
sequential-3 (Sequential) (None, 36864) 388416 [’input-9[0][0]’]
sequential-4 (Sequential) (None, 25088) 14714688 [’input-10[0][0]’]
concatenate-2 (Concatenate) (None, 61952) 0 [’sequential-3[0][0]’, ’sequential-4[0][0]’]
dense (Dense) (None, 512) 31719936 [’concatenate-2[0][0]’]
dropout (Dropout) (None, 512) 0 [’dense[0][0]’]
dense-1 (Dense) (None, 6) 3078 [’dropout[0][0]’]
Total params: 46826118 0 0
Trainable params: 32111430 0 0
Non-trainable params: 14714688 0 0

Fig. 9. Basic Architecture of proposed ensemble learning-3 model for rice leaf disease diagnosis.

12 and 13, respectively. It is generated for six class dataset.
For the epochs, 50 VGG16 generated these curves.

TABLE VIII. CLASSIFICATION REPORT OF VGG16 MODEL

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 0.96 1.00 0.98 53
brown-spot 0.93 0.86 0.89 63
healthy 0.87 0.91 0.89 44
leaf-blast 0.82 0.85 0.84 55
leaf-scald 0.98 1.00 0.99 42
narrow-brown-spot 1.00 0.97 0.98 58
accuracy 0 0 0.93 315
macro avg 0.93 0.93 0.93 315
weighted avg 0.93 0.93 0.93 315

Though the applied VGG16 model produces around
98.94% training accuracy, it also has some amount of loss. In
some cases, it is misclassified and does not properly diagnose

the disease. This misclassified rate is rare. However, it was not
100% perfect. But in most of the cases, the model was correctly
classified. Some misclassified and correctly classified images
are shown in Fig. 14 and 15, respectively. We will ignore the
misclassified and correctly classified images for other used
models due to vast images and page length.

2) VGG19: VGG19 is used for rice leaf disease diagnosis
and classification. Though it requires more time for comple-
tion, it can classify and detect the diagnosis more correctly. It
has more layers in structure, so it needs time to run. However,
after applying this model we got the training, validation, and
testing accuracy of 100%, 92.38%, and 92.38%, respectively.
The training and validation loss amounts are 7% and 6%,
respectively. The learning rate was 0.001 for 50 epochs. The
accuracy and loss curve is shown in Fig. 16.

Fig. 17 and 18 describe the ROC and Precision-recall
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Fig. 10. The training, validation, testing and loss curve of VGG16 model.

Algorithm 3 Proposed Algorithm for Ensemble Learning-2

ITR← NumberofIterations
ACC ← Performancematrix
ALG← Numberofalgorithms
#Model Combined
#Extract features using Models combined
E2← ALG
for 1 to M do

for each E2 do
for each Sample in X do

calculate A from X by Conv. Process
end for

end for
end for
#Number of Iteration
for 1 to ITR do

1. Train Model with N Number of batch size

2. Feature Extraction through hidden layers

3. Forward propagations

4. Backword propagation for updating weights

5. Model validation with validation data to check overfit-
ting

end for

curves for the VGG19 Model. Fig. 19 explains the confusion
matrix of the VGG19 model. The figures are generated based
on data training and validation for 50 epochs using VGG19
Transfer learning models. It is for dataset-1 and we ignore
dataset-2. Table IX illustrates the confusion matrix for this
model.

3) InceptionV3: Another transfer learning model Incep-
tionV3 is applied in our study for disease diagnosis of rice
leaf images. It needs more time due to the increased amount
of layers. However, this model classified the images more
accurately. The model training, validation, and testing accuracy

Algorithm 4 Proposed Algorithm for Ensemble Learning-3

ITR← NumberofIterations
ACC ← Performancematrix
ALG← Numberofalgorithms
#Fusion Models
#Extrac features using fusion models
E3← ALG
for 1 to M do

for each E3 do
for each Sample in X do

calculate A from X by Conv. Process
end for

end for
end for
#Number of Iteration
for 1 to ITR do

1. Train Model with N Number of batch size

2. Feature Extraction through hidden layers

3. Forward propagations

4. Backword propagation for updating weights

5. Model validation with validation data to check overfit-
ting

end for

TABLE IX. CLASSIFICATION REPORT OF VGG19 MODEL

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 0.93 98 0.95 53
brown-spot 0.91 0.92 0.91 63
healthy 0.91 0.93 0.92 44
leaf-blast 0.85 0.84 0.84 55
leaf-scald 1.00 0.95 0.98 42
narrow-brown-spot 0.96 0.93 0.95 58
accuracy 0 0 0.92 315
macro avg 0.93 0.93 0.93 315
weighted avg 0.92 0.92 0.92 315

are 100%, 93%, and 93%, respectively. The accuracy and loss
plots are shown in Fig. 22. This model epoch was 50 and the
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Fig. 11. Confusion matrix for VGG16 model.

curves are generated from the model based on training and
validation of the dataset. We used two different datasets but
only the dataset-1 curve is explained here due to the lengthy.

Fig. 20 describes the confusion matrix of the InceptionV3
model. The classification report is illustrated in Table X.

TABLE X. CLASSIFICATION REPORT OF INCEPTIONV3 MODEL

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 1.00 98 0.99 53
brown-spot 0.93 0.87 0.90 63
healthy 0.81 0.89 0.85 44
leaf-blast 0.85 0.85 0.85 55
leaf-scald 1.00 1.00 1.00 42
narrow-brown-spot 0.98 1.00 0.99 58
accuracy 0 0 0.92 315
macro avg 0.93 0.93 0.93 315
weighted avg 0.93 0.93 0.93 315

4) ResNet-50: It is also a transfer learning deep layer-based
model and it is suitable for image classification and disease
detection. ResNet has different types of versions such as ReNet
50, ResNet 152, etc. In this study, we used ResNet-50 for Rice
Leaf Disease Diagnosis and classification. In this research, this
model was applied with 100% training, 96% validation, and
95/25% testing accuracy. The training loss was 5% and the
validation loss was 1%. The confusion matrix of ResNet-50
is explained in Fig. 21. The classification report is shown in
Table XI. The ROC and Precision-recall curve are explained
in Fig. 23 and 24 for 50 epochs in dataset-1.

TABLE XI. CLASSIFICATION REPORT OF RESNET-50 MODEL

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 0.98 0.96 0.97 53
brown-spot 0.92 0.94 0.93 63
healthy 0.98 0.91 0.94 44
leaf-blast 0.91 0.91 0.91 55
leaf-scald 0.93 1.00 0.97 42
narrow-brown-spot 1.00 1.00 1.00 58
accuracy 0 0 0.95 315
macro avg 0.95 0.95 0.95 315
weighted avg 0.95 0.95 0.95 315

5) EfficientNetV2-M: This is another transfer learning
model. It is normally used for large data image processing and
classification. This model requires more time and needs also
memory due to its long hidden layer. However, it can detect
and classify accurately. We used this model for two datasets
and got 99.64% training accuracy, 99.56% validation accuracy,
and 97.98% testing accuracy. The data loss amount for training
is 2% and 4% for validation. The learning rate was 0.001. The
confusion matrix of this model is described in Fig. 25 and the
classification report is explained in Table XII.

TABLE XII. CLASSIFICATION REPORT OF EFFICIENTNET V2M MODEL

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 0.93 0.98 0.95 53
brown-spot 0.91 0.92 0.91 63
healthy 0.91 0.93 0.92 44
leaf-blast 0.85 0.84 0.84 55
leaf-scald 1.00 0.95 0.98 42
narrow-brown-spot 0.96 0.93 0.95 58
accuracy 0 0 0.92 315
macro avg 0.93 0.93 0.93 315
weighted avg 0.92 0.92 0.92 315

B. Deep Learning Model Performance

To implement the proposed work, we used a deep learning
model named Convolutional Neural Network (CNN). This
model is suitable for image classification and detection. For
rice leaf disease diagnosis and classification, we used it. CNN
model architecture is easy and simple to use. After applying
this to two separate datasets, we have 99.34% training accu-
racy, 87.62% validation accuracy, and 90% testing accuracy.
The data loss was 3% for training and 5% for validation. The
classification report is explained in Table XIII.

TABLE XIII. CLASSIFICATION REPORT OF CNN MODEL

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 0.96 0.98 0.97 53
brown-spot 0.88 0.84 0.86 63
healthy 0.72 0.89 0.80 44
leaf-blast 0.79 0.67 0.73 55
leaf-scald 0.93 0.95 0.94 42
narrow-brown-spot 0.96 0.95 0.96 58
accuracy 0 0 0.88 315
macro avg 0.88 0.88 0.88 315
weighted avg 0.88 0.88 0.88 315

TABLE XIV. CLASSIFICATION REPORT OF ENSEMBLE LEARNING-1

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 1.00 1.00 1.00 53
brown-spot 0.98 0.98 0.99 63
healthy 0.99 0.99 0.99 44
leaf-blast 1.00 1.00 1.00 55
leaf-scald 1.00 1.00 1.00 42
narrow-brown-spot 0.99 0.99 0.99 58
accuracy 0 0 0.99 315
macro avg 0.99 0.99 0.99 315
weighted avg 0.99 0.99 0.99 315

C. Ensemble Learning Performance

In this study, to reduce the data loss and increase the model
accuracy, testing accuracy, and validation accuracy we used
three ensemble learning. These methods were generated from
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Fig. 12. ROC Curve for VGG16 model.

Fig. 13. Precision-recall curve for VGG16 model.

TABLE XV. CLASSIFICATION REPORT OF ENSEMBLE LEARNING-2

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 1.00 1.00 1.00 53
brown-spot 0.99 0.99 0.99 63
healthy 0.99 0.99 0.99 44
leaf-blast 1.00 1.00 1.00 55
leaf-scald 1.00 1.00 1.00 42
narrow-brown-spot 0.99 0.99 0.99 58
accuracy 0 0 0.99 315
macro avg 0.99 0.99 0.99 315
weighted avg 0.99 0.99 0.99 315

deep learning and transfer learning models. We will explore
the performance of these ensemble learning models and will
propose a new algorithm for the work.

1) Ensemble learning-1 result: fusion of some transfer
learning models created this new model for rice leaf disease
diagnosis and classified them accurately. Fusion of VGG16,

TABLE XVI. CLASSIFICATION REPORT OF ENSEMBLE LEARNING-3

Class-Name Precision Recall F1-Score Support
bacterial-leaf-blight 1.00 0.98 0.99 53
brown-spot 0.87 0.84 0.85 63
healthy 0.72 0.86 0.78 44
leaf-blast 0.78 0.73 0.75 55
leaf-scald 0.98 0.9 0.98 42
narrow-brown-spot 0.98 0.95 0.96 58
accuracy 0 0 0.89 315
macro avg 0.89 0.89 0.89 315
weighted avg 0.89 0.89 0.89 315

VGG19, InceptionV3, ResNet-50 and EfficientNetV2-M gen-
erated ensemble learning-1 named new model and we got
99.14% for training accuracy, 98.98% validation accuracy, and
99% testing accuracy. The data loss was 2% for training, 4%
for validation and 3% for testing. The classification report for
this model is shown in Table XIV. Fig. 26 describes the model
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Fig. 14. Misclassified images by VGG16 model.

accuracy, loss, and validation accuracy of ensemble learning-1.
This is done for dataset-1 with 50 epochs and not mentioned
for dataset-2. Dataset-2 accuracy and loss are most similar to
dataset-1.

We got 99.14% accuracy using this technique.

2) Ensemble learning-2 result: Ensemble Learning-2 is
generated after combining ResNet-50, VGG16, and Incep-
tionV3. We can say that this is the hybrid version of the
transfer learning model for large-scale image classification.

Though this technique needs more time for data training and
validation, it works accurately. We used it to find out the
disease of rice leaves from leaf images. The training accuracy
was 99.78%, validation accuracy 98.83%, and testing accuracy
97.89%. The classification report is illustrated in Table XV.
Confusion Matrix of Ensemble learning-2 is shown in Fig.
27. Fig. 28 represent the model accuracy, model loss, and
validation accuracy-loss of ensemble learning-2. Algorithm-
2 represents the proposed algorithm for ensemble learning-2
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Fig. 15. Correctly classified images by VGG16 model.

in this study. We developed and used this algorithm. This may
combination-variant of VGG16, ResNet-50, and InceptionV3.

