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Abstract—In response to the increased demand for individu-
alized workout routines, online aerobics programs are struggling
to fulfil the needs of their various user bases with specialized sug-
gestions. Current systems seldom combine multiple data sources
to analyze user preferences, reducing customization accuracy
and engagement. Enhanced BERT-Residual Network (EBRN)
evaluates multimodal input using residual processing blocks
and contextual embeddings based on BERT to bridge textual
and structural user characteristics. EBRN’s deep insights may
help understand user engagement, fitness goals, and enjoyment.
An innovative data balancing and feature selection method,
Dynamic Equilibrium Sampling and Feature Transformation
(DES-FT), improves data preparation and model accuracy. Two
novel metrics, Contextual Scheduling Consistency (CSC) and
Complexity-Weighted Accuracy (CWA), may quantify EBRN
stability in multi-attribute classification, particularly for complex
data. EBRN outperforms standard AI models on a Toronto
fitness platform dataset with 98.7% recall, 98.9% precision,
and 99.3% accuracy. Its limited geographical dataset and lack
of real-time validation hinder the research. The data show
individualized aerobics recommendations that include instructor
quality, platform accessibility, and material variety may boost
involvement. Researchers need additional datasets and real-time
flexibility to make this concept more practical. EBRN’s tailored
ideas revolutionized digital fitness platform user engagement and
enjoyment.
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I. INTRODUCTION

Aerobics and fitness have adopted new technologies due
to health awareness and AI/ML breakthroughs. Demand for
aerobics classes has grown due to its health benefits for all
age groups [1]. NASA and Jane Fonda pioneered aerobics
in the 1980s, which now includes dance, gymnastics, and
rhythmic movement. The focus on physical and mental well-
ness makes aerobics desirable for overall health [2]. Fitness
firms are taking advantage of this demand by developing
AI and IoT solutions to increase involvement. Instructor-
led demonstrations guided pupils through traditional aerobics
movements. Conventional approaches were effective but lacked
real-time analysis, feedback, and customized training [3]. New
AI and computer-aided system technologies are revolutionizing
aerobics training with real-time feedback and analytics. This
change improves aerobics instruction and personalizes excur-
sions. For instance, AI-powered applications that analyze user
data like body posture, activity patterns, and fitness levels to
deliver personalized coaching are popular.

Digital fitness solutions produce data-driven training plans
using image and motion recognition, neural networks, and

neurorobotics. Interactive and intelligent fitness with real-time
monitoring and adaptive responses is possible with neuro-
robotics. Neurorobotics and AI can now create interactive,
customizable systems that sense, interpret, and react to users’
activities. The health advantages of aerobics are maximized
by precise movement and synchronization [4]. Recent systems
use neurorobotics, big data analytics, and ML models to
improve fitness recommendations and personalized routines
[5]. These smart systems operate because they satisfy fitness
industry standards and technology. Studies demonstrate that
self-actualization and preventive healthcare are becoming more
important, and many seek lifestyle and health-focused exercise
solutions. Rising disposable incomes and health awareness in
China have led to the growth of AI-driven fitness applications
for health-conscious users [6]. IBM’s data mining integration
with fitness applications highlights how big data may enhance
outcomes by giving accurate, actionable suggestions based on
user performance and preferences.

School aerobics teaching has altered with multimedia.
Teaching complex exercise routines requires multimedia.
Videos, animations, and interactive visuals assist teachers teach
and help students copy. Research indicates that multimedia-
enhanced aerobics education improves student engagement and
comprehension, making it a valuable tool [7]. Multiple demon-
stration speeds and step-by-step explanations make multimedia
systems more dynamic and responsive. Integrating modern
tools into aerobics class is hard. Despite its benefits, computer-
aided instruction (CAI) systems may make instructors and
students reliant, lowering the value of direct education. Critics
believe CAI systems that can’t adjust to student needs may
hinder interactive instruction. Although demanding, CAI aids
aerobics training by reducing instructor workload and ensuring
consistent movement demonstrations [8]. Refine these systems
to support teachers’ primary duties.

Using big data, ML, and neurorobotics, fitness systems
may adapt to users’ needs in real-time, resulting in responsive
aerobics training systems [9]. Systems with advanced neural
networks may develop fitness regimens based on users’ cir-
cumstances, preferences, and histories [10]. Adaptive systems
may improve health outcomes and satisfaction by meeting
individual goals, providing feedback, and modifying routines
[11]. Our Enhanced BERT-Residual Network (EBRN) for
aerobics provides personalized health recommendations and
management using AI and big data. This gadget analyses
motion data and creates individualized routines using ML.
EBRN predicts and analyzes movement patterns using deep
learning and multi-level feature extraction. EBRN improves
exercise health technologies by providing precise, flexible fit-
ness advice using huge aerobics datasets. EBRN optimizes in-
dividualized workout recommendations using multimodal data
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fusion, unique evaluation criteria, and balanced preprocessing.
Over CNN, ResNet, and VGG16, prediction consistency and
accuracy increase greatly.

1) Develop the Enhanced BERT-Residual Network (EBRN)
for multimodal data fusion: BERT embeddings and residual
processing blocks let EBRN blend contextual (text) and struc-
tured (numerical) data for individualized and accurate exercise
recommendations.

2) New Evaluation metrics: CSC and CWA This study
uses Contextual Scheduling Consistency (CSC) to evaluate
interdependent feature predictions and Complexity-Weighted
Accuracy (CWA) to assess model accuracy on intricate features
to assess multi-attribute decision-making better.

3) Dynamic equilibrium sampling and feature transforma-
tion methodology: The novel DES-FT method balances data
and selects features to handle imbalanced classes and optimize
feature space for high-performance model training.

4) Insightful analysis of user engagement and plat-
form features: This study examines instructor quality, cost-
effectiveness, content variety, and accessibility as critical fac-
tors in aerobics platform user engagement, guiding platform
improvements to increase user retention.

5) Significant inclusive and community-centric fitness tech-
nology advancement: This work makes digital aerobics sys-
tems more inclusive by adapting exercise suggestions and
accessibility features to varied user demands, enabling urban
populations of all fitness levels and demographics.

The rest of the paper is arranged as follows: Section II dis-
cusses AI-driven fitness software advances in tailored aerobics
instruction. Section III describes the Enhanced BERT-Residual
Network (EBRN) architecture, proprietary preprocessing, and
innovative evaluation measures. Section IV includes simula-
tion findings, EBRN comparisons with current models, user
engagement, and platform features analysis. The last part
summarizes the essential contributions and suggests intelligent
fitness system research topics.

II. RELATED WORK

Recently, AI, ML, and the IoT have altered health and
fitness, especially aerobics. To promote user engagement and
health, experts have investigated tailored, data-driven fitness
training and monitoring ideas. This section examines relevant
research’ aims, methods, findings, and limits to identify gaps
and inform our intelligent aerobics workout system.

A cloud-fusion fitness monitoring IoT system collected
multimodal data, perceived emotions, and provided user-
specific health solutions. Our solution represents physiological
data from smart clothes and cloud databases using the Wavelet
transform. The proposed architecture efficiently tracks user
health, but security and privacy issues remain, highlighting the
need for stronger IoT frameworks in medical technology [12].
A universal hidden Markov model (HMM) was designed to
monitor human health and chronic diseases owing to IoT re-
source constraints. This method maintains node connection in
resource-constrained environments using step-by-step denois-
ing and feature identification. Although promising for remote
health monitoring, the IoT-based model’s incentive approach

poses sustainability challenges in long-term deployments [13].
IoT-based epidemic monitoring utilizing body temperature
sensors and thermal imaging might help identify and isolate
likely epidemic patients for early public health crisis response.
The system has promise, however environmental factors may
affect sensor accuracy, necessitating adaptive measures to
improve dependability [14] RF and ARIMA machine learning
were employed in the wearable blood pressure monitoring
model. Lifestyle data predicts blood pressure better than earlier
methods. The study’s limited sample size and reliance on RF
raise concerns about scalability and generalizability to wider
populations [15].

Another study employed mobile phones to reduce wearable
sensor data transmission to quantify fitness. The technique
monitors physiological markers with little data transfer via a
Wireless Body Sensor Network (WBSN). While effective for
data handling, this approach may not give real-time feedback
in fitness applications [16]. A cloud-based health monitoring
system captured hospital EHRs and encrypted them using a
unique cryptographic approach. Health institutions may track
illnesses using the technology while securing data. The use of
high-level encryption in low-resource situations raises issues
about computational demands and accessibility, notwithstand-
ing its enormous public health impacts [17]. An online health
monitoring system sends caregivers real-time patient data,
analyzes historical data, and gives emergency assistance. In
places with limited internet connectivity, the accurate system’s
cloud storage may limit accessibility, increasing the need for
offline data management [18]. Nutrient-based diet advise sys-
tems calculate user dietary needs based on BMI and exercise.
Food planning is customized using smartphone applications.
The system’s smartphone compatibility and computational
limitations may hinder its accessibility for diverse user groups
[19].

CNN-based lifestyle-related health monitoring disease pre-
diction was given in another study. This method identifies
abnormal health and chronic disease risks using IoT data.
The CNN-based approach, although accurate, may struggle
with unstructured data and requires further refinement for
health monitoring [20]. Nutrition and exercise advice for
hypertensives were created. A decision tree-based system
collects fitness metrics and makes personalized suggestions.
The system effectively monitors chronic health conditions, but
lacks real-time input, hindering timely health recommendations
[21]. Diabetics got clustering-based food categorization and
meal planning help. A balanced diet is recommended using
K-means and Self-Organizing Maps. Although practical, the
model’s small scope restricts its usage in comprehensive health
management systems [22]. Continuous cardiac monitoring
using ECG telemetry and SQA was implemented. Real-time
ECG signal quality evaluation is available with this technique.
SQA’s complexity may limit real-time use owing to processing
requirements [23]. Cloud-based smart health monitoring with
robust privacy safeguards was our creation. This solution
tackles remote monitoring privacy problems by enabling cus-
tomizable cloud-based medical information access. Although
the system has strong security measures, merging several
protocols may reduce its effectiveness in urgent care situations
[24].

These studies demonstrate improved health and fitness
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monitoring. Modern cloud-based systems, wearable sensors,
IoT integration, and ML-driven predictive models improve
fitness guidance, sickness prediction, and health app user
engagement. These systems have privacy, computational, and
real-time adaption challenges. Users want speedy response,
yet technology is constrained. A full solution with strong
ML algorithms and adaptable, privacy-conscious frameworks
is required. Our Enhanced BERT-Residual Network (EBRN)
method uses neurorobotics, AI, and big data to individualize
aerobics fitness advice. EBRN employs neural sensing and
control to gather multi-level characteristics, assess movement,
and adapt to user expectations using deep learning models.
EBRN might enhance health technology and deliver more
responsive, personalized, and secure fitness solutions by ad-
dressing scalability, data security, and real-time feedback. This
review of existing systems underlines the need to combine
innovation and practicality in user-centered health and fitness
technologies. See Table I for a summary of the literature
review.

TABLE I. LITERATURE REVIEW SUMMARY

Ref Technique Used Objective Achieved Limitations
[12] Cloud-fusion IoT

architecture with
Wavelet transform

Achieved efficient data acquisition and
user-specific health IoT solutions

Security and privacy concerns in medi-
cal IoT

[13] Universal Hidden
Markov Model
(HMM)

Monitored human physiological health
in resource-constrained environments

Dependency on incentives for sustain-
able operation

[14] IoT-based epidemic
monitoring with
thermal imaging

Enabled early epidemic detection and
isolation measures

Accuracy affected by environmental
conditions

[15] Random Forest
(RF) and ARIMA
models

Improved blood pressure prediction ac-
curacy with lifestyle-based modeling

Limited scalability due to small sample
size

[16] Wireless Body
Sensor Network
(WBSN)

Enhanced efficiency in data handling for
fitness monitoring using minimal data
transmission

Limited real-time feedback capabilities

[17] Cryptographic algo-
rithm for EHR en-
cryption

Secured EHR storage and disease track-
ing for public health

High-level encryption demands compu-
tational resources

[18] Cloud-based online
health monitoring
system

Real-time monitoring with emergency
response for caregivers

Dependency on cloud storage, limiting
accessibility in low-connectivity regions

[19] Nutrient-based diet
recommendation on
smartphone app

Provided dietary recommendations
based on user BMI and activity

Limited accessibility for diverse user
groups due to smartphone dependency

[20] Convolutional Neu-
ral Network (CNN)

Predicted chronic disease risks based on
lifestyle health monitoring

Limited adaptation for unstructured data

[21] Decision tree-based
diet and exercise
system

Offered personalized guidance for hy-
pertensive patients

Lacks dynamic feedback for real-time
recommendations

[22] K-means and Self-
Organizing Maps
for food clustering

Provided meal planning for diabetic pa-
tients through clustering analysis

Restricted to specific meal types, limit-
ing broader application

[23] ECG telemetry
system with signal
quality assessment

Enabled real-time cardiac monitoring
and quality-based signal evaluation

Additional processing requirements
limit real-time performance

[24] Cloud-based smart
health monitoring
with privacy
controls

Flexible access to medical records with
strong security measures

Integration of multiple security proto-
cols impacts system responsiveness

III. PROPOSED METHOD

The Enhanced BERT-Residual Network (EBRN) is a
unique model architecture that integrates several data sources
to provide individualized, data-driven aerobics recommenda-
tions. EBRN specializes in textual and structured data, gath-
ering user input, engagement patterns, and fitness objectives.
The model architecture processes text data using BERT-based
contextual embeddings to provide rich representations of user
input semantics. Structured user data, including demographics
and platform activities, is feature transformed to match textual
embeddings. This dual input approach lets EBRN provide
detailed, tailored suggestions. The model uses Dynamic Equi-
librium Sampling and Feature Transformation (DES-FT) to
balance the dataset and improve feature relevance for data
preparation resilience. These components enable EBRN to

produce accurate, consistent predictions in complicated multi-
attribute settings, establishing a new benchmark for intelligent
fitness recommendation systems. The following sections detail
every aspect of the proposed framework. Refer to Fig. 1 for
the suggested system design.

Fig. 1. Proposed framework.

A. Dataset Description

This research carefully gathered data from active fitness
platforms in Toronto, Canada. Toronto [25], with its varied
population and focus on health and wellbeing, is an excellent
place to study aerobics platform users’ preferences. The data
shows a variety of user demographics and habits, represent-
ing this metropolitan area’s lifestyle preferences. Surveys in
several areas provided a complete picture of the city’s fitness
environment. This dataset is intended to highlight aerobics
platform selection decisions, adding to the expanding corpus
of research on online fitness user experience and satisfaction.
This dataset will discover trends and preferences essential for
developing and optimizing community-specific digital fitness
solutions. Table II shows the dataset features and description.

TABLE II. DATASET FEATURES OVERVIEW

S.No Features Short Description
1 Platform Name Name of the aerobics platform selected by users.
2 Platform Type Type of service offered (e.g., Streaming, Live

Classes).
3 Content Variety Types of workout content available on the plat-

form.
4 Instructor Quality Rating of the instructors provided by the platform.
5 User Engagement Level of user engagement on the platform.
6 Cost Subscription cost for using the platform.
7 Accessibility Features Indicators of features designed for accessibility.
8 Technical Features Quality of video streaming offered by the plat-

form.
9 Device Integration Compatibility of the platform with wearable de-

vices.
10 User Fitness Level Self-reported fitness level of the user.
11 User Goals Goals the user sets (e.g., Weight Loss, Muscle

Gain).
12 Feedback Score Average feedback score from users.
13 Session Duration Average duration of workout sessions in minutes.
14 Device Used Type of Device used to access the platform.
15 Platform Availability Platforms on which the service is available (e.g.,

iOS, Android).
16 Certified Instructors Availability of certified instructors on the platform.
17 User Location Geographical location of the user.
18 Fitness Classes per Week Number of classes a user participates in per week.
19 Community Features Available community engagement features on the

platform.
20 Discount Offers Discounts available for users.
... ... ...

B. Data Preprocessing Steps

This work requires preprocessing the aerobics platform
selection dataset for analysis and modeling. The dataset’s
imbalanced feature distribution necessitated numerous specific
preparation procedures to assure data integrity and usefulness.
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Missing values must be handled during preprocessing to ensure
data quality. Instead of deleting missing rows, custom impu-
tation is used. This approach averages feature values and adds
a tiny random perturbation term to preserve variability. The
imputation equation is:

Yfilled = Yavg + δ (1)

In Eq. (1), Yfilled represents the imputed value, Yavg repre-
sents the feature’s average, and δ is a small random pertur-
bation from a uniform distribution to maintain diversity and
avoid distorting the feature’s natural distribution.

