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Abstract—Intrusion Detection Models (IDM) often suffer from
poor accuracy, especially when facing coordinated attacks such as
Distributed Denial of Service (DDoS). One significant limitation
of existing IDM solutions is the lack of an effective technique
to determine the optimal period for sharing attack information
among nodes in a distributed IDM environment. This article pro-
poses a novel collaborative IDM model that addresses this issue
by leveraging the Pruned Exact Linear Time (PELT) change point
detection algorithm. The PELT algorithm dynamically determines
the appropriate intervals for disseminating attack information
to nodes within the collaborative IDM framework. Additionally,
to enhance detection accuracy, the proposed model integrates
a Gradient Boosting Machine with a Support Vector Machine
(GBM-SVM) for collaborative detection of malicious activities.
The proposed model was implemented in Apache Spark using the
NSL-KDD benchmark intrusion detection dataset. Experimental
results demonstrate that this collaborative approach significantly
improves detection accuracy and responsiveness to coordinated
attacks, providing a robust solution for enhancing cloud security.
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I. INTRODUCTION
A. Overview of Cloud Computing and Security Challenges

Cloud computing, a transformative paradigm in IT service
delivery that emerged around 2010, provides on-demand access
to resources such as computing power and storage via the inter-
net [1]. This model enables organizations to avoid substantial
investments in hardware and software, paying only for what
they use. Despite its significant cost advantages and operational
flexibility, cloud computing introduces new and complex se-
curity challenges [2]. Among these, Denial-of-Service (DoS)
and Distributed Denial-of-Service (DDoS) attacks stand out as
critical threats that can severely compromise cloud infrastruc-
ture [3]. Ensuring robust and adaptive security mechanisms is
essential to fostering trust and promoting widespread adoption
of cloud technologies.

*Corresponding authors.

B. Limitations of Current Intrusion Detection Models (IDM)

Intrusion Detection Models (IDM) are a cornerstone of
cloud security, monitoring network events to identify and
respond to potential breaches. IDM can be broadly categorized
as signature-based, anomaly-based, or hybrid [4]. Signature-
based Models excel at detecting known attack patterns but
struggle with novel or zero-day attacks [5]. On the other hand,
anomaly-based Models can identify previously unseen threats
but often suffer from high false alarm rates, undermining
their effectiveness [6]. Hybrid approaches aim to combine
the strengths of these two methods but usually inherit their
limitations, leading to suboptimal performance.

Coordinated attacks, such as DDoS attacks, exacerbate
these challenges. These attacks leverage multiple compromised
devices to flood targeted systems with overwhelming traffic,
often evading detection by isolated IDM monitoring [7]. For
example, Smurf attacks exploit spoofed IP addresses to gen-
erate a flood of Internet Control Message Protocol (ICMP)
replies, overwhelming target systems [5]. These challenges
highlight the need for more effective, scalable, and adaptive
intrusion detection solutions.

C. Research Problem and Justification

Existing IDM solutions face critical limitations when ad-
dressing cloud environments’ dynamic and distributed nature.
Signature-based approaches are ineffective against zero-day
attacks, while anomaly-based methods often generate excessive
false positives, wasting computational resources. Furthermore,
traditional IDM struggles to detect coordinated attacks, such as
DDoS, due to their distributed nature and lack of collaboration
among monitoring systems [8], [9], [10], [11]. These gaps
necessitate developing a new, collaborative approach capable
of adapting to the unique security challenges of cloud envi-
ronments.

D. Proposed Solution

This paper presents a novel collaborative intrusion detec-
tion model for cloud computing environments. The proposed
model addresses the limitations of existing solutions by incor-
porating:
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1)  Advanced feature selection techniques and change
point detection using the Pruned Exact Linear Time
(PELT) algorithm.

2)  Collaborative classifier training and update mecha-
nisms to enhance detection accuracy.

3) Distributed attack detection and IP traffic monitoring.

4)  Aggregation and feedback loops are used to refine the
detection process continuously.

This model leverages a network of specialised units to offer
a robust, scalable, and adaptive solution to cloud security chal-
lenges. Its collaborative nature enables the effective detection
of coordinated attacks, such as DDoS, while reducing false
positives and resource wastage.

E. Organization of the Paper
The remainder of this paper is organized as follows:

Section II: A comprehensive review of related work, estab-
lishing the context for the proposed research.

Section III: A detailed presentation of the proposed col-
laborative intrusion detection model, including its architecture
and functionalities.

Section IV: Description of the datasets and experimental
setup used to evaluate the model.

Section V: Results and analysis, highlighting the model’s
effectiveness in addressing the identified challenges.

Section VI: Conclusion and future research directions, sum-
marizing this work’s contributions and potential extensions.

By addressing the gaps above, this research aims to en-
hance the security and resilience of cloud computing environ-
ments, fostering trust and enabling broader adoption of this
transformative technology.

II. RELATED WORKS

Within the IDM context, collaboration refers to the cooper-
ation and communication among multiple IDM nodes or agents
across different sub-networks and/or hosts. These nodes share
information to detect anomalies such as coordinated attacks or
Distributed Denial of Service (DDoS) attacks. A collaborative
IDM has the potential to detect attacks dispersed over several
hosts or networks by aggregating evidence across these sub-
networks. To address the issue of coordinated attacks like
DDoS, existing work in cloud IDM can be categorized into
signature-based, anomaly detection, and hybrid techniques.

Several researcher teams have employed signature-based
techniques for collaborative cloud IDM, such as [12] and[13].
In their approach, each region in the collaborative cloud has
an IDM deployed, which interacts with others by sharing alert
information aimed to mitigate the impact of DDoS attacks. For
instance, the framework implemented by these aforementioned
researchers uses Snort-based IDM with three plug-in modules:
block, communication, and cooperation. Detection agents col-
late and correlate alerts to assess their accuracy through a
majority vote model to enhance faulty local assessments. Once
an alert is accepted, a new blocking rule is added to the block
table. However, this approach can only detect known attacks
due to its reliance on signature-based methods. Similarly, [14]
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proposed a multi-threaded distributed cloud IDM for detecting
DDoS attacks, comprising modules for capture and queue,
analysis, and reporting. Their experimental tests in a .NET
simulator demonstrated the model’s ability to identify and drop
bad packets. Still, it remains limited to known attack signatures
and is ineffective against zero-day attacks.

Anomaly detection approaches have also been explored by
researchers such as [9], whom have proposed a distributed
IDM for cloud computing using a data mining approach. In
their technique, network traffic is collected from edge routers
and forwarded to anomaly detection devices using a Naive
Bayes classifier, with further classification by a Random Forest
classifier at a central server. The author in [15] proposed
a statistical and distributed network packet filtering model
against DDoS attacks involving a coordinator that distributes
detection tasks among various virtual machines. The author in
[16] utilized Neural Networks and the Bat algorithm in their
distributed IDM, while [17] employed the artificial Bee Colony
algorithm and neural networks. The author in [18] developed
an egress detection model using Principal Component Analysis
(PCA) to protect cloud environments from DDoS attacks, with
monitoring probes in each hypervisor and a hierarchical node
structure for decision-making. However, the anomaly detection
approach often leads to high false alarms, as [19] and [20]
noted.

The hybrid approach combines anomaly detection and
signature-based techniques [21], [22]. They proposed a hybrid
and collaborative IDM that uses Snort for predefined attacks
and a decision tree classifier with SVM for distributed attacks
[23]. This research paper proposes a hybrid machine learning
technique combining the Extreme Learning Machine (ELM)
model with the black hole optimization algorithm for DDoS
attack detection in cloud computing. However, they also inherit
certain limitations, including the challenge of high false alarms
and the reliance on known signatures for some detection.

In addition, existing research proposes a distributed
anomaly detection system using Gaussian Mixture-based Cor-
rentropy (i.e. an adaptive neurotechnology that measures sim-
ilarity, normally utilized in statistical signal processing and is
based on second order moments) to identify zero-day attacks
at the edge of networks [24]. While demonstrating effective
performance on specific datasets, this approach lacks adapt-
ability and collaboration, which are crucial for dynamic cloud
environments. [25] employs distributed machine learning with
ensemble techniques and concept drift handling for intrusion
detection. While achieving high accuracy, the approach needs
to have the collaborative and adaptive capabilities to strengthen
a Cloud Anomaly Intrusion Detection Model (CAIDM), to
strengthen their effectiveness in dynamic and distributed envi-
ronments. In contrast, our proposed CAIDM addresses these
limitations and demonstrates its effectiveness by incorporating
adaptive and collaborative features.

To address these limitations, this paper proposes a collab-
orative intrusion detection model for cloud computing using
the Pruned Exact Linear Time (PELT) change point detection
algorithm. This approach aims to optimize the timing for ex-
changing attack information among nodes in the collaborative
IDM and, as shown below, enhancing the model’s effectiveness
and reducing false alarms.
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III. PROPOSED ENHANCED COLLABORATION AND
ADAPTIVE CLOUD ANOMALY INTRUSION DETECTION
MODEL

The Enhancing Collaboration and Adaptive Cloud
Anomaly Intrusion Detection Model (EC-A-CAIDM)
orchestrates a multifaceted defense against cyber threats.
This cooperative model comprises seven specialized units: 1)
feature selection using hybrid Harmony Search Optimization
and a Symmetrical Uncertainty Filter (HSO-SUF)-based
feature selection for selecting the most relevant features in
the dataset, ii) change point detection utilizing Pruned Exact
Linear Time (PELT), iii) collaborative classifier training and
update, iv) distributed attack detection, v) IP address traffic
monitoring, vi) aggregation, and vii) feedback. These units
operate in a synchronized three-phase choreography: training,
testing, and retraining/updating.

The core of the cooperative training phase lies within
the collaborative classifier training and update unit. It or-
chestrates a distributed training process employing the GBM-
SVM classifier within the Apache Spark framework [Gradient
Boosting Machine (GBM), Support Vector Machine (SVM)].
Worker nodes individually refine their Local Normal Reference
Models (LNRMs) on designated data partitions [i.e. Resilient
Distributed Datasets (RDDs) as identified commonly] within
the distributed dataset, akin to independent learning modules.
These localized models capture patterns of normalcy specific
to each node’s domain. The head node, acting as a central
coordinator and responsible for aggregating and analyzing
the LNRMs, harmonizes these LNRMs into a unified Global
Normal Reference Model (GNRM), reflecting the collective
picture of normalcy across the network. The testing or de-
tection phase translates this learned normalcy into real-time
vigilance. Change point detection algorithms meticulously
monitor data streams for abrupt shifts, while the distributed
attack detection unit leverages the LNRMs to identify local
anomalies. Exceeding a predefined threshold triggers an alert,
prompting the unit to forward its LNRM to the head node
for further analysis. However, the material sentinel of this
phase is the IP address traffic monitoring unit acting as a
watchful sentinel, tracking destination IP volume. The IP
volume provides valuable insight about deviations suggestive
of potential DDoS attacks, ensuring a model’s comprehensive
coverage by our proposed model (EC-A-CAIDM).

The final phase, retraining and updating, ensures the model
continuously evolves. The aggregation unit seamlessly in-
tegrates LNRMs from all detection units into the GNRM,
keeping the unit in tune with the dynamic network landscape.
However, the real star of this phase is the feedback unit. It
plays a crucial role toward extracting insights from detected
intrusions and anomalies and feeding them into the collabora-
tive training phase. This continuous feedback loop is essential
to the model’s success, enhancing future detection accuracy
and ensuring it maintains its’ edge (i.e. dominance) in the
ever-changing cybersecurity landscape, where normally, the at-
tackers maintain an edge that utilizes intelligent maneuverings
and diversion.

Fig. 1 and 2 provide an in-depth understanding of the intri-
cate design of the EC-A-CAIDM, while Algorithm 1 presents
the pseudocode of the proposed EC-A-CAIDM. Together, Fig.
1, Fig. 2 illustrate the operational flow, showcasing novel func-
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tionalities with dashed lines. A detailed exploration of each
unit and its contribution to the overall security framework is
presented in the subsequent sections, offering a comprehensive
insight into the model’s orchestration.

IV. THE EC-A-CAIDM TRAINING PHASE

The training phase of the Enhancing and Adaptive Col-
laboration Cloud Intrusion Detection Model (EC-A-CAIDM)
lays the crucial groundwork for its exceptional effectiveness
and precision. Three vital units orchestrate this phase: feature
selection, collaborative classifier training, and IP address traffic
monitoring. Each unit plays a distinct yet pivotal role in
shaping EC-A-CAIDM’s capabilities, forming the foundation
upon which collaborative detection thrives.

A. Feature Selection Unit

The proposed Enhanced Collaborative and Adaptive Cloud
Anomaly Intrusion Detection Model (EC-A-CAIDM) incor-
porates a crucial feature selection unit utilizing a hybrid
approach combining Harmony Search Optimization (HSO)
and Symmetrical Uncertainty Filter (SUF). Feature selection
(FS) is essential in machine learning, particularly for intrusion
detection models (IDMs). FS helps improve a machine learning
based models’ efficiency and accuracy by removing irrelevant
or noisy data attributes that impede detection capabilities [26],
[27].

The HSO algorithm plays a pivotal role for the steps
defined in this process. HSO, introduced by [28], is a meta-
heuristic optimization technique inspired by musical improvi-
sation. Like musicians whom collaborate to create harmony,
HSO explores the search space to identify the optimal combi-
nation of features that best distinguish normal from abnormal
network traffic in the cloud environment. This approach is
particularly well-suited for feature selection as it efficiently
finds good-to-excellent solutions within a complex search
space, even though they likely differ from the absolute best
(unlike some heuristic methods) [29].

These steps encompass the essence of the HS algorithm’s
operation, making it a compelling choice for feature selection
in this study:

e Step 1: Initialization: The population of candidate
solutions representing feature subsets is initialized.

e  Step 2: Harmony Memory Consideration: A memory
stores the best solutions, guiding the search towards
favourable feature combinations.

e Step 3: Harmony Construction: New harmonies are
constructed by blending existing solutions with ran-
dom adjustments, fostering diversity.

e  Step 4: Evaluation and Update: The fitness of each
harmony is evaluated, and the memory is updated with
superior solutions to preserve high-quality features.

e  Step 5: Termination Criteria: The search continues un-
til a predefined criterion is met, ensuring convergence
to an optimal or near-optimal feature subset.

The HSO-SUF combination further enhances the feature
selection process. While HSO efficiently explores the feature
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Fig. 1. The process for the adaptive and collaborative cloud intrusion detection model.
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Fig. 2. Framework for an adaptive and collaborative cloud intrusion detection model with enhanced performance.

space, the SUF filter provides a mechanism to evaluate the
relevance of each feature to the intrusion detection task. This
two-pronged approach ensures that the selected features are
diverse and demonstrably informative for anomaly detection.
Our previous work [30] delves deeper into HSO for feature
selection. By integrating HSO and SUF, our feature selection
unit aims to optimize model performance by selecting features
that significantly contribute to anomaly detection while miti-
gating the impact of noise and irrelevant data. This HSO-SUF
combination forms a critical component of our comprehensive
evaluation, demonstrating the effectiveness of HSO-SUF in
addressing the unique challenges posed by cloud intrusion
detection.

Therefore, the impact of Feature Selection in the process
is an efficient HSO-SUF FS-filter that reduces the dataset’s
dimensionality, leading to a more manageable and computa-
tionally efficient intrusion detection model. This efficient ap-
proach, by focusing on relevant features, improves the model’s
accuracy in identifying anomalous network traffic, providing
reassurance of its effectiveness.

Pheromone updating is based on the fitness function (v')
as depicted in Eq. (1). The feature subset discovered by the
Harmony Search is denoted as X*. The quality of the subset

X' and its size | X?| are measured using the evaluation metrics
employed in the proposed HSO-SUF Model, namely Accuracy,
Detection Rate (Precision), False Positive Rate and Sensitivity,
as highlighted in Eq. (2), (3), (4) and (5). The Random Forest
classifier is used to calculate metrics such as False Positives
(F'P), False Negatives (F'N), and True Positives (1'P), where
F'P represents the false positive rate, F'N represents the false-
negative rate, and T'P represents the true positive rate [31].

_ Sensitivity (X*) + Precision (X7)

/

1 X7 .
Accuracy = (TP +(§£ i ijl\;)—k FN) * 100 2)
Precision = Tszi—iPFP (3)

False Positive Rate = Fff—‘&-ipTN )
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Algorithm 1 Collaborative and Adaptive Cloud Anomaly Intrusion Detection Model

Require: X, Y: Network traffic training and test data

Ensure: Sbest: Optimal feature set, 7: Change point positions, m: Number of change points, i7: Interval between successive change points, c¢: Classification

output normal or intrusion
: (Feature Selection)
: Input network traffic data X, Y.
: Select optimal features Sbest.
: (Collaborative Classifier Training and Update)

: Initialize model parameters.

O 001N W LN —

: (Change point Detection)

10: Detect the position of the change in data using PELT.
11: if change point 7 is detected then

12: Count the number of change points m.

13: Determine the average interval between successive change points, pi7.

14: For GBM-SVM, use pi7 as the classification model update period.
15: end if

16: (Destination-IP Traffic Monitoring)

17: Monitor network traffic for change patterns using the PELT algorithm.

: Input training data X, Y from datastore and split data among various nodes.

: Detection units build Local Normal Reference Model (LNRM) m; in parallel using GBