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Abstract—Designing stabilizing controllers for delayed non-
linear systems with control constraints presents a significant
challenge. This paper addresses this issue by proposing a fault-
tolerant control approach for a specific class of delayed nonlin-
ear systems with actuator faults based on Lyapunov redesign
principle. Initially, an assumption is introduced to facilitate the
control design for the nominal system. Then, a new control law
is developed to resolve the difficulty caused by actuator failures.
The proposed nonlinear controller demonstrates the ability to
compensate for actuator faults. To validate its effectiveness, the
method is applied to a hydraulic system.
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I. INTRODUCTION

The primary objective of Fault Tolerant Control (FTC) is
to guarantee performance and stability for systems, whether
they are operating without faults or in a faulty state. Multiple
approaches have been proposed to tackle this problem. FTC
can be categorized into two main types: passive (P) and active
(A) FTC [1]. In the domain of nonlinear control, extensive
theoretical research and practical applications have been con-
ducted for Passive Fault Tolerant Control (PFTC) and Active
Fault Tolerant Control (AFTC) [2]. Active FTC is centered
on ensuring stability and certain performance aspects for the
post-fault model by dynamically adjusting the controller in
response to the current fault [3], as detected, isolated, and
estimated by the Fault Detection and Diagnosis (FDD) block
[4]. A FTC employs real-time adjustment techniques for the
regulators to uphold, at a minimum, the system’s stability [5].
Another approach involves using a robust controller able of
handling all anticipated faults, by eliminating the requirement
for online control reconfiguration and an FDD block [6], PFTC
methods have been introduced, predominantly grounded in ro-
bust theories. These include approaches such as linear-matrix-
inequality-based methods [7], quantitative feedback theory [8],
pole assignment [9], and nonlinear regulation theory [10, 11].

A. Literature Review

Many recent studies have focused on FTC applied to
particularly complex nonlinear processes, such as boundary
adaptive fault-tolerant control for a flexible Timoshenko [12]
the proposed method ensures robust and adaptive control of a

Timoshenko flexible arm, guaranteeing stability and precision
despite actuator faults, hysteresis, and disturbances, while en-
hancing reliability under variable conditions. Another research
addresses a 2 DOF helicopter system, this study proposes an
adaptive control strategy for a 2-DOF helicopter, considering
actuator faults and an unknown dead zone. A neural network
and a quantizer are used to model the uncertainty and reduce
system chattering [13].

Such presence of delays may influence the qualitative
system properties and may affect the stability of the process
control. When dealing with systems involving time delay, two
approaches are employed to establish stability, aligning with
the conventional Lyapunov stability theory. The first approach
relies on Lyapunov-Krasovski functionals, while the second
approach uses Lyapunov-Razumikhin functions [14]. Hence,
research into control systems with delays in a nonlinear context
holds great importance [15]. The literature offers a variety
of methods for developing fault-tolerant controllers in the
context of nonlinear systems. In their work [16], Liang and
Xu introduced a variable structure stabilizing control law to
handle actuator faults within a nonlinear system [17].

The concept of Control Lyapunov Functions (CLF) has
played a pivotal role in the advancements of robust control
for nonlinear systems [18, 19, 20]. A function that is positive
definite and radially unbounded qualifies as a CLF if its time
derivative become negative definite through appropriate control
input selection, regardless of the value of state. Once a CLF
is identified, various methods exist to derive control laws that
stabilize the nonlinear system [21].

The application of CLF has been extended to systems
with disturbances [20] and [22], to systems with delay and
to stochastic systems [19].

Furthermore, the issue of faults, loss of effectiveness, and
delay has been addressed using the Lyapunov tool, and has
also been treated in the context of a stochastic system such
as an adaptive fuzzy control strategy for stochastic nonlinear
systems with faults and input saturation uses control filtering to
reduce computational load. Fuzzy logic systems approximate
the unknown nonlinearities and system variations caused by
faults [23]. Another fault-tolerant fuzzy control strategy for
stochastic nonlinear systems with quantized inputs is proposed.
It uses a hysteretic quantizer to avoid chattering and fuzzy
logic systems to estimate unmeasurable states and approximate
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nonlinearities. The approach guarantees system stability and
signal boundedness in the presence of actuator faults and
quantization [24]. Furthermore, a fault-tolerant control strategy
is proposed for nonlinear strict-feedback systems with actuator
saturation, disturbances, and faults. Neural Networks (NNs)
are used to approximate the unknown dynamics, and a back-
stepping technique is employed to design the controller. The
NN weights are updated online using a gradient descent
algorithm, thereby improving the approximation accuracy.

In this paper, the approach introduced in recent studies
[8] and [25] is adopted, where actuator faults are represented
as bounded additive periodic unknown signals added to the
control signal. Additionally, a scenario is examined in which
the efficiency of the actuator is compromised, represented by
a multiplicative factor. This factor, when applied to the con-
trol signal, decreases its performance in accordance with the
factor’s value [6]. The proposed fault-tolerant control (FTC) is
applied to water level control of a hydraulic system based on
the Lyapunov redesign principle [26]. If a stabilizing closed-
loop controller and its corresponding Lyapunov function exist
for the nominal plant, an FTC is constructed based on these
nominal controllers and the Lyapunov function. This FTC
guarantees stability even in the presence of faults in the system.

B. Main Contribution

The main contribution of this work is the development
of a control strategy for nonlinear systems that are subject
to both actuator faults (including additive faults and loss of
effectiveness) and time delays, addressing a complex and
challenging control scenario without linearizing the nonlinear
system. Unlike many traditional approaches that simplify the
problem through linearization.

The proposed control scheme combines a nominal control
component, which governs the system under normal operat-
ing conditions, with an additive corrective term specifically
designed to compensate faults.

The subsequent sections of the paper are organized as
follows: Section II will present the system characterization
and problem formulation, Section III will outline the main
results, Section IV will provide a real application to verify
the efficiency of the proposed additive FTC. In final Section
V, we give some conclusions about this work.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Here, we consider nonlinear time delay system affine in
the control of the form:

ẋ (t) = f (xd (t)) + g (xd (t))u(t, x) (1)

Where x ∈ Rn,xd ∈ Rn, u ∈ Rm,, represent respectively,
the state of system, delayed state and the input vectors, the
initial condition xd (0) (.) = ϕd is given by the continuous
function ϕd : [−d, 0] → Rn. Vector fields f and g are smooth
functional mapping piecewise continuous function in t and
locally Lipschitz in x and u [27]. The functions f and g are
known precisely.

Hypothesis 1: We propose the existence of a nominal
closed-loop control, represented as unom (t, x), with the antic-
ipation that it guarantees the overall stability of the closed-loop
system.

ẋ (t) = f (xd (t)) + g (xd (t))unom (t, x) (2)

The concept of Control Lyapunov Functions (CLF) has
gained attention in the literature due to the availability of
various CLF based control laws, which aim to stabilize the
system and ensure a certain level of robustness for the closed-
loop system. The function V (x) is defined as a positive definite
Lyapunov function such that for all x ∈ Bx for the system [Eq.
(1)].

The Lyapunov function will be derived along the trajecto-
ries of Eq. (2).

V̇ ≤ −Γ1 (|x|) (3)

with Γ1 (s) > 0 for s > 0

∂V

∂t
+

∂V

∂x

∂x

∂t
≤ −Γ1 (|x|) (4)

Using (2), we get

∂V

∂t
+

∂V

∂x
[f (xd (t)) + g (xd (t))unom (t, x)] ≤ −Γ1 (|x|)

(5)

Which shows that V̇ is negative definite. Consequently, the
origin of the full system [Eq. (2)] is asymptotically stable.

III. PROPOSED FAULT TOLERANT CONTROL DESIGN

In the upcoming sections, we will outline the main results.

If we assume that the system can be stabilized within the
domain Bx and that the state x is accessible for feedback, our
objective is to find a control scheme that achieves asymptotic
stabilization of the point x = 0 of the closed loop nonlinear
delayed system despite actuator fault occurrence.

The fault-tolerant control strategy denoted as control input
uFTC designed for the purpose of stabilizing the system in
the presence of faults, is proposed as:

uFTC = α (unom + F (x, t) + uadd) (6)

We take into account the reduction in actuator efficiency,
represented by a multiplicative matrix α, where α ∈ Rm×m is
a diagonal continuous time variant matrix, with the diagonal
elements αii (t) , i = 1, . . . ,m s.t 0 < αii ≤ 1, u = unom

designates the nominal controller responsible for system sta-
bilization in the absence of any actuator faults.

Using Eq. (6), the system [Eq. (1)] becomes:

ẋ (t) = f (xd (t)) + g (xd (t))α (unom + F (x, t) + uadd)
(7)
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Hypothesis 2:

F (x, t) signifies an actuator fault that satisfies the condition
∥F (x, t)∥ ≤ L(x, t) and L(x, t) is non-negative continuous
function satisfying

L(x, t) =
1− α

α
unom (8)

with α ∈ R

Proposed FTC control: In this context, we will design an
additive control uadd represents the additional component to
compensate the actuator fault’s impact as:

uadd = −γ(V )
∂V

∂x
g(xd(t)) (9)

For any γ > 0 there exists a smooth, positive dominating
function γ such that all trajectories of the closed loop system
Eq. (2) and (9) satisfy lim

t→∞
|x (t)| < γ

So, the following theorem is proposed to achieve control of
the studied nonlinear delayed system Eq. (6) in the presence
of malfunctioning actuators.

Theorem: The fault-tolerant control law Eq. (6) ensures
asymptotic stability of the closed loop nonlinear delayed
system described in Eq. (7) defined by Eq. (8) and (9) under
the previous assumptions 1 and 2 even in cases of abnormal
operation of the actuators.

Proof:

According to Eq. (6), it follows for the closed-loop faulty
nonlinear delayed system Eq. (7), a Control Lyapunov Func-
tion (CLF) candidate will be designed such as V (xd) is a
positive definite function as:

V̇ (t) =
∂V

∂t
+

∂V

∂x

∂x

∂t
(10)

Using Eq. (7), we get

V̇ (t) = ∂V
∂t + ∂V

∂x (f (xd (t)) + g (xd (t))α (unom + F (x, t) + uadd))

(11)

The establishment of the derivative of V (t) will occur in
accordance with the trajectories defined by system Eq. (7), this
leads to

V̇ (t) =
∂V

∂t
+

∂V

∂x
f (xd (t)) +

∂V

∂x
g (xd (t))α unom

+
∂V

∂x
g (xd (t))α F (x, t) +

∂V

∂x
g (xd (t))α uadd

(12)

where

β = 1− α ≥ 0, Eq. (12) can be expressed as

V̇ (t) =
∂V

∂t
+

∂V

∂x
f(xd) +

∂V

∂x
g(xd(t))unom

−β
∂V

∂x
g(xd)unom + α

∂V

∂x
g(xd)F (x, t)

+α
∂V

∂x
g(xd)uadd

(13)

Using Eq. (8) we obtain:

V̇ (t) =
∂V

∂t
+
∂V

∂x
f(xd)+

∂V

∂x
g(xd(t))unom+α

∂V

∂x
g(xd)uadd

(14)
By substituting Eq. (9) into Eq. (14), the desired stability can
be achieved.

V̇ (t) ≤ −Γ1 (|x|)− αγ (V )

(
∂V

∂x
g(xd(t))

)2

(15)

Such as α > 0 and γ is strictly increasing function.

For this purpose

V̇ (t) ≤ −Γ2 (|x|) (16)

where Γ2 > 0

Hence the system Eq. (1) can be stabilized with the control
law Eq. (9). Thus the derivative V̇ , is negative along the
trajectory of the closed-loop system.

In view of the control law Eq. (9) and taking into account
the assumptions about the fault, it is obvious that V̇ ≤ 0.

So, it can be concluded that the origin x = 0 of the faulty
overall system is a asymptotically stable equilibrium point for
studied system Eq. (7) under the fault tolerant control law Eq.
(9) regardless of the presence of delay.

IV. FTC CONTROL OF A HYDRAULIC SYSTEM

A. Description of a Single-Tank Hydraulic System

Adjusting a hydraulic level in a tank is the main objective
of this work by developing fault-tolerant control for this
nonlinear time-delay system based on Lyapunov approach. The
structure of the entire system is as shown in Fig. 1. The system
is built about a water tank, a liquid level sensor, coil and pump.
The tank is supplied by two water inputs: the first is located at
the top while the second is at the bottom to compensate for any
faults if it exists. Furthermore, the tank has two outputs, the
first one for liquid discharge and the second one for leakage
(disturbance), the coil affects a pure delay.

B. Modeling of a Single-Tank Hydraulic System

In Fig. 2, the tank is supplied by two water inputs: the first
QI1(t) is located at the top while the second QI2(t) is at the
bottom to compensate for any faults if it exists. Furthermore,
the tank has two outputs, the first one for liquid discharge and
the second one for leakage (disturbance), the coil affects a pure
delay.
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Fig. 1. Real hydraulic system at MACS laboratory.
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Fig. 2. Model of the hydraulic system at MACS laboratory.

Then, the tank system can be modeled by the following
differential equation:

∂V

∂t
=

∂ (S.h (t))

∂t
= QI (t)−QO (t) (17)

V (t):Water speed[m/s]
S : Discharge output section [m2]
h(t): Water level [m]
QI(t): Input flow rate [m3/s]
QO(t): Output flow rate [m3/s]

In our case, the tank section is constant, so we can write

∂h

∂t
=

QI (t)−QO (t)

S
(18)

We set x(t) = h(t), we obtain

ẋ (t) =
QI (t)−QO (t)

S
(19)

with

QI (t) = Qi (t) (1 +A (xd, t)) (20)

As long as we have two inputs, QI1(t) = Qi is considered
the main input and QI2 (t) = Qi (t)A (xd, t) is used to
compensate faults

We obtain by identification

A (xd, t) = 0.7857xd
2 (t) +−0.6614xd (t) + 0.68 (21)

To simplify, we take

g′ (xd) = 1 +A (xd, t) (22)

Therefore,

QI (t) = Qi (t) g
′ (xd) (23)

The output flow rate is divided into two parts: the first part
QO1(t) concerns the main output flow rate, and the second
QO2(t) represents the leakage flow rate which considered here
as a fault.

QO(t) = QO1 (t) + QO2 (t) (24)

Knowing the relationship between flow rate, section and
velocity, we can write

QO(t) = SO1V1(t) + SO2V2(t) (25)

By replacing Eq. (23) and (25) in Eq. (19), we obtain

ẋ (t) =
Qi (t) g

′ (xd, t)− (SO1V1(t) + SO2V2(t))

S
(26)

After some algebraic manipulations, Eq. (26) can be ex-
pressed as

ẋ (t) =
−SO1V1(t)

S
+

Qi (t) g
′ (xd, t)− SO2V2(t)

S
(27)

In the fault-free case i.e. QO2(t) = 0 → SO2V2(t) = 0,
our system can be represented as follows:

ẋ (t) =
−SO1V1(t)

S
+

Qi (t) g
′ (xd, t)

S
(28)

According to Torricelli’s theorem,

V1(t) =
√
2gxd(t) (29)
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with g = 9.81m/s2

The Eq. (28) becomes:

ẋ (t) =
−SO1

√
2gxd (t)

S
+

Qi (t) g
′ (xd, t)

S
(30)

By referring to Eq. (2), we can express Eq. (30) in this
form:

ẋ (t) = f (xd, t) + g (xd, t)Qi (t) (31)

Along with

f (xd, t) =
−SO1

√
2gxd (t)

S
(32)

And

g (xd, t) =
g′ (xd, t)

S
(33)

In our case, the Qi Input flow rate of the hydraulic system
corresponds to the nominal control unom

Qi (t) = unom(t) (34)

C. Experimental Validation on a Hydraulic System

1) Stabilization of nonlinear delayed water tank in fault-
free case: The description of the nominal closed-loop system
is as follows:

f (xd, t) + g (xd, t)unom (t) = K (xref (t)− x (t)) (35)

with K > 0

Let the Lyapunov function be

V (t) =
1

2
(xref (t)− x (t))

2
. (36)

However, to ensure the stability of the hydraulic system, it
is necessary that V̇ (t) < 0. So, for this reason, we can choose

unom (t) =
K (xref (t)− x (t))− f (xd, t)

g (xd, t)
(37)

Consequently, the stability of the hydraulic system is
achieved. By examining Eq. (7) and (30), the fault free system
is obtained by α = 1 and F (t, x) = 0,where F represents
the fault corresponding to a flow leakage in our real system
QO2(t) = 0 → SO2V2(t) = 0. So, it’s described as follows:

ẋ (t) =
−SO1

√
2gxd (t)

S
+

Qi (t) g
′ (xd, t)

S
(38)

The desired level of the water xref = 0.4 m.
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Fig. 3. State trajectory in fault-free case (a) and nominal control (b).

We obtain the next hydraulic system responses in Fig. 3.

Discussion: Initially, in Fig. 3(a) there is a rapid rise to
approximately 0.4 m, followed by a stabilization near this
desired value. This stabilization shows that the system is able
to reach and maintain the desired level without excessive
oscillation or instability despite the delay introduced by the
tank coil.

In Fig. 3(b) the application of a nominal control Eq. (37)
is essential to compensate for the delay and swiftly bring the
system to the desired level.

2) Stabilization of delayed hydraulic system with actuator
faults: In practice, hydraulic systems are susceptible to a
various of faults, including loss of effectiveness and additives
faults, both of which can significantly reduce their optimal
performance.

So, designing the control law according to Eq. (6) and (9) is
essential for stabilizing the nonlinear delayed hydraulic system
Eq. (27) in the presence of faults. Based on the condition of
Eq. (9), which states that γ (V ) must be a strictly increasing
function, we can therefore choose:

γ (V ) = |xref (t)− x (t)|2 (39)

Consider the nonlinear delayed system (27) with intermit-
tent fault between t = 80s and t = 90s and 3 cases of loss of
effectiveness fault α = 20%, α = 30% and α = 40%.

ẋ (t) =
−SO1V1(t)

S
+ α

(
Qi (t) g

′ (xd, t)− SO2V2(t)

S

)
(40)

We start by applying nominal control unom, and subse-
quently, we implement fault-tolerant control u = uFTC to
compensate any potential faults.

Discussion: Fig. 4(a) shows that when nominal control
is employed, the system state deviates from its reference
trajectory in the presence of faults. The deviation is notably
pronounced in the case of an additive and loss of effectiveness
faults, suggesting that nominal control fails to effectively
compensate for this specific type of fault.

In Fig. 4(b), it is observed that the control corresponding
to this case shows a downward peak, reflecting the need for
fault compensation.
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Fig. 4. State trajectory with an additive and loss of effectiveness faults (a) in
case of nominal control (b).

To solve the above problem, the control law will be
modified to include a new term that represents the component
capable of eliminating the impact of the fault.

Hence, we suggest a fault-tolerant control strategy, denoted
by uFTC and expressed as:

uFTC = α (unom + F (x, t) + uadd) (41)

With

uadd = −|xref − x|2 (xref − x) g (xd, t) (42)
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Fig. 5. State trajectory with an additive and loss of effectiveness faults (a) in
case of fault tolerant control (b).

Discussion: Fig. 5(a) illustrates that the fault-tolerant con-
trol strategy successfully achieves stability and maintains a
well-behaved system, even in the presence of faults.

The fault-tolerant control strategy, which accounts for both
factors and a delay, compensates the negative impact on the
system’s behavior and maintains stability. In Fig. 5(b), a
shorter-duration peak is observed, highlighting the effect of the
newly adopted FTC control, which successfully compensated
the system fault.

V. CONCLUSION

In conclusion, this paper aimed to stabilize a nonlinear
delayed system affected by actuator faults, focusing on both
additive faults and loss of effectiveness. To achieve this objec-
tive, we developed a fault-tolerant control strategy based on
the Lyapunov redesign approach. Our research was grounded
in practical experimentation, conducted on a real hydraulic
system within our laboratory : Modeling, Analysis and Control
of Systems (MACS).

The results demonstrated that applying nominal control
alone to the faulty system leads to performance degradation.
However, by integrating an additive control term, the proposed
approach successfully compensates for the faults, ensuring sys-
tem stability and fault tolerance. This study provides valuable
insights and contributes to the advancement of fault-tolerant
control strategies for nonlinear delayed systems with practical
validation.
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[5] Benjemaa, R., A. Elhsoumi, and S. Bel Hadj Ali Naoui. ”Stability
and Active Fault-Tolerant Control design for a class of neutral time-
delay systems.” 2019 International Conference on Signal, Control and
Communication (SCC). IEEE, (2019).

[6] Benosman, Mouhacine, and K-Y. Lum. ”Passive actuators’ fault-tolerant
control for affine nonlinear systems.” IEEE Transactions on Control
Systems Technology 18.1 ,152-163 (2009).

[7] Liao, Fang, Jian Liang Wang, and Guang-Hong Yang. ”Reliable robust
flight tracking control: an LMI approach.” IEEE transactions on control
systems technology 10.1 , 76-89(2002).

[8] Wu, Shu-Fan, Michael J. Grimble, and Wei Wei. ”QFT based robust/fault
tolerant flight control design for a remote pilotless vehicle.” Proceedings
of the 1999 IEEE International Conference on Control Applications (Cat.
No. 99CH36328). Vol. 1. IEEE, (1999).

[9] Niemann, Henrik, and Jakob Stoustrup. ”Passive fault tolerant control of
a double inverted pendulum—a case study.” Control engineering practice
13.8 , 1047-1059 (2005).

[10] Bajpai, Gaurav, Bor-Chin Chang, and Harry G. Kwatny. ”Design
of fault-tolerant systems for actuator failures in nonlinear systems.”
Proceedings of the 2002 American Control Conference (IEEE Cat. No.
CH37301). Vol. 5. IEEE, (2002).

[11] Bonivento, Claudio, et al. ”Implicit fault-tolerant control: application to
induction motors.” Automatica 40.3 , 355-371(2004).

[12] Zhao, Zhijia, et al. ”Boundary adaptive fault-tolerant control for a
flexible Timoshenko arm with backlash-like hysteresis.” Automatica 130
(2021): 109690.

[13] Zhao, Zhijia, et al. ”Adaptive quantized fault-tolerant control of a 2-
DOF helicopter system with actuator fault and unknown dead zone.”
Automatica 148 (2023): 110792.

[14] Hua, Changchun, et al. ”Type-B Nussbaum function-based fault-tolerant
control for a class of strict-feedback nonlinear systems.” Journal of the
Franklin Institute 360.4 ,2421-2435(2023).

[15] Sweetha, S., et al. ”Non-fragile fault-tolerant control design for
fractional-order nonlinear systems with distributed delays and fractional
parametric uncertainties.” IEEE Access 10 , 19997-20007(2022).

[16] Liang, Y-W., and S-D. Xu. ”Reliable control of nonlinear systems via
variable structure scheme.” IEEE Transactions on Automatic Control
51.10 , 1721-1726(2006).

www.ijacsa.thesai.org 910 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

[17] Tellili, Adel, Aymen Elghoul, and Mohamed Naceur Abdelkrim. ”Ad-
ditive fault tolerant control of nonlinear singularly perturbed systems
against actuator fault.” Journal of Electrical Engineering 68.1 , 68-
73(2017).

[18] Battilotti, Stefano. ”Robust stabilization of nonlinear systems with
pointwise norm-bounded uncertainties: A control Lyapunov function
approach.” IEEE transactions on automatic control 44.1 , 3-17(1999).

[19] Jankovic, Mrdjan, Rodolphe Sepulchre, and Petar V. Kokotovic. ”CLF
based designs with robustness to dynamic input uncertainties.” Systems
and control letters 37.1 , 45-54(1999).

[20] Mazenc, Frédéric, Silviu-Iulian Niculescu, and Mounir Bekaik. ”Sta-
bilization of nonlinear systems with delay in the input through back-
stepping.” 2011 50th IEEE Conference on Decision and Control and
European Control Conference. IEEE, (2011).

[21] Sontag, Eduardo D. ”A universal construction of Artstein’s theorem on
nonlinear stabilization.” Systems and control letters 13.2 , 117-123(1989).

[22] Teel, Andrew R. ”Connections between Razumikhin-type theorems and
the ISS nonlinear small gain theorem.” IEEE Transactions on Automatic

Control 43.7 , 960-964(1998).
[23] Qiu, Jianbin, Min Ma, and Tong Wang. ”Event-triggered adaptive

fuzzy fault-tolerant control for stochastic nonlinear systems via command
filtering.” IEEE Transactions on Systems, Man, and Cybernetics: Systems
52.2 (2020): 1145-1155.

[24] Yu, Xinghu, et al. ”Barrier Lyapunov function-based adaptive fault-
tolerant control for a class of strict-feedback stochastic nonlinear sys-
tems.” IEEE Transactions on Cybernetics 51.2 (2019): 938-946.

[25] Zhao, Qing, and Jin Jiang. ”Reliable state feedback control system
design against actuator failures.” Automatica 34.10, 1267-1272 (1998).

[26] Elghoul, Aymen, Adel Tellili, and Mohamed Naceur Abdelkrim. ”Re-
configurable control of flexible joint robot with actuator fault and
uncertainty.” Journal of Electrical Engineering 70.2 , 130-137(2019).

[27] Yamashita, Yuh, Kiminori Sakano, and Koichi Kobayashi. ”Asymptotic
stabilization with group wise sparse input based on control Lyapunov
function approach.” International journal of robust and nonlinear control
33.1 , 35-48(2023).

www.ijacsa.thesai.org 911 | P a g e