A proprietary oversampling method addresses the dataset’s
imbalance, notably in target labels. This approach uses a
modified Gaussian mixture model to create minority-class
synthetic samples that match their distribution. Representing
synthetic sample generation:

Znew = Zminor +N (θ, ξ2) (2)

In Eq. (2), Znew represents the new synthetic sample, Zminor
represents an existing minority class sample, θ represents
the minority class mean vector, and N (θ, ξ2) represents a
Gaussian distribution with mean θ and variance ξ2,

Features must be scaled for models sensitive to data mag-
nitude, notably distance-based methods. We use a proprietary
normalization method to scale each feature to [0, 1] depending
on its lowest and maximum values. Mathematics defines this
normalization:

Anormalized =
A−Amin

Amax −Amin
(3)

In Eq. 3, Anormalized represents the scaled feature value,
A represents the original value, Amin represents the lowest
value, and Amax represents the maximum value. This scaling
guarantees that all characteristics contribute equally to distance
computations, improving predictive models.

Finally, a novel one-hot encoding approach converts cat-
egorical features to numbers. This method uses frequency-
based encoding instead of a traditional technique to value each
category depending on its dataset frequency. This transition is:

Bmapped =
count(Bj)

M
(4)

In Eq. 4, Bmapped represents the encoded value for the
category Bj , count(Bj) represents the count of occurrences,
and M represents the total number of records. This method
keeps category distribution information and reduces feature
space dimensionality while improving model interpretability.

These proprietary preprocessing procedures prepare the
data collection for analysis and modelling, ensuring that the
input data is resilient, well-structured, and adequate for obtain-
ing relevant insights into selecting aerobics platforms.

C. Data Balancing, Feature Selection, and Extraction

Addressing class imbalance and refining feature space is
the next crucial step after preprocessing the data to clean, im-
pute, and scale it. Dynamic Equilibrium Sampling and Feature
Transformation (DES-FT) has been developed to incorporate
data balance, feature selection, and feature extraction into a
single framework for high-performance modelling.

1) Data balancing: PDS is a revolutionary data balancing
method to address the dataset’s imbalance. PDS dynami-
cally creates minority class samples without oversampling
or undersampling, keeping data density and structure. Over
representation or duplication of minority class data might
cause model training noise; hence, this is necessary. Sampling
process definition:

Mnew = Mmin + β · (Mmaj −Mmin) (5)

where Mnew represents the quantity of new minority class
samples, Mmin represents the current minority class sample
count, Mmaj represents the majority class sample count, and
β is a proportionality factor between 0 and 1. This formula
generates controlled samples depending on the difference
between majority and minority class sizes (see Eq. 5).

New samples are enhanced with a tiny quantity of Gaussian
noise to prevent precise replication:

Ybalanced = Yoriginal + δ · N (0, τ2) (6)

Where Ybalanced is the resampled balanced data, Yoriginal is the
original data, δ is a noise scaling factor, and N (0, τ2) is
Gaussian noise This approach keeps resampled data varied and
eliminates duplication.

2) Feature selection and extraction: After balancing the
data, dimensionality decreases, and feature quality improves.
The Hybrid Statistical-Predictive Extraction (HSPE) approach
was created for this. HSPE identifies key traits using statistical
variance analysis and predictive modelling.

HSPE begins by calculating each feature’s modified G-
statistic, which assesses its relevance in differentiating target
classes [26]:

Gmod =
Var(Cbetween)

Var(Cwithin) + ϵ
(7)

The modified G-statistic is Gmod, the variance between
target classes is V ar(Cbetween), the variance within each class is
V ar(Cwithin), and ϵ is a small regularization constant to avoid
division by zero. High Gmod features are used for extraction.

Next, HSPE weights each feature by its modified G-statistic
significance score in a weighted principal component analysis
(PCA) transformation. Weighted PCA is:

Zextracted = Q · (X − ν) (8)

Zextracted represents extracted features, Q is a diagonal ma-
trix of G-statistic-derived feature weights, X represents input
data, and ν represents feature mean. This treatment emphasizes
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key characteristics, decreasing noise and increasing model
performance.

The combined DES-FT strategy balances and reduces the
dataset to its most valuable components for advanced mod-
elling.

Algorithm 1 Dynamic Equilibrium Sampling and Feature
Transformation (DES-FT)

Input: Original dataset D with classes C and features F
Output: Balanced dataset Dbalanced and selected features Fselected
Initialize Mmaj ← count of samples in majority class
Initialize Mmin ← count of samples in minority class
Calculate proportionality factor β ←

Mmaj−Mmin
Mmin

Data Balancing:
for each minority class do

Generate additional samples Mnew ←Mmin + β · (Mmaj −Mmin)
for j = 1 to Mnew do

Create new sample Ynew ← Yoriginal + δ · N (0, τ2)
Add Ynew to Dbalanced

end for
end for
Feature Selection and Extraction:
for each feature f ∈ F do

Compute modified G-statistic Gmod ←
Var(Cbetween)

Var(Cwithin)+ϵ

end for
Select features with high Gmod values to form Fselected
Perform weighted PCA:
Zextracted ← Q · (X − ν)
return Dbalanced, Fselected, Zextracted

D. Classification Using Enhanced BERT-Residual Network
(EBRN)

Enhanced BERT-Residual Network categorization is possi-
ble when feature transformation adds contextual and structural
properties to the data. EBRN uses residual processing blocks
to include structured data and BERT’s deep contextual rep-
resentations. This architecture specialises in diverse datasets,
enabling advanced feature integration and robust classification.

1) Contextual embedding layer: The first step in EBRN’s
design is employing BERT to embed raw text data in high-
dimensional spaces. For a tokenized input sequence V , the
BERT model creates contextual embeddings Cembed that rep-
resent text semantics:

Cembed = BERT(V ) (9)

V is the input text sequence, and Cembed is the output
embedding matrix. This matrix captures detailed, context-
dependent interpretations in textual data, which will be merged
with structured characteristics to build a coherent representa-
tion.

2) Structured feature transformation layer: During parallel
processing, structured data Q is transformed to match the
contextual embeddings’ dimensions. This transformation is
necessary to integrate structured features with BERT-derived
embeddings in subsequent layers. Define transformation as:

Qtrans = M1 ·Q+ d1 (10)

While M1 and d1 are learnable parameters, Qtexttrans
represents structured data after dimensional adaptation. This
alignment stage maintains residual connection compatibility,
enabling integrated learning of both data kinds in the same
network.

3) Residual Processing Blocks (RPB): Multiple Residual
Processing Blocks form EBRN’s core. Each RPB uses residual
connections to analyze and combine Contextual Embedding
Layer and Structured Feature Transformation Layer outputs to
improve information retention and gradient flow.

a) Residual connection layer: In each RPB, the trans-
formed structured features Qtrans are coupled with contextual
embeddings Cembed via residual connections. This integration
retains both modalities and lets the network capture compli-
cated, interconnected patterns across data kinds. Here is how
the residual connection is defined:

Rcombined = σ(Cembed +Qtrans) (11)

Rcombined represents the aggregated output after residual
addition, whereas σ represents a non-linear activation function,
such as ReLU, to increase feature variety. This technique
preserves deep-layer features essential to EBRN multi-modal
learning.

b) Aggregation layer: Each RPB refines contextual and
structural data characteristics via an aggregation layer after the
residual connection. The residual output is linearly transformed
by this layer:

Ragg = M2 ·Rcombined + d2 (12)

Using learnable parameters M2andd2, an aggregated fea-
ture set Ragg is created. Each layer’s output builds on past
learnt representations by stacking RPBs, capturing hierarchical
data relationships.

4) Cross-Modal Feature Fusion layer (CMFF): The Cross-
Modal Feature Fusion (CMFF) layer unifies RPB outputs after
processing. This layer concatenates all RPB outputs to create
a feature vector that captures contextual and structural data
relationships. We may formalize fusion as follows:

Pfused = Concat(Ragg1, Ragg2, . . . , Raggn) (13)

Pfused represents the concatenated feature representation,
whereas Ragg1, Ragg2, . . . , Raggn represent the outputs from
each RPB Cross-modal fusion produces a comprehensive fea-
ture vector for high-accuracy classification.

5) Classification output layer: The final representation
Pfused is processed in the Classification Output Layer, where
a dense layer with softmax activation function yields class
probabilities. The last categorization stage is:

y = softmax(M3 · Pfused + d3) (14)

where y is the class probability vector, M3 is a weight
matrix, and d3 is the bias term. The model is suited for
multi-class problems since the softmax function normalizes
the network’s output, guaranteeing probabilistic classification
predictions.

To maintain convergence, the EBRN model is trained
utilizing a learning rate scheduler and gradient clipping to
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handle its multi-layered structure. The balanced and altered
dataset lets EBRN use structured and contextual learning for
robust categorization.

E. Performance Evaluation Metrics

The Enhanced BERT-Residual Network (EBRN) model’s
classification performance must be assessed using compre-
hensive metrics that evaluate its accuracy, dependability, and
robustness. Traditional measures such as accuracy, precision,
recall, and F1-score are well-suited for routine classification
tasks. Still, this study needs new metrics that address subtle
features of multi-attribute decision-making in mixed data.

1) Existing evaluation metrics: The evaluation system uses
standard metrics. Accuracy evaluates prediction accuracy as
a proportion of properly categorized cases. Accuracy alone
may not accurately reflect the model’s performance across
classes in imbalanced data sets. Precision represents the frac-
tion of accurate optimistic predictions out of all positive
predictions, whereas recall demonstrates the model’s ability to
recognise actual positives. In class imbalance situations, **F1-
score** balances accuracy and recall for a harmonic mean.
These measures are essential. However, they only evaluate the
model superficially, not multi-attribute prediction consistency
or complexity-weighted accuracy across feature types.

Contextual Scheduling Consistency (CSC) and
Complexity-Weighted Accuracy (CWA) are new assessment
criteria for EBRN to understand its performance better.
These metrics are designed for complicated decision-making
contexts where multi-attribute features and mixed data types
affect model performance.

2) Contextual Scheduling Consistency (CSC): The CSC
measure assesses the model’s stability and reliability across se-
quentially dependent characteristics, notably in interdependent
attribute predictions. CSC measures consistency across related
predictions to provide logical coherence in correlated feature
judgments. This statistic is useful when misclassifying one
attribute, as it may affect the reliability of other characteristics.
CSC metric definition:

CSC =

∑L
k=1 κ(zk, zk−1)

L− 1
(15)

L represents the number of sequential predictions, zk repre-
sents the predicted label for the k-th attribute, and κ(zk, zk−1)
indicates contextual consistency, evaluating to 1 if zk matches
the previous prediction and 0 otherwise. Domain-specific inter-
attribute relationship rules specify prediction consistency. CSC
aggregates these consistency assessments to assess the model’s
ability to provide logically consistent predictions, a crucial
element in multi-attribute decision-making.

3) Complexity-Weighted Accuracy (CWA): A new accuracy
measure called difficulty-weighted Accuracy (CWA) is pre-
sented. It accounts for the difficulty of various characteristics
or classes. More straightforward and more complex predictions
should affect accuracy differentially for models trained on
data with varied class or feature complexity values. CWA
rewards the model for handling complicated decision-making
by allocating more weights to correctly predicting complex
characteristics or classes. This equation defines CWA:

CWA =

∑P
m=1 ωm · κ(ẑm, zm)∑P

m=1 ωm

(16)

The model consists of P instances, ωm complexity weight,
ẑm predicted label, zm true label, and κ(ẑm, zm) indicator
function, which is 1 if ẑm = zm and 0 otherwise. A weight ωm

is given depending on the difficulty of the feature or class, with
greater values indicating harder predictions. CWA uses these
weights to change its accuracy score to highlight complicated
cases, making it more significant in complex feature or class
complexity circumstances.

