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Abstract—This study represents a significant advancement in
fish ecology by applying deep learning techniques to automate
and improve the counting of growth rings in otoliths, which
are essential for determining the age and growth patterns of
fish. Traditionally, manual methods have been used to analyze
these rings, but these approaches are time-consuming, require
significant expertise, and are prone to bias. To address these
limitations, we propose a novel methodology that combines con-
volutional neural networks (CNNs) with the RANSAC algorithm,
enhancing the accuracy and reliability of ring detection, even
in the presence of noise or natural image variations. Unlike
manual techniques, which depend on observer expertise and
subjective interpretation, our approach improves performance,
often surpassing human experts while reducing analysis time. The
results demonstrate the potential of deep learning and RANSAC
in otolith research, offering powerful tools for sustainable fish
population management and transforming research practices in
marine ecology by providing faster, more reliable, and accessible
analytical methods, setting new standards for more rigorous
research.
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I. INTRODUCTION

The advent of deep learning, a subset of artificial in-
telligence, offers a promising solution to the limitations of
traditional methods for counting growth rings in otoliths. These
growth rings, critical for estimating fish age and growth, have
long been analyzed using manual methods that are time-
consuming, reliant on human expertise, and subject to observer
bias [1], [2], [3], [4], [5]. By employing convolutional neural
networks (CNNs) trained on extensive datasets of annotated
otolith images, researchers can now develop models capable
of automatically identifying and counting growth rings with
high precision and efficiency. This approach represents a major
advancement, building on traditional methods documented in
works such as the Manuel de sclérochronologie des poissons
[6].

Automated models not only improve the accuracy of ring
counting but also drastically accelerate the analysis of large
datasets, making it possible to study fish populations over
broader geographic areas and longer time periods. Such scal-
ability enhances our understanding of aquatic ecosystems, en-
abling better monitoring and management of fishery resources,
and contributing to the conservation of fish populations. These

advancements align with findings from the Project DEMER-
STOCK, which emphasize the need for innovative methods to
improve fish age estimation [7].

CNNs, when trained on large collections of annotated
otolith images, achieve accuracy levels that rival, and often
surpass, those of human experts. Furthermore, the computa-
tional efficiency of CNN-based analysis far exceeds traditional
methods, particularly in terms of the time required to process
large datasets. These technological advancements are critical
for addressing challenges in fish population studies and have
been supported by the application of deep learning in analyzing
otolith striations, as explored in studies on anchovy (Engraulis
encrasicolus) [5].

To fully capitalize on the potential of deep learning, it
is essential to establish standardized procedures for otolith
image collection, preparation, and annotation. Rigorous cross-
validation protocols are also needed to ensure that the models
generalize across different species and environmental condi-
tions, as highlighted in studies emphasizing the importance of
consistency in fish age estimation methodologies [6], [7].

Beyond otolith analysis, deep learning techniques hold
promise for a wide range of applications in fish biology, includ-
ing species identification, food web analysis, and population
health monitoring. Integrating these computational techniques
into fish ecology represents a significant leap forward, offering
unprecedented opportunities for scaling and precision in eco-
logical studies. As highlighted by Gonzalez [8], the adoption of
deep learning in aquatic research is paving the way for more
efficient, accurate, and large-scale studies, which are crucial
for sustainable marine resource management and biodiversity
conservation.

In our study, we propose an innovative method for au-
tomating the counting of growth rings in otoliths using deep
learning. Our approach employs an enhanced CNN architecture
trained on a curated dataset of tilapia otolith images. The
model’s performance was rigorously evaluated by comparing
its predictions to manual counts performed by expert special-
ists. The results demonstrate that the model achieves accuracy
comparable to, or surpassing, that of human experts, while
significantly reducing the time required for analysis.

This deep learning-based framework offers a reliable and
efficient alternative to traditional manual methods for otolith
analysis. By addressing key limitations of existing approaches,
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it provides a powerful tool for large-scale ecological studies
and fishery management, contributing to improved practices in
aquatic resource conservation and sustainable marine manage-
ment [5], [6], [7].

II. PRELIMINARIES

The analysis of otolith images for determining fish age
and growth has experienced renewed interest in recent years,
largely attributed to advancements in deep learning and im-
age processing methodologies. Convolutional Neural Networks
(CNNs) have demonstrated exceptional effectiveness in the au-
tomated identification and quantification of growth rings within
otoliths, thereby offering a viable alternative to conventional
manual techniques.

