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Abstract—Content-adaptive image steganography based on
minimizing the additive distortion function and Generative Ad-
versarial Networks (GAN) is a promising trend. This approach
can quickly generate an embedding probability map and has a
higher security performance than hand-crafted methods. How-
ever, existing works have ignored the semantic information
between neighbouring pixels and the NaN-loss scenarios, which
leads to improper convergence. Such cases will degrade the
generated Stego images’ quality, decreasing the secret payload’s
security. FT GAN performance, which incorporates feature reuse
in generator architecture, has been investigated by proposing the
FC DenseNet-based generator herein. This investigation explores
the superior semantic segmentation capabilities of FC DenseNet,
including feature reuse, implicit deep supervision, and the vanish-
ing gradient problem alleviation of DenseNet, toward enhancing
visual results, increasing security performance, and accelerating
training. The ability to maintain high-quality visual character-
istics and robust security even in resource-constrained environ-
ments, such as Internet of Things (IoT) contexts, demonstrates
the practical benefits of this approach. The qualitative analysis
of the visual results regarding the texture regions’ localization
and intensity exhibited augmented visual quality. Moreover, an
improvement in the security attribute of 0.66% has also been
demonstrated regarding average detection errors made by the
SRM EC Steganalyzer across all target payloads.
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I. INTRODUCTION

Image steganography defines the art and science of hiding
secret messages in digital images such that the intended
recipient is most likely the only other entity aware of the
secret [1] [2]. Numerous methods have been invented toward
ensuring that such an intended secret is maintained. Over the
past few years, image steganography’s popularity has increased
due to the vast amount of data transmitted over the Internet
and social media platforms [3]. According to [2], adaptive
image steganography is a promising new trend in the field of
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steganography that can engender greater assurance that such a
secret will remain so. In content-adaptive image steganogra-
phy, the embedding locations are modified adaptively based on
the image’s content, particularly its texture and smooth regions.
To make the existence of a secret message undetectable, higher
embedding probabilities are assigned to texture areas than are
smooth areas. The most efficient embedding schemes employ
content-adaptive steganography techniques that minimise the
additive distortion function, as shown by Zhao et al. [4].

Minimizing embedding distortion simply means minimiz-
ing a well-designed additive distortion function, as defined here
in Eq. (1) [5].

D(X,Y ) =

W∑
i=1

H∑
j=1

{pi,j}{xi,j − yi,j} (1)

Where, D(X,Y ) is the measure of the additive distortion
caused by changing cover image X to Stego image Y . H and
W are the height and width of the Stego and cover image,
respectively. pi,j is the cost, or probability of changing pixel
xi,j in cover image to yi,j . P is a matrix representing the cost
of changing or probability of changing pixel xi,j to yi,j . The
cost and the probability of change are inversely related.

Prior to discussing the methods of content adaptive
steganography based on minimizing the distortion function,
a review of the contrary field, specifically steganalysis, is
necessary. It is worth noting that these two fields continuously
impact one another. Steganalysis can be defined as the field in
charge of detecting the existence of hidden information in an
image. Initially, steganalysis was based on statistical methods
[4]. However, with the advent of Machine Learning (ML)
algorithms, steganalysis has evolved to employ ML algorithms
thereby increasing detection accuracy by a focus on the feature
extraction process. Fridrich et al. [6] proposed a Spatial Rich
Model (SRM) utilizing 30 High-Pass Filters (HPF) to capture
different relationships between neighboring pixels in different
directions. SRM was enhanced to produce maxSRMd2 [7]
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by defending against Selection Channel Aware steganalysis
(SCA). SRM and maxSRMd2 extracted features are fed to a
ML algorithm to perform the classification or equivalently the
secret’s detection. The Ensemble Classifier (EC) proposed by
Kodovsky et al. [8] showed good performance back then.