CSC and CWA complement standard measures by address-
ing performance peculiarities specific to multi-attribute and
mixed-data classification jobs. CSC ensures forecasts match
contextually relevant interdependencies, ensuring trustworthy
and logical decision outputs. CWA rewards the model’s skill
in complicated circumstances by adjusting accuracy. These
metrics offer a comprehensive assessment framework matched
with Enhanced BERT-Residual Network (EBRN) goals, con-
firming the model’s fitness for complicated, multi-attribute
classification tasks.

IV. SIMULATION RESULTS

To assess the proposed Enhanced BERT-Residual Network
(EBRN) model, extensive simulations were performed on a
Dell Core i7 12th Gen system with an 8-core CPU and 32
GB RAM. Python and the Spyder IDE ran all simulations.
The EBRN model required a batch size of 32, a learning
rate of 1× 10−5, and the Adam optimizer for stable training.
A 0.3 dropout rate prevented overfitting, while early halting
monitored validation loss and optimized training time. These
setups were intended to optimize EBRN’s multimodal data
performance, revealing its usefulness in tailored aerobics sug-
gestions.

Fig. 2. Distribution of user engagement levels.

In Fig. 2, user engagement levels range from low to
extremely high across different platforms. This graphic shows
user interaction intensity and frequency, revealing how plat-
form features affect engagement. Platforms with a high per-
centage of “High” or “Very High” engagement users usually
provide good content and an engaging user experience that
keeps users returning. This distribution is essential for evalu-
ating which aspects most affect user retention, particularly in
fitness, where continual involvement is necessary for health
objectives. Technically, a high concentration of interaction at
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the top levels may imply that personalized exercises or excel-
lent teacher quality meet user expectations. Lower engagement
ratings show platforms should improve content variety or
accessibility to turn low-engagement users into highly engaged
participants. This data is crucial for platforms that want to
maximize engagement-focused initiatives for user pleasure and
long-term commitment.

Fig. 3. Platform type popularity.

Fig. 3 shows the popularity of streaming, live classes,
and on-demand options. This breakdown shows user prefer-
ences for aerobics and fitness content distribution options.
If “Live Classes” are popular, people seek engaging, real-
time interactions with teachers and other participants. A high
preference for “On-Demand” material demonstrates a need for
flexibility, enabling users to plan exercises at their leisure.
Each type preference helps developers allocate resources and
concentrate on user-requested features. Understanding this
distribution helps refine platform features to improve user
happiness and retention by enabling the most popular delivery
mechanisms, enhancing user engagement and attractiveness in
the competitive fitness sector.

Fig. 4. Instructor quality ratings.

Fig. 4 displays teacher quality ratings across platforms,
indicating user satisfaction with competence and efficacy.
High ratings indicate that platforms have skilled teachers who
give exciting and technically sound courses that improve user
experience. Instructor quality is crucial to user retention and
happiness, especially in fitness apps where precise assistance
may improve technique, reduce injury, and boost outcomes.
Technically, platforms with better teacher ratings attract in-
dividuals who value superior training. This statistic suggests
teacher training, session design, and feedback enhancements
for lower-score platforms. The data helps platforms enhance
instructional quality to maintain user happiness and goal
attainment.

Fig. 5. Cost vs. User engagement.

Fig. 5 shows how platform cost impacts user engagement
and involvement. This connection is crucial to determining
whether higher fees improve engagement or lower-cost choices
attract frequent consumers. High interaction at low prices may
indicate platforms with significant value, making them more
accessible and appealing to a broad audience. A cost-effective
pricing approach with high engagement demonstrates value
delivery, vital for platforms aiming to grow their user base. If
engagement is poor at increasing prices, pricing may not reflect
user value. This number helps platforms balance accessibility
with premium features in pricing structures to improve user
happiness across budgets.

Fig. 6. User goals distribution.

In Fig. 6, user goals are categorized as weight reduction,
muscle growth, flexibility, and overall fitness. This figure helps
customize content to satisfy platform users’ main reasons. A
dominating weight reduction emphasis may push platforms
to promote high-intensity exercise, whereas flexibility-oriented
consumers may favour yoga and stretching. Knowing this
distribution helps platforms diversify content to meet different
fitness objectives. This insight into user motives enables indi-
vidualized suggestions, boosts engagement, matches material
with individual goals, and improves platform attractiveness and
user happiness.

Fig. 7 shows the correlation between content diversity and
exercise customization. This number is essential for evaluating
user demand for individualized cardio and strength training
sessions. Users love tailored training alternatives that meet
their fitness objectives and preferences, as seen by the high
customization demand in popular content sections. Technically,
platforms that customize high-demand categories may better
satisfy user expectations, improving engagement and happi-
ness. This distribution may help platforms improve their con-
tent strategy by concentrating on areas where personalization
is most desired, improving user experience and retention.

Fig. 8 shows the percentage of platforms having accessible
capabilities contrasted to those without, revealing platform
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Fig. 7. Content variety vs. Customizable workouts.

Fig. 8. Distribution of accessibility features.

inclusiveness. This metric is crucial for assessing how effec-
tively platforms accommodate various users since accessibility
features are necessary. Technically, more platforms with acces-
sibility capabilities suggest better diversity, perhaps attracting
more users. Accessible platforms attract different users, im-
proving user satisfaction. This data helps platform developers
determine accessibility needs to achieve inclusion criteria and
expand their reach. Fig. 9 compares HD streaming availabil-
ity across platforms, evaluating technological capabilities and
user expectations. Fitness programming benefits from high-
definition streaming because visual clarity improves teaching.
HD streaming platforms may attract consumers who appreciate
high-quality visuals, boosting user retention and happiness.
Technically, platforms with better streaming infrastructure are
preferred by viewers who demand continuous, high-resolution
content. Investment in streaming quality strongly affects user
experience and platform competitiveness, as shown by this
data.

Fig. 9. High-quality streaming by platform type.

Fig. 10 shows user fitness levels (Beginner, Intermediate,
Advanced) across platforms, demonstrating platform inclu-
siveness for diverse experience levels. Offering material for
beginners to expert users may boost engagement on fitness
platforms. Technically, this distribution shows platforms’ flex-
ibility to varied user demands, which maximizes engagement

Fig. 10. User fitness level by platform type.

and retention across skill levels. To ensure platforms give a
complete user experience, developers must provide adaptive
content for varied fitness levels.

Fig. 11 illustrates how platform pricing affects beginner-
friendly features and accessibility for new users. It’s impor-
tant to consider platforms’ inclusion across pricing points.
Affordable beginner-friendly platforms cater to entry-level
users, increasing diversity and user base. Technically, this data
influences price tactics by emphasizing budget-friendly starter
solutions. Cost-effective, accessible platforms attract new users
and boost long-term user happiness.

Fig. 11. Beginner-friendly platforms vs. Cost.

Fig. 12. Coorelation matrix of features.

The correlation matrix in Fig. 12 shows significant rela-
tionships between selected factors in the aerobics platform
selection dataset. This matrix demonstrates strong correlations
between “Instructor Quality” and “User Engagement,” indicat-
ing that higher-rated instructors may boost user engagement.
Cost may influence user subscription model selections as
“Cost” and “Subscription Type” negatively correlated. Un-
derstanding feature dependencies that impact model accuracy
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aids feature selection and multicollinearity avoidance. Highly
related qualities improve the technical conclusion’s model
input selection and classification accuracy.

Fig. 13. Feature importance in platform selection model.

Fig. 13 displays feature importance scores from the hybrid
feature selection approach in the platform selection model.
The most essential factors are “Instructor Quality,” “Content
Variety,” and “User Engagement,” with 0.78, 0.72, and 0.65.
These numbers demonstrate how these traits enhance model
accuracy and classification. Low-ranked factors, including
“Device Integration” and “Workout Difficulty,” don’t affect
the model’s choice. This figure highlights the most significant
attributes that assist the model in improving performance
and providing correct recommendations. This illustrates how
hybrid selection separates vital features to increase model
accuracy and processing speed.

TABLE III. PERFORMANCE EVALUATION RESULTS

Techniques F1-
Score
(%)

Log
Loss

CSC
(%)

Accuracy
(%)

AUC
(%)

Recall
(%)

CWA
(%)

Precision
(%)

Universal Hidden Markov Model (HMM) [13] 78.3 0.359 70.5 82.1 80.2 77.5 75.2 81.4
Random Forest (RF) [15] 83.2 0.292 76.8 86.5 85.1 82.6 77.9 84.3
ARIMA models [15] 76.7 0.354 72.4 81.3 79.1 76.2 73.8 79.5
ResNet [21] 88.5 0.235 82.0 91.0 89.6 87.0 83.1 89.4
CNN [20] 90.3 0.219 83.7 92.2 90.8 89.1 86.5 91.3
Decision Trees [9] 81.2 0.317 74.6 85.2 83.8 81.4 78.2 83.0
VGG16 [17] 92.0 0.187 85.4 93.6 92.9 91.7 87.8 92.5
SVM [11] 87.2 0.259 79.8 88.7 87.3 85.5 81.7 87.6
KNN [13] 80.1 0.327 73.5 84.2 82.7 80.3 77.1 82.2
Proposed EBRN 98.8 0.066 98.1 99.3 99.4 98.7 97.5 98.9

Table III compares categorization performance metrics for
several approaches and the proposed Enhanced BERT-Residual
Network (EBRN). The performance of each model is assessed
by F1-Score, Log Loss, CSC, Accuracy, AUC, Recall, CWA,
and Precision. The table shows that the proposed EBRN
model outperforms all other methods in nearly all metrics,
including F1-Score (98.8%), CSC (98.1%), Accuracy (99.3%),
AUC (99.4%), Recall (98.7%), CWA (97.5%), and Precision
(98.9%), as well as Log Loss (0.066), indicating model robust-
ness and reliability. Traditional ARIMA and HMM models had
poorer F1 scores, Accuracy, and CSC, suggesting difficulties
in processing complicated aerobics platform selection data.
While VGG16 and CNN perform well, they score somewhat
worse than EBRN across all assessment measures. Table III
highlights EBRN’s superior accuracy and low error rates,
making it the most relevant approach for classification tasks
in this research. Advanced deep learning models, like EBRN,

handle nuanced and high-dimensional data better than typical
machine learning methods. The 99.3% accuracy attained by
EBRN is a substantial increase above ResNet’s 91.0% and
VGG16’s 93.6% accuracy. Similarly, EBRN achieved a score
of 98.1% in CSC, a criterion developed for logical consistency,
whereas CNN only managed an 83.7% score.

Fig. 14. Comparison of metrics across methods.

The proposed Enhanced BERT-Residual Network (EBRN)
is compared to classic (HMM, RF, ARIMA) and advanced
(ResNet, CNN, VGG16) models in Fig. 14. EBRN has the
lowest Log Loss (0.066) and the best accuracy (99.3%),
F1-Score (98.8%), and CSC (98.1%). It beats VGG16 and
CNN, which had 93.6% and 92.2% accuracy, respectively.
EBRN’s robustness and creative multimodal data processing
and high consistency (CSC) and complexity-weighted accuracy
(CWA) metrics make it the best model for tailored exercise
recommendations.

TABLE IV. STATISTICAL ANALYSIS (F-STATISTIC & P-VALUE)

Statistical Method ANOVA Student’s Pearson Correlation (r) Kendall’s Tau (τ ) Chi-Square (χ2)
Universal Hidden Markov Model (HMM) [13] 7.18 0.61 0.68 5.87 0.034
Random Forest (RF) [15] 0.74 7.92 6.45 0.67 0.028
ARIMA models [15] 0.53 6.04 0.58 4.77 0.045
ResNet [21] 0.71 8.55 0.81 7.12 0.022
CNN [20] 0.69 8.12 6.89 0.79 0.024
Decision Trees [9] 0.57 5.10 6.45 0.63 0.039
VGG16 [17] 9.10 0.74 0.86 7.95 0.014
SVM [11] 6.88 0.60 0.66 5.55 0.031
Proposed EBRN 9.76 8.75 0.007 0.91 0.78

Table IV displays a detailed statistical analysis of catego-
rization techniques, including statistical values for each model.
This investigation examines each classification technique’s sta-
tistical significance, correlation, and consistency using aerobics
platform selection data. This model has the greatest Chi-
Square (9.76) and ANOVA F-statistic (8.75) values and a low
P-value (0.007), suggesting significant statistical significance
and excellent classification accuracy. The strong Pearson Cor-
relation (0.91) and Kendall’s Tau (0.78) values demonstrate
EBRN’s ability to capture complicated dataset patterns. The
complex properties of this dataset are not effectively modelled
by classic approaches like ARIMA and the Hidden Markov
Model (HMM), which have lower correlation and statistical
scores. This table shows EBRN’s robustness and dependability,
making it the most statistically significant and successful
classification approach in this investigation.

Fig. 15 displays a box plot of the Enhanced BERT-Residual
Network (EBRN) sensitivity analysis for four essential param-
eters: learning rate, batch size, dropout rate, and regularization.
The chart shows EBRN’s performance consistency by showing
the variability and distribution of sensitivity scores for each
parameter configuration. Learning rate and batch size have
decreased sensitivity variability, suggesting excellent perfor-
mance with minimum adjusting. Dropout rate and regulariza-
tion have greater sensitivity ranges, indicating they impact
EBRN’s sensitivity score more. This figure determines the
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Fig. 15. Sensitivity analysis of EBRN across model parameters.

stability and possible influence of each parameter, enabling ac-
curate tuning. The technical conclusion shows EBRN’s strong
sensitivity with select parameter adjustment, guiding parameter
design for model performance.

TABLE V. SUMMARY OF ADVANTAGES OF EBRN COMPARED TO OTHER
METHODS

Feature EBRN CNN/ResNet/VGG16
[17], [20], [21]

SVM/RF/ARIMA
[11], [15]

Multimodal
Data Handling

Yes (text + struc-
tured data)

Limited to image
data

Structured data
only

Evaluation Met-
rics

CSC (98.1%), CWA
(97.5%)

Not Supported Not Supported

Accuracy 99.3% 92.2% (CNN),
93.6% (VGG16)

<85%

Feature Trans-
formation

Proprietary DES-FT
method

Standard or lim-
ited transforma-
tion

Basic feature
scaling

Class Imbalance
Handling

Dynamic
Equilibrium
Sampling (DES)

Limited support Basic
oversampling
or none

Contextual
Awareness

BERT-based
embeddings

Lacks deep text
context

Not applicable

Logical Consis-
tency (CSC)

High (98.1%) Not considered Not applicable

Complexity Sen-
sitivity (CWA)

High (97.5%) Not considered Not applicable

Real-Time Suit-
ability

High potential for
adaptability

Requires
optimization

Poor scalability

Interpretability Moderate (explain-
able architecture)

Low (black-box
models)

High

Scalability Optimized for large
datasets

Moderate Limited

Computational
Efficiency

Optimized with bal-
anced layers

Moderate Low

Application Ver-
satility

Fitness, healthcare,
and beyond

Primarily image
recognition

Basic predictive
tasks

User Feedback
Integration

High potential Limited Not applicable

According to Table V, the Enhanced BERT-Residual Net-
work (EBRN) outperforms existing techniques in multimodal
data processing, contextual awareness, and assessment metrics.

V. CONCLUSION

This research introduced the Enhanced BERT-Residual
Network (EBRN), a unique model that integrates textual and
structured data to provide individualized aerobics suggestions.
EBRN overcomes the constraints of standard fitness recom-
mendation systems by capturing complex patterns in user
involvement, preferences, and fitness objectives using BERT-
based contextual embeddings and residual processing blocks.
The Dynamic Equilibrium Sampling and Feature Transforma-
tion (DES-FT) technique balanced data and improved feature
selection, improving EBRN’s predictive performance. We also
developed two proprietary assessment measures, Contextual
Scheduling Consistency (CSC) and Complexity-Weighted Ac-
curacy (CWA), to address multi-attribute classification’s spe-

cific prediction consistency and complexity sensitivity issues.
Simulation studies indicated that EBRN outperformed tradi-
tional models in accuracy, precision, and recall, demonstrating
its resilience and applicability for complicated fitness applica-
tions. The model’s ability to detect critical aspects, including
teacher quality, accessibility features, and platform pricing,
helps fitness platforms improve user engagement, inclusive-
ness, and happiness. Our study uses sophisticated AI and
data-driven insights to revolutionise aerobics personalization
in intelligent fitness solutions. Further research on EBRN’s
real-time adaptability and health and wellness applications
might alter digital fitness platforms by offering personalized,
responsive, and inclusive suggestions for various consumers.
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