For example, Sert in [9] introduced a technique that em-
ploys CNNs for the automatic estimation of fish age from
otolith imagery. The authors developed a model that can detect
and count growth rings with an accuracy comparable to that
of human specialists. In addition, Wang in [10] investigated
the use of deep learning for the automatic estimation of fish
age, creating an optimized CNN model that exceeds traditional
methods in both accuracy and efficiency.

Moreover, Liu in [11] suggested an approach based on
transfer learning for estimating fish age. By applying a CNN
model pre-trained on natural images, they tailored it for the
analysis of otoliths, resulting in encouraging outcomes. Fur-
thermore, Zhang in [12] introduced a multi-scale CNN model
that utilizes convolutions at varying scales to capture features
across different resolutions, thus enhancing the accuracy of age
estimation.

Finally, a study by Sun in [13] presents a method that
combines deep learning with data augmentation to improve the
robustness and precision of fish age estimation. Data augmen-
tation is instrumental in expanding the training dataset, thereby
enhancing the model’s resilience to variations in images.

In conclusion, the recent progress in applying CNNs and
deep learning techniques for otolith analysis presents promis-
ing opportunities for automated fish age estimation, yielding
significant results in terms of both precision and efficiency.

III. METHODOLOGY

The methodology proposed in this study is a framework. In
the following sections, we will provide a detailed description
of the implementation steps.

A. Framework

In our proposed framework, we primarily have three com-
ponents that we will describe. Fig. 1 illustrates the represen-
tation of our proposed framework.

• First component: Otolith Image Data Sources.
In this section, we gather otolith image data in various
formats from seanoe.org.

• Second component: Architecture for Otolith Image
Analysis.

Preprocessing: The first step is preprocessing, which
is essential for enhancing image quality by reducing

Fig. 1. Framework.

noise and sharpening the contours. Gonzalez, in his
seminal work in [8], provides an overview of image
processing techniques, including important filtering
methods crucial for this stage. We employ the Canny
edge detection algorithm, developed by Canny [14],
which is well-regarded for its efficiency in detecting
a wide variety of edges in images.
This step allows us to precisely identify the regions of
interest by calculating the distances between contours
and counting them. To trace and extract contours, we
rely on a method for structural analysis of binary
images, as described by Suzuki in [15].

Detection of Regions of Interest: Contour Counting
and Distance Measurement: The integration of tra-
ditional image processing techniques with cutting-
edge deep learning methods provides a robust frame-
work for analyzing otolith images. Previous studies
highlight the critical role of thorough preprocessing,
precise contour detection, and sophisticated pattern
recognition approaches in achieving accurate classi-
fication of otolith structures.
Growth Band Detection: Deep Learning and
RANSAC: The third step involves detecting growth
bands in otoliths, which requires advanced techniques.
For this purpose, we opted to use deep learning in
conjunction with the RANSAC method. RANSAC,
introduced by Fischler and Bolles in [16], is highly
effective for detecting geometric shapes even when the
data is noisy. It is particularly useful for identifying
linear patterns in otolith images.
Deep learning has significantly advanced image
analysis. For instance, Krizhevsky in [17]
demonstrated that convolutional neural networks
(CNNs) are highly powerful for image classification
and can be adapted to identify complex patterns in
otoliths. Long in [18] proposed fully convolutional
networks (FCNs) for image segmentation, an
effective method for distinguishing growth bands.
Finally, recent advancements such as the YOLO
model and Faster R-CNN, developed by Redmon in
[19] and Ren in [20], allow for fast and accurate
detection of patterns in images.

• Third Component: Client UI display of fish age.
The third component of our system focuses on
the development of a user-friendly interface for
displaying the predicted age of fish based on otolith
image analysis. This component is critical as it bridges
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the gap between complex backend computations and
end-user interactions, providing a clear and intuitive
representation of the results.

The user interface (UI) is designed to display the
predicted fish age, alongside other relevant data, such
as growth band patterns and confidence intervals
for the predictions. The UI integrates seamlessly
with the image processing and deep learning
models, ensuring real-time feedback for users such as
marine biologists, fisheries managers, and researchers.

To ensure usability, the UI follows best practices in
human-computer interaction (HCI) design, with a
focus on clarity, simplicity, and responsiveness. Key
features include:

Age Display: The predicted age is prominently
shown in the UI, allowing users to quickly interpret
the results. The age is calculated based on the
detected growth bands in the otolith images, using
a combination of RANSAC and deep learning models.

Visual Representation of Growth Bands: A graphical
overlay of the detected growth bands is displayed
alongside the age prediction, helping users to
understand the visual cues from the otolith images
that contribute to the age determination. This visual
aid enhances transparency and user trust in the
automated process.

Confidence and Uncertainty Metrics: The system
includes confidence intervals or uncertainty metrics
derived from the deep learning model to indicate
the reliability of the age predictions. This is
particularly important in scientific research and
decision-making processes, where understanding the
model’s confidence can influence further analysis or
actions.

Interactive Features: Users are provided with
interactive tools to adjust parameters, view detailed
otolith images, and explore different stages of the
preprocessing and analysis pipeline. This empowers
users to gain deeper insights into the fish aging
process and make informed decisions.

In conclusion, this third component serves as a critical
interface, translating complex analytical outputs into
actionable insights for users. By focusing on intuitive
design and real-time interaction, the Client UI en-
hances the accessibility and practical use of the otolith
age estimation system.

B. Implementation Architecture for Otolith Image Analysis

The architecture is structured into three main stages: pre-
processing, region of interest identification, and growth band
detection. The model was trained using a dataset of tilapia
otolith images. Below, we showcase a sample image from the
thousands of tilapia otoliths used in each phase of the process.

Algorithm 1 Preprocess Image

Input: image path: path of the image
Output: filtered image: filtered image,

contours: contours extracted from the image
image← cv2.imread(image path,

cv2.IMREAD GRAY SCALE)
if image is None then

raise FileNotFoundError with the message
“Image not found at location: image path”

end if
filtered image← cv2.GaussianBlur(image, (5, 5), 0)
edges← cv2.Canny(filtered image, 100, 200)
contours, ← cv2.findContours(edges, cv2.RETR TREE,

cv2.CHAIN APPROX SIMPLE)
emit(filtered image, contours)

1) Preprocessing: Filtering and Edge Extraction: Algo-
rithm 1 performs image preprocessing by reducing noise
through Gaussian blur and extracting contours, which are criti-
cal for applications such as object detection and shape analysis.
Noise reduction and contour enhancement are achieved by
applying filters. To ensure accurate contour detection, we
utilize the Canny edge detection technique, allowing us to
identify contours and their orientation. Through the application
of Algorithm 1, a preprocessed image is produced. Fig. 2
illustrates the preprocessing for filtering and edge extraction.

Fig. 2. Tilapia otolith preprocessed.

2) Identification of Regions of Interest: Distance Calcula-
tion and Contour Counting: We employ filtering techniques
to minimize noise and enhance contour clarity. To optimize
contour detection, we implement the Canny edge detection
method, which allows for precise identification and orienta-
tion of contours. By executing Algorithm 1, we generate a
preprocessed image ready for further analysis.
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Algorithm 2 Calculate Contour Distances

Input: contours: contours extracted from the image
Output: distances: distances between contours,

count: number of contours
distances← empty list
count← 0
for i from 0 to len(contours)− 2 do

for j from i+ 1 to len(contours)− 1 do
min distance←∞
for each point1 in contours[i] do

for each point2 in contours[j] do
dist ← norm of np.linalg.norm(point1 −
point2)
if dist < min distance then
min distance← dist

end if
end for

end for
distances.append(min distance)

end for
end for
count← length of contours
emit(distances, count)

Algorithm 2 evaluates the spatial proximity between con-
tours within an image, a key step for tasks such as analyzing
the spatial distribution of objects or performing precise seg-
mentation of elements of interest. Upon applying the second
layer of our model, the output generated by Algorithm 2 is as
follows. Fig. 3 illustrates the contour detection of the Tilapia
otolith.

Fig. 3. Tilapia otolith detected contour.

3) Detection of Growth Bands: Deep Learning and
RANSAC: This stage utilizes the RANSAC algorithm to detect
circular growth bands in the otoliths. The application of a

CNN further refines the detection process, enhancing the
classification of otoliths.

Algorithm 3 RANSAC for Circle Detection

Input: image: image to process
Output: circles: circles detected in the image
Initialize circles← []
keypoints← extract keypoints(image)
for each subset of keypoints do

model← fit model(subset)
inliers← identify inliers(model, keypoints)
if count(inliers) ¿ threshold then

circles← update circles(circles,model)
end if

end for
emit(circles)

We employed the RANSAC algorithm to identify circular
growth bands in otoliths, as detailed in Algorithm 3. This
process involves the detection of circular shapes, with the
results being stored in the variable ’circles,’ and ultimately,
the detected circles are emitted.

We carry out feature extraction, focusing on key metrics
such as the number of contours, the average distance between
contours, and the number of detected circles. This analysis is
essential for identifying growth patterns within the images, as
outlined in Algorithm 4.

Algorithm 4 Extract Features

Input: image path: path of the image
Output: features: features extracted from the image
preprocessed image, contours ←
preprocess image(image path)
distances, contour count ←
calculate contour distances(contours)
circles← hough transform(preprocessed image)
if distances is empty then
mean contour distance← 0

else
mean contour distance← mean of distances

end if
if circles is None then
circle count← 0

else
circle count← length of circles[0]

end if
features← {

”image path” : image path,
”contour count” : contour count,

”mean contour distance” :
mean contour distance,

”circle count” : circle count,
”growth stripe count” : contour count

# Hypothesis: each contour represents a growth stripe
}
emit(features)

By putting into practice Algorithm 3 and Algorithm 4, we
obtain a detection of the growth bands. Fig. 4 and 5 illustrate
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the detection of growth streaks in Tilapia otoliths as well as the
calculation of the distance between these growth streaks. Upon

Fig. 4. Detection of growth streaks in tilapia otoliths.

Fig. 5. Calculation of the distance between growth streaks in tilapia otoliths.

implementing our architecture, we move forward by loading
the CSV data, constructing the CNN model, and training
it specifically on tilapia fish otolith images. The subsequent
algorithms outline the steps involved in training the model.

Algorithm 5 Load and Process Data

Input: images folder: folder containing the images,
csv path: path of the CSV file

Output: features df : dataframe containing the features
extracted from the images
data← read CSV file at csv path
data[′image path′] ← apply lambda function x:
join(images folder, x) to data[′image path′]
all features← empty list
for each row, index in data do

image path← image path from row
features← extract features(image path)
append features to all features Exception as e
print “Error processing image path: e”

end for
features df ← create a dataframe from all features
emit(features df )

Algorithm 5 automates the process of loading images and
corresponding data, extracting essential features, and orga-

nizing them into a structured format. This step is critical
for efficiently managing the extensive image dataset used in
pattern detection.

Algorithm 6 Create CNN Model

Input: optimizer: optimizer to use for training (default
’adam’),

init mode: weight initialization mode (de-
fault ’uniform’)
Output: model: created and compiled CNN model
model← Sequential([

Dense(64, activation =′

relu′, kernel initializer = init mode,
input shape = (input shape, )),

Dense(128, activation =′

relu′, kernel initializer = init mode),
Dense(1, activation =′ linear′)

])
model.compile(optimizer = optimizer, loss =′

mean squared error′,
metrics = [′mae′])

emit(model)

Our model is prepared for training on the dataset to
facilitate predictions. To define and initialize our convolutional
neural network (CNN), we specified the layers, activation
functions, weight initialization methods, and compilation pa-
rameters. This approach enabled us to develop a flexible and
efficient model, well-suited for a range of supervised learning
tasks (Algorithm 6).

Algorithm 7 Plot Learning Curves

Input: history: model training history
Output: plot of the learning curves
Create a new figure of size (14, 6)
Add a subplot (1, 2, 1)
Plot history.history[′loss′] with label ’Training Loss’
Plot history.history[′val loss′] with label ’Validation
Loss’
Set the title of the plot to ’Learning Curve (Loss)’
Set the x-axis label to ’Epochs’
Set the y-axis label to ’Loss’
Add a legend to the plot
Add a subplot (1, 2, 2)
Plot history.history[′mae′] with label ’Training MAE’
Plot history.history[′val mae′] with label ’Validation
MAE’
Set the title of the plot to ’Learning Curve (MAE)’
Set the x-axis label to ’Epochs’
Set the y-axis label to ’MAE’
Add a legend to the plot
Display the plot

Utilizing Algorithm 7, we visualize the learning curve of
our neural network model by leveraging its training history.
This facilitates the assessment of the model’s performance
through the examination of the loss and Mean Absolute Error
(MAE) curves for both the training and validation datasets. By
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employing this algorithm, we were able to identify potential
issues related to overfitting or underfitting and subsequently
adjust the model’s hyperparameters, thereby enhancing its
overall performance.