In recent years, deep learning has become increasingly pop-
ular in image processing applications ushering in many innova-
tive advancements. In particular, Convolutions Neural Network
(CNN) is a powerful tool for extracting image features for both
the spatial and frequency domains. In an effort to compete with
the performance of features extraction handcrafted methods
[6], [7], CNN-based Steganalyzers have been developed. In
2015, QIAN Net [9], the first CNN-based Steganalyzer, was
proposed. Their method uses a HPF in the preprocessing layer
to strengthen steganographic noise. For feature extraction, five
convolutions layers with a Gaussian activation function and
average pooling are utilized for feature extraction. For the
classification task, fully connected neurons were added to a
softmax layer. QIAN Net detection accuracy was inferior to
hand-crafted methods [6], [7], which was the main motivation
behind the proposal of Xu Net [10] in 2016. In addition to
the classification module, Xu Net comprises various structural
groups. Absolute, Batch Normalization (BN), and tanh are
utilized in the initial groups to handle HPF output and improve
statistical features. BN and Rectified Linear Unit (ReLU) are
applied to the remaining groupings. Later, different ensemble
strategies for the Xu Net were investigated [11]. Instead of
using a traditional HPF to determine steganographic noise,
all 30 SRM HPF were utilized to initialize the kernels in the
first convolution layer by Ye Net [12]. Moreover, a Truncated
Linear Unit (TLU) was proposed in an attempt to increase
the Signal-to-Noise Ratio (SNR). Furthermore, incorporating
knowledge of channel selection or the probability of changing
each pixel provided for improved performance. Yedroudj Net
[13], an improved version of Ye Net, was created by combin-
ing features from Xu Net and Ye Net. SR Net [14] abandoned
the idea of SRM preprocessing filters and initialized non-
pooling convolutional layers randomly. SR Net [14] achieved a
state-of-the-art performance in 2018. ZHU Net [15] enhanced
their performance even further in 2019 by decreasing the kernel
size to 3x3, using separable convolutions, and Spatial Pyramid
Pooling (SPP). In 2021, GBRAS Net [16] was proposed,
which involves using filter banks to enhance steganographic
noise in a preprocessing stage, depth wise and within separable
convolutional layers, while skipping connections to the feature
extraction stage. What makes GBRAS Net different than all
reviewed CNN-based Steganalyzers is the classification stage,
which avoids overfitting by abandoning fully connected mod-
ules.

Despite the advancements in content-adaptive image
steganography, current GAN-based methods exhibit several
limitations that hinder their practical application. Specifically,
these methods often neglect the semantic relationships between
neighboring pixels, leading to suboptimal texture localiza-
tion and security performance. Moreover, the prevalence of
NaN-loss scenarios during training results in convergence
issues, further degrading the quality of the generated stego
images. Addressing these challenges is critical for enhancing
the robustness and adaptability of steganographic techniques,
particularly in resource-constrained environments, such as the
Internet of Things (IoT). This research addresses the core

problem of inefficient stego image generation in existing GAN-
based steganographic models, stemming from their inability
to effectively incorporate semantic information and mitigate
training instability (e.g. NaN-loss scenarios). These challenges
lead to a compromise in both the visual quality and security
of the stego images, highlighting the need for an improved
approach. The primary objective of this study is to propose
an improved GAN-based framework, termed FT GAN, to
overcome these limitations. By incorporating feature reuse
through an FC DenseNet-based generator and introducing a
bounded activation function to stabilize training, the proposed
approach aims to enhance stego image quality, improve se-
mantic segmentation, and ensure better security performance.

II. RELATED WORK

The methods related to content adaptive image steganog-
raphy are based on minimizing the additive distortion function
by splitting the embedding process into two tasks. The first
task objective is to generate a cost (or probability) matrix
for each cover image using a distortion (or cost assignment)
function that is well-designed. The goal of the second task is to
produce Stego images using coding schemes such as Syndrome
Trellis Codes (STC) [5], which take a cover image with its
corresponding cost matrix and a secret message as inputs.

That being so, researchers developed various distortion
or cost assignment functions, whose primary purpose is to
achieve the first task and accurately assign the probability of
change or cost of change by simply quantifying the effect of
change, or pi,j , for each pixel. Initially, the cost assignment
functions were designed heuristically utilizing hand-crafted
techniques, such as Highly Undetectable Stego (HUGO) [17],
Wavelet Obtained Weights (WOW) [18], High pass, Low
pass, and Low pass (HILL) [19], Spatial Universal Wavelet
Retrieval Distortion (S UNIWARD) [20], and Minimizing
the Power of Optimal Detector (MiPOD) [21]. The previous
handcrafted distortion functions provided a satisfactory level of
security. Nevertheless, their primary insufficiency was that the
detectability factor was not considered when designing the cost
function. According to Pevny et al. [17], the cost of embedding
is directly related to its detectability. However, simulating this
correlation was practically impossible back then.

With the development of GAN [22], it became possible to
simulate the distortion and detectability relationship. Tang et
al. [23] were the first to automatically design a distortion func-
tion. Automatic Steganographic Distortion Learning using a
Generative Adversarial Network (ASDL GAN) was proposed
by Tang et. al. [23] in 2017. Their approach included three
parts: Generator G, a Ternary Embedding Simulator (TES),
and Discriminator D. Their generator was comprised of 25
structural groups, with each group containing a convolution
layer, BN layer, and ReLU activation function, while a shortcut
was utilized to identify the feature map of the stack layers. The
process takes as input the cover image and the target capacity
for which embedding probabilities are to be produced. The
TES is used to simulate ternary data embedding since the
vanishing gradient problem prohibits the conventional staircase
function from being used directly. The TES takes as inputs the
probability map matrix produced by the generator and a matrix
of floating-point integers representing the secret message, and
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returns a modification map, which produces a Stego image
when added to the cover image that has a better metrics.

Tang et. al. [23]’s TES was a mini-network requiring a
long pre-training time. Therefore, Yang et al. [24] improved
on this aspect by proposing a double tanh simulator in 2018.
Moreover, motivated by the fact that ASDL GAN security
performance was inferior to hand-crafted distortion functions
and the U Net [25] capabilities in pixel-wise segmentation
they proposed a new generator based on U Net. Moreover,
to resist SCA based steganalysis, they incorporate SCA into
the discriminator adopting Xu Net’s architecture similar to
ASDL GAN. Yang et. al. [26] modified their earlier 2019
work, thereby investigating the influence of high pass filters
in the discriminator’s preprocessing layer to consequently
propose UT 6HPF GAN.

Despite the fact that the UT SCA GAN [24] and
UT 6HPF GAN [26] performed similar to or better than con-
ventional methods, according to Tang et al. [27], the vanishing
gradient problem still exists after several iterations. This prob-
lem follows from using the sigmoid/tanh activation function
as embedding simulators which prevent the full exploitation of
the architecture’s potential. Thus, Steganographic Pixel-Wise
Actions and Rewards with RL (SPAR RL) architecture was
proposed in 2019 by Tang et al. [27]. In this approach, a
policy network attempted to learn an embedding policy by
decomposing the embedding into pixel-wise actions to maxi-
mize rewards. A sampling process was designed to simulate
the embedding actions, and the gradients of data embedding
were allocated to the reward function. Tang et al. [27] were
able to alleviate the vanishing gradient problem in SPAR RL.
However, they ignored the semantic information between
neighboring pixels as can be observed in the policy network
of SPAR RL. Additionally, existing architectures overlook
the NAN-loss scenarios that prevent proper convergence and,
thus degrade the Stego image visual quality. These issues
also relate to the poor adaptability of existing works from
ignoring feature-reuse, useful for pixel-wise segmentation, as
well as texture localization in the Stego images. Therefore, we
consider these issues herein, and have redesigned the GAN’s
generator for improved image steganography.

III. AN IMPROVED GAN ARCHITECTURE FOR IMPROVED
IMAGE STEG

Briefly, our work has improved the GAN architecture to
address the main problem of SPAR RL, while preserving the
generator’s key goal of creating high-quality, and secure Stego
images. To this end, the GAN’s architecture was improved
by utilizing the semantic segmentation neural networks for
generators other than U Net. Inspired by the superior semantic
segmentation capabilities of FC DenseNet [28], feature reuse,
implicit deep supervision, and the vanishing gradient problem
alleviation of DenseNet [29], the model’s convergence and im-
age quality is significantly improved. The proposed model was
evaluated against both the FC DenseNet [28] and U Net in
[25] an encoder-decoder architectures (or CNN-based) image
steganography.

The hypothesis asserts that the FC DenseNet internal con-
nections will allow feature reuse to be carried by the features
map to the subsequent layers. Further, this has been shown

to enhance coarse semantic feature extraction and texture
localization in images. As a result, the security level will be
enhanced.

To this end, the main contribution of this paper is three-
fold:

1) Developing FT GAN by incorporating the FC
DenseNet feature reuse into the GAN’s generator,

increases the quality of the generated image, as well
as the average Stego image security.

2) Improving the architecture using a bounded-
activation-function, prevents NAN-loss and enhances
the model convergence and image visual quality.

3) The performance of the improved model proposed
here was evaluated against existing architectures in
terms of detection error, and image visual quality for
the model’s security and imperceptibility judged to
produced comparatively better results.

IV. MATERIALS AND METHODS

A. Dataset and Software Platforms

The following data set has been utilized during experimen-
tation. All images have been scaled to 256x256 in an effort
to accelerate the training and preserve resources.The Google
Colab pro+ platform was utilized to perform these experiments.

1) BOSSBase v1.01: used for the earlier contest of
breaking steganographic system, containing 10000
images of size 512x512, as well as used to test GAN,

2) BOWS#2: used for 10000 images of size 512x512
(first used for a contest to break watermarking sys-
tems).

Each of the previous datasets has been permuted randomly
at a ratio of 8:2. This ratio gives how many images were used
for GAN training, GAN testing, which includes SRM training
and testing.

1) GAN training uses 16,000 images, 8000 of which
come from BOSSBase and another 8000 from
BOWS2;

2) GAN testing consists of 4,000 images, which are di-
vided into 50% SRM training and 50% SRM testing.

B. Overall Architecture of FT GAN

The overall architecture of the FT GAN is shown below,
refer to Fig. 1. The architecture is composed of a generator,
a ternary embedding simulator, and a discriminator. As de-
scribed, the architecture is same as [23], [24], [26], specifically
[26] with the only difference being in the generator design.

The process begins by feeding the cover image to the
generator to produce its corresponding probability map, which
is then passed to the ternary embedding simulator along with
the input stream representing the secret message to generate
the modification map. The modification map is added to the
cover image to obtain the Stego image. The pair is then input
to the Xu Net [10] discriminator after passing through a six
SRM high pass filter, to perform classification. Finally, the loss
made by the generator and discriminator is computed to update
GAN’s weights.
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Fig. 1. The overall architecture.

1) FC DenseNet 102 D7-based Generator, and its loss
function: In previous work, the U Net architecture has been
utilized for the generator [24], [26], this design enabled results
superior to hand-crafted methods. An attempt to increase
the performance even further by investigating FC DenseNet
architecture in the generator is made here. The main motivation
is the comparison held by Duan et. al., [30] in 2021 when they
compared the performance of FC DenseNet [28] and U Net
[25] in CNN-based image steganography.

The FC DenseNet 102 D7-based generator architecture is
summarized in Fig. 2. This architecture attempts to maintain
U Net depth while incorporating the feature reuse capability of
FC DenseNet. A default growth rate of 16 is maintained, and
the number of layers per dense block in every level is adjusted
to match the width of U Net layer in the same level. In this
way, an investigation of feature reuse capability to improve
performance and accelerate learning can be accomplished. To
avoid NAN-loss, GAN convergence failure mode and improve
the visual results quality, a bounded activation function is
proposed here, and a pre-processing layer of a small kernel
width is utilized.

The generator’s loss function consists of two parts: the
adversarial and entropy parts. The adversarial loss, which
seeks to increase security performance, is the negative of the
discriminator loss. The primary purpose of the entropy part
is to ensure the embedding payload is met by the resultant
probability maps. Refer to Eq. (2), where α and β are scaling
factors and set to 1 and 1

107 , respectively. ID is calculated
using binary cross entropy, Refer to Eq. (3), Where yi is
the softmax, or discriminator output, and y′i is truth label
Stego/cover. Alternatively, IC is computed using Eq. (4), where
H, W, and Q are height, width, and target payload, respectively.
Capacity is calculated with help from a generator produced
probability map. Refer to Eq. (5) [4].

IG = −αID + βI2C , (2)

ID =

2∑
i=1

y′i log yi, (3)
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Fig. 2. The architecture of FC DenseNet 102 D7-based generator.

www.ijacsa.thesai.org 937 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

IC = Capacity ×H ×W ×Q, (4)

Capacity =

H∑
i=1

W∑
j=1

−pi,j log2
pi,j
2

−(1−pi,j) log2(1−pi,j),

(5)

2) Ternary Embedding Simulator (TES): The TES attempts
to simulate the ternary embedding operation, refer to Eq. (6).
The ternary embedding operation (TEO) takes as input the
pixel’s probability map pi,j , and a floating-point value ni,j
obtained from uniform distribution of (0,1), representing a
secret message. The TEO output’s a modification value mi,j ,
which is then added to cover pixel’s value xi,j to produce
Stego pixel value yi,j .

mi,j =


−1, if ni,j <

pi,j

2

1, if ni,j < 1− pi,j

2

0, otherwise
, (6)

The fact that the stair case function defined by Eq. (6) or
the TEO are not differentiable and that they do not preserve the
gradient loss during back-propagation, is the main motivation
behind utilizing the double-Tanh TES proposed by Yang et
al. [24] during experiment. Refer to Eq. (7), where λ is a
controlling factor equal to 60 [26].

mi,j = −0.5Tanh(λ(pi,j−2ni,j))+0.5Tanh(λ(pi,j−2(1−ni,j)))
(7)

3) Discriminator and its loss functions: The Xu Net ar-
chitecture is adopted for the discriminator [10]. Xu Net com-
prises a preprocessing module, a convolution module, and a
classification module. The preprocessing module made use
of six SRM HPF [26]. The convolution module is made up
of structural groupings of the convolution, activation, and
pooling operations. Absolute, Batch normalization (BN), and
tanh are used in the early groups to manage high pass filter
output and enhance statistical characteristics. The remaining
groupings utilize BN and ReLU. In the classification module,
a fully connected layer and softmax activation are utilized. The
discriminator weights are updated with the help of the binary
cross-entropy loss function defined at Eq. (3).

C. GAN Training, and Hyper-parameters

To conserve resources and provide a fair comparison be-
tween UT GAN and FT GAN, a GAN training dataset is fed
in batches of eight during the experiment. The Adam optimizer
with a 0.001 learning rate is applied to update the generator’s
weight. The Discriminator optimizer is a stochastic gradient
descent with a fixed momentum of 0.9, and initial learning rate
of 0.001. Thus, the process was scheduled to decrease by 10%
every 5,000 iterations. All generator weights were initialized
with random values drawn from a normal distribution with zero
mean and 0.02 standard deviation. Similarly, the Discriminator
convolution kernel weights are initialized randomly from a nor-
mal distribution, but with standard deviation of 0.01. However,

the fully-connected (FC) layers parameters were initialized
using a “Xavier” initialization.

This previous architecture characterization and hyper-
parameters were used to train the GAN for a 0.4bpp target
payload. Subsequently, this model was fine-tuned for other
target payloads using curriculum learning (CL).

D. Evaluation

1) Visual Evaluation: The FC DenseNet 102 D7-based
generator has been evaluated qualitatively based on the clarity
and location of the generated probability map and modification
map. Also, the convergence speed is an important considera-
tion, which is the rate at which these clear, localized visual
results, start to show up. Fig. 4, and 5 show visual results
for the 0.4bpp Target payload, and all other Target payloads
respectively.

2) Security Evaluation: The FC DenseNet 102 D7-based
generator security performance was evaluated with the help of
the SRM EC [6], [8]. GAN testing data has been split in half.
The first half has been used to train SRM EC. The second half
has been used to test SRM EC. [6], [8] Eq. (8) was used to
compute the average detection error over ten trials of Ensemble
classifier training and testing. The final results are shown in
Table I. Here, PFA is the number of false alarms processed by
the by SRM EC in cover images while PMD is the number
of missed detections from Stego images.

PE =
1

2
(PFA + PMD) (8)

V. RESULTS

A. Visual Results

The figures below describe the main visual results. Fig. 4
compares the visual results of FT GAN and UT GAN during
training for a 0.4bpp target payload at various epochs. Simi-
larly, Fig. 5 compares them, but for different target payloads.

B. Security Results

Table I summarizes the average detection error made by
SRM EC for all trained payloads. The last column in the
table shows the average PE across all target payloads. Refer
to Fig. 3.

VI. DISCUSSION

A. Visual Results Discussion

The visual results discussion is conveyed in terms of a
qualitative analysis for the probability map and modification
map summarized in Fig. 4 and 5.

The probability map is superior if the majority of white
regions, representing regions with a high likelihood of em-
bedding, are located in the texture region of the image.
Clearly, these observations, seen from the figures show that
the FC DenseNet 102 D7-based generator probability maps’
more intense white compared to the U Net-based generator
probability maps’ white, indicate that the texture areas (of the
prior) were assigned the highest probability value, which is
0.5. Recall that the probability value range is (0,0.5).
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TABLE I. AVERAGE DETECTION ERROR MADE BY SRM EC FOR ALL TARGET PAYLOADS USING GAN TESTING DATA

Stegano-
graphy

0.1bpp 0.2bpp 0.3bpp 0.4bpp 0.5bpp 0.6bpp 0.7bpp Average Among All
Payloads

UT GAN 0.1493 0.1550 0.1508 0.1536 0.1562 0.1588 0.1362 0.1514

FT GAN 0.1508 0.1470 0.1539 0.1498 0.1556 0.1567 0.1532 0.15241

Fig. 3. Missed detection made by SRM EC across each target payload, and the average across all of them.

From Fig. 4, we can conclude that the
FC DenseNet 102 D7-based generator began localizing
texture regions faster than U Net-based generator beginning
at epoch 20. This indicates the benefit of feature reuse.
The modification map is also better if it displays all black
“-1” and white “+1” in the texture areas. Smooth areas
represented by gray “0” remain unchangeable. Recall that the
modification map is obtained using Eq. ( 7). On the basis of
this accounting, a better modification map corresponds to a
better probability map’s localization.

B. Security Results and Discussion

Recall that our experimental dataset is not similar to those
dataset(s) used by Yang et al.’s [26] since the ZSUBase dataset
is not publicly available. Therefore, the comparison is held
with the architecture proposed by Yang et al. [26] when trained
using our aforementioned experiment dataset. According to
the Table I, and Fig. 3, the security performance of the two
architectures varies, making it difficult if not impossible for the
user to determine which architecture outperforms. This is true

as seen from the outcome of several variables, including the
amount of training iterations and fine-tuning. However, these
parameters are extremely important in GAN training due to the
min-max game it plays. This game produces fluctuations in a
variety of metrics, including security results. For instance, the
value at one epoch may be quite high, but significantly fall in
a subsequent epoch. This phenomenon leads us to understand
that a precise decision criterion is needed. Thus, a CNN-based
steganalysis is required to precisely determine the necessary
number of fine-tuned epochs and iterations to optimize the
best and most accurate final results. During these experiments,
this precise decision criterion was unavailable owing to a lack
of dataset size and resources. Aside from the number of fine-
tuned epochs and iterations, this fluctuation was also caused
by other SRM EC factors, such as the number of base learners
and the d sub.