3) Ensemble learning-3 result: We ensembled one deep
learning model named CNN and one transfer learning model
named VGG16 and generated a new model named ensemble
learning-3. We may consider this new model as a variant of the
deep-transfer learning model. It is suitable for detection and
classification of large image datasets. We used this new variant
for two datasets. But dataset-1 got 99.36% training accuracy,

90.57% validation accuracy, and 92% testing accuracy. But in
dataset-2, the training accuracy was 97%, validation accuracy
was 95% and testing accuracy was 90%. Fig. 29 represent the
accuracy and loss of the ensemble learning-3. Algorithm 3 is
the proposed algorithm for ensemble learning-3. We developed
it based on this new model. Fig. 30 illustrates the confusion
matrix for ensemble learning-3. Table XVI represents the
classification report for ensemble learning-3.
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Fig. 16. Accuracy and loss curve for VGG19 model.

Fig. 17. ROC Curve for VGG19 model.

Fig. 18. Precision-recall curve for VGG19 model.

D. Explainable AI “Grad-CAM” for Ensemble Learning-1, 2
and 3

The objective of this work was to increase the inter-
pretability and reliability of image classification using three
different ensemble learning models. Combining five strong
architectures (VGG16, VGG19, ResNet50, InceptionV3, and
EfficientNetV2-M) and leveraging their own strengths, the first
ensemble, Ensemble Learning-1, is a formidable combination.

Combining the depth of ResNet50, the multi-scale feature
extraction of InceptionV3, and the simplicity of VGG16, the
second model, Ensemble Learning-2, streamlines these three
models. To balance task-specific learning with general feature
extraction, the third model, Ensemble Learning-3, combines
two deep learning models: CNN and VGG16. The image
classification tasks were used to train each ensemble model,
and Explainable AI (XAI) techniques like Grad-CAM were
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TABLE XVII. COMPARATIVE ANALYSIS OF USED MODEL IN DATASET-1 AND 2

Algorithm Dataset-1 Dataset-2
train vali: test train vali: test

VGG16 98.94% 93.97% 92.70% 97.94% 96.78% 95%
VGG19 100% 92.38% 92.38% 99.99% 97% 96%
InceptionV3 100% 93% 93% 92% 95% 94%
ResNet-50 100% 96% 95.25% 99.99% 97% 98%
EfficienNet 99.64% 99.56% 97.98% 98.98% 98.90% 96.98%
CNN 99.34% 87.62% 90% 96.87% 93.78% 94.67%
Ensemble 1 99.14% 98.98% 99% 97.98% 97% 97%
Ensemble 2 99.78% 98.83% 97.89% 96.99% 99% 96%
Ensemble 3 99.36% 90.57% 92% 98.99% 98% 99.98%

Fig. 19. Confusion matrix for VGG19 model.

Fig. 20. Confusion matrix for inceptionV3 model.

used to assess interpretability [77], [78]. We evaluated a
picture from the “Brown-spot” class to assess the model. Heat
maps showing how the model recognized the disease were
created using Grad-CAM. The models were able to identify
the “Brown-spot” in the input image in every instance, demon-
strating the effectiveness of combining XAI and ensemble

Fig. 21. Confusion matrix for ResNet-50 model.

learning [79]. The XAI-based assessments for models 1, 2,
and 3 of ensemble learning are shown in Fig. 31, 32, and
33, respectively. The model predictions perform better and are
more transparent using this technique.

E. Discussion

The integration of deep learning and transfer learning mod-
els presents a highly efficient approach for the practical diagno-
sis and categorization of rice leaf disease [80], [49]. Accurately
detecting illnesses in rice leaves is critical for crop health and
yield maintenance [81], [82]. Models like as VGG16, VGG19,
ResNet50, InceptionV3, and EfficientNetV2-M do this [83].
Ensemble Learning-1 demonstrated an accuracy of 99.78% in
classification as a result of the integration of these models into
ensemble learning structures [84], [85]. Through early disease
detection and substantial crop loss prevention, this technique
makes it possible to process rice leaf pictures in an effective
manner [86], [87].

Moreover, the diagnosis process gains interpretability with
the incorporation of Explainable AI (XAI) tools such as Grad-
CAM [88]. XAI makes it easier to see which areas of the rice
leaf the model concentrates on in order to identify diseases,
giving agronomists and farmers more reliable and transpar-
ent information [89]. For practical application in agriculture,
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Fig. 22. Accuracy and loss curve for InceptionV3 model.

Fig. 23. ROC Curve for ResNet-50 model.

Fig. 24. Precision-recall curve for ResNet-50 model.

Fig. 25. Confusion matrix for EfficientNetV2-M.

where decision-making depends on the capacity to comprehend
the reasoning behind a model’s predictions, this transparency
is crucial [90]. Rice producers can implement preventive mea-

sures earlier and improve crop management and agricultural
sustainability by utilizing these AI-driven techniques [91].

Individual models like ResNet50, VGG19, VGG16, and
InceptionV3 demonstrated their strong capacity to classify
diseases correctly, achieving perfect accuracy (100%), when
comparing the performance of individual and ensemble learn-
ing models for rice leaf disease detection [92]. Nonetheless,
the accuracy of 99.78% was slightly lower but still outstanding
when using ensemble learning models, especially Ensemble
Learning-1 (which combined VGG16, VGG19, ResNet50,
InceptionV3, and EfficientNetV2-M). By utilizing numerous
architectures, ensemble models provide the advantage of low-
ering data loss and enhancing overall robustness despite the
slight decrease[23]. The results of the ensembles indicate that
adding more diverse models leads to higher generalization and
performance, as Ensemble Learning-1 outperformed Ensemble
Learning-2 (VGG16, InceptionV3, ResNet50) and Ensemble
Learning-3 (VGG16 and CNN).

Furthermore, the incorporation of Explainable AI (XAI)
methods, like Grad-CAM, significantly increased the value
by offering visual insights into the models’ disease detec-
tion processes and improving forecast transparency [86]. This
is especially significant for agricultural applications because
practical usage of the model depends on the user’s ability to
understand its decisions. As a result, while individual models
are very accurate, ensemble learning with XAI balances high
accuracy, interpretability, and minimal data loss, making it a
more useful and trustworthy method for diagnosing rice leaf
disease [93]. To see the comparative analysis of proposed
work with other researchers, see Table I; where we got the
highest accuracy than other recently published papers. Table
XVII represents the comparison of used methods for dataset-1
and dataset-2. The biases of training, validation, and testing
accuracy are different in dataset-1 and 2 due to the image
characteristics or features.

V. CONCLUSION AND FUTURE WORK

This study’s findings demonstrate the value of integrating
deep learning and transfer learning models to accurately di-
agnose and classify illnesses affecting rice leaves. Combining
different architectures improves accuracy and reliability. The
ensemble learning models performed well, with Ensemble
Learning attaining the maximum accuracy of 99.78%. Several
models, including ResNet50, VGG19, VGG16, and Incep-
tionV3, demonstrated 100% accuracy, demonstrating their effi-
cacy in the identification of diseases. This strategy is useful for
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Fig. 26. Model accuracy, loss and validation for ensemble Learning-1.

Fig. 27. Confusion matrix for ensemble Learning-2.

real-world applications in agricultural disease control since Ex-
plainable AI (XAI) approaches like Grad-CAM also increase
the predictability and transparency of the models. We intend
to improve performance even further by refining the suggested
ensemble learning approach in further work. Furthermore, we
hope to investigate the possibility of incorporating real-time
data for ongoing observation and early disease diagnosis, as
well as to expand this methodology to other crop diseases. In-
cluding more extensive and varied datasets may also contribute
to improving the models’ resilience. The ultimate objective is
to create an all-inclusive, field-deployable automated system
for diagnosing crop diseases in order to promote sustainable
agriculture.
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