Algorithm 8 Define Data Augmentation Generator

Output: datagen: configured data augmentation generator
datagen← ImageDataGenerator(

rotation range = 20,
width shift range = 0.2,
height shift range = 0.2,
shear range = 0.2,
zoom range = 0.2,
horizontal flip = True,
fill mode =′ nearest′

)

To enhance the robustness of our deep learning model
through the creation of variations in the training images,
we employ Algorithm 8, which facilitates the definition and
configuration of a data generator for image augmentation.

Algorithm 9 Create and Compile Regularized CNN Model

Input: optimizer: optimizer for the model
init mode: initializer mode for the model weights

dropout rate: rate for the dropout layers
Output: model: compiled Keras model
model← Sequential()
model.add(Dense(64, activation =′

relu′, kernel initializer = init mode, input shape =
(input shape, )))
model.add(BatchNormalization())
model.add(Dropout(dropout rate))
model.add(Dense(32, activation =′

relu′, kernel initializer =
init mode, kernel regularizer =′ l2′))
model.add(BatchNormalization())
model.add(Dense(1, activation =′ linear′))
model.compile(optimizer = optimizer, loss =′

mean squared error′,metrics = [′mae′])
return model

Algorithm 9 outlines the process of creating and compiling
our regularized convolutional neural network (CNN) model
using Keras, incorporating dropout and batch normalization
layers.

IV. RESULTS AND DISCUSSIONS

A. Results

In this section, we present the performance of our model,
highlighting the key metrics that reflect its learning progress
and generalization ability. The training loss begins at 16.6852
in epoch 1 and steadily decreases across subsequent epochs,
indicating the model’s effective learning process. Similarly, the
Mean Absolute Error (MAE) starts at 2.6336 and progressively
reduces, ranging between 2.5 and 3.2, suggesting that the

model’s predictions are becoming more accurate as training
continues. These trends demonstrate the model’s capacity to
learn and capture patterns in the training data.

However, the validation metrics tell a more complex story.
Initially, both the validation loss and MAE show significant
improvement, with validation loss dropping to 3.8696 and
MAE to 1.7366 by the end of the first epoch. In the following
epochs, we observe fluctuations, with notable peaks (e.g. at
epoch 10), indicating instability in the model’s performance
on unseen data. The validation loss and MAE spike at epoch
10, suggesting overfitting as the model starts to memorize the
training data rather than generalize. This is further corroborated
by the rising validation loss, even as training loss continues to
decrease.

Overall, the results indicate that while the model shows
solid progress in learning, overfitting remains a challenge.
More robust regularization techniques, such as reducing the
learning rate, using learning rate decay, or applying early stop-
ping, could be beneficial to stabilize the model’s performance
and improve generalization.

The model achieved a better score of 0.93071, with a final
loss of 13.2722 and an MAE of 2.1432, demonstrating its
ability to fit the data well when using optimal parameters
obtained from grid search. It is important to mention that
the datasets were sourced from seanoe.org. The total dataset
consists of 10,000 images in “tif” format, of which 7,000 were
used for the training set, 1,500 for the validation set, and
1,500 for the test set. In order to obtain results concerning
the methodology we proposed, we employed a computer with
the following specifications:

• Processor: 2.6 GHz 6-Core Intel Core i7;

• Graphics card: AMD Radeon Pro 5300M 4 GB, Intel
UHD Graphics 630 1536 MB;

• Usable memory: 16 GB 2667 MHz DDR4;

• Operating system: macOS Sonoma 14.2.1.

Fig. 6 illustrates the learning curve.

TABLE I. MODEL TRAINING RESULTS

Epoch Training
Loss

Training
MAE

Validation
Loss

Validation
MAE

1 16.6852 2.6336 3.8696 1.7366
2 20.4612 3.1568 2.0225 0.9299
3 23.0268 3.3713 3.0153 1.2721
4 19.0235 3.1381 2.7854 1.4029
5 15.3980 2.7273 2.3449 0.8462
6 16.1999 2.5265 1.3399 0.8039
7 13.2360 2.7347 0.8052 0.5607
8 13.9841 2.5284 1.3026 0.7432
9 15.0812 2.6757 1.8000 0.6429

10 21.7000 3.1507 3.1815 1.2456

B. Discussions

The model’s performance during training is promising,
with a steady decline in training loss and MAE. However,
the fluctuations observed in the validation metrics suggest
issues with generalization, potentially due to overfitting. While
dropout was employed to mitigate overfitting, the validation
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Fig. 6. Learning curve.

performance remains inconsistent, with spikes in both valida-
tion loss and MAE, especially noticeable in epoch 10. These
spikes suggest that the model is learning noise and specific
features of the training data, rather than generalized patterns.

The grid search provided the optimal parameters that
resulted in a high score of 0.93071, with a final loss of 13.2722
and an MAE of 2.1432, indicating the model’s capability to
fit the data effectively under these conditions. Despite this, the
presence of outliers and fluctuations in validation performance
signals room for improvement in terms of both robustness and
consistency. Fine-tuning hyperparameters and further exploring
regularization methods may enhance the model’s stability and
overall performance.

The model’s final evaluation, presented in the grid search
results and model evaluation table (Table I), shows that al-
though the model performs well during training, achieving
optimal scores with the selected parameters, some discrepan-
cies remain, especially for certain data points. Further analysis
of these outliers, particularly those where the model overesti-
mates the values, could lead to better model refinement. The
methodology employed here demonstrates strong predictive
performance for the majority of the dataset, but refinements
in error handling could further boost its accuracy.

In summary, the model demonstrates strong performance
during training, with consistent results for the majority of the
data. There is a high level of agreement between the predicted
and actual values. However, fluctuations in the validation
metrics, especially with the presence of a few outliers, suggest
areas for further improvement. These outliers highlight po-
tential challenges in model generalization, which may require
additional fine-tuning. To address this, a more detailed error
analysis and adjustments to the model could enhance its
precision and robustness. Furthermore, the method employed
allows for real-time fish age estimation, showing promise for
applications in fishery management and ecological studies.
Table II illustrates the model’s performance, while Fig. 7
provides a visual comparison of predicted versus actual values.
Future work should focus on refining the model to minimize
these discrepancies and further optimize its applicability in
practical, real-world scenarios.

V. CONCLUSION AND PERSPECTIVE

This study introduces a hybrid method combining
RANSAC and deep learning for counting growth rings in

TABLE II. GRID SEARCH RESULTS AND MODEL EVALUATION

Parameters Values
Best Score 0.9307
Batch Size 20

Epochs 50
Dropout Rate 0.3

Init Mode Uniform
Optimizer Adam

Loss 13.2722
MAE 2.1432

Fig. 7. Actual values vs Predictions.

tilapia, demonstrating effective learning during the training
phase, as evidenced by the consistent reduction in training
loss and Mean Absolute Error (MAE). The model achieved
strong performance, with a peak score of 93,071% during
grid search, indicating its ability to fit the data effectively
using optimal parameters. However, despite these promising
results, the model’s performance on unseen data revealed
signs of overfitting, as indicated by fluctuations in validation
metrics, particularly a significant spike in validation loss and
MAE at certain epochs. This suggests the model’s limited
generalization capacity, which poses a challenge for reliable
predictions.

Looking forward, several future directions and research
opportunities arise from this work. First, extending the method
to other fish species is essential to assess its generalizability
and robustness across different ecological contexts. Second,
integrating advanced regularization techniques could help mit-
igate overfitting, such as adopting learning rate decay or early
stopping strategies. Additionally, incorporating environmental
data could provide insights into the factors influencing growth
ring formation, improving the accuracy of age estimations. On
a practical level, scaling this model for large-scale applica-
tions in fishery management could significantly enhance the
sustainable monitoring of aquatic populations. Finally, future
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efforts should focus on expanding datasets, refining the model
architecture, and exploring its potential in other areas of marine
ecology, thereby opening up new avenues for both fundamental
and applied research in resource management.
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