The experimental decision criteria was mostly visual, in
addition to the loss made in meeting the target capacity, refer
to Eq. (4). Therefore, the comparison is based on the last
column of the table, or the “other” average classification error
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Fig. 4. Visual results for target payloads of 0.4bpp in terms of probability
map and modification map.

made across all trained payloads. Refer to Fig. 4. Overall,
the FC DenseNet 102 D7-based generator (or FT GAN su-
perior U Net-based) generator improved the detection error
by 0.66%. This minor average enhancement is a result of the
FC DenseNet 102 D7 architecture, and more specifically the
reuse of features. This is supported by the visual result at both
Fig. 4 and 5.

When comparing the results described in Eq. (1) with those
of earlier studies [26], it is clear that the detection error rate
reported by this experiment is lower, even for their proposed
design, namely U Net. This demonstrates conclusively that
it was not the outcome of the FC DenseNet 102 D7-based
generator design, but rather the dataset employed (i.e. a limited
dataset). According to Karras et al. [31], limited data is one
of the challenges of GAN training. The fundamental problem
with limited datasets is that the discriminator rapidly overfits
to the training examples.

Consider that the discriminator’s function is to classify its
inputs as either cover or Stego. But, due to overfitting, it rejects
as Stego all inputs other than the initial training dataset (cover
images)! As a result, the generator receives minimal input to
assist in enhancing the quality of its subsequent output, and

Fig. 5. Visual results for all target payloads in terms of probability map and
modification map.

thus, rendering the training process worthless. Karras et al.
[31] explain why longer training did not eliminate the +1 and
-1 points in the smooth regions throughout the experiment.
Refer to Fig. 4, and 5. The experimental results clearly
demonstrate the superiority of the proposed FT GAN over
existing models in terms of both visual quality and security.
For instance, the faster convergence speed observed with the
FT GAN underscores the benefit of feature reuse and deep
supervision provided by the FC DenseNet architecture. This
capability allows the generator to focus embedding efforts on
textured regions more effectively, as evidenced by the intense
white areas on the probability maps (see Fig. 4). This improved
localization directly enhances the stego images’ imperceptibil-
ity, reducing detectability by steganalyzers. Compared to UT
GAN and other GAN-based steganography models proposed
by Yang et al. [24, 26], the FT GAN demonstrates a more
consistent performance across all payload sizes. Specifically,
the average detection error for FT GAN (0.1524) is marginally
but consistently better than UT GAN (0.1514), as shown in
Table I. This improvement highlights the practical advantage
of incorporating FC DenseNet’s feature reuse capabilities in
the generator architecture, which is absent in UT GAN. While
previous models relied on U-Net or similar architectures, the
FT GAN’s design mitigates vanishing gradient problems and
achieves more robust outputs. The results also emphasize
the importance of addressing training instability, a common
limitation in earlier works like ASDL GAN [23] and UT 6HPF

www.ijacsa.thesai.org 940 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

GAN [26]. By introducing a bounded activation function, the
FT GAN significantly reduces NaN-loss scenarios, leading
to smoother training convergence and higher-quality outputs.
In contrast, earlier models often struggled with overfitting or
unstable training, particularly when using small datasets.

VII. CONCLUSIONS

We have presented our FT GAN for content-adaptive im-
age steganography, developed by incorporating feature reuse
into the GAN generator. FT GAN has been evaluated based on
both visual and security results using SRM EC Steganalyzers.
The main outcome of this work is a clear improvement in the
visual results of the FC DenseNet 102 D7-based generator
over the U Net-based generator using BOSSBase and BOWS2
datasets, as well as an average security improvement of 0.66%
compared to all other target payloads. As a future recom-
mendation, we highly endorse the development of a universal
generator that satisfies both the spatial and JPEG domains,
since the one proposed here works only in the spatial domain.
By leveraging FC DenseNet and a bounded activation function,
our approach demonstrated improved visual quality, faster
convergence, and enhanced security, with lower detection error
across all payloads. Future work will focus on extending FT
GAN to support the JPEG domain, exploring larger datasets
for scalability, and integrating advanced learning techniques to
further optimize embedding strategies and expand its practical
applications in secure communication systems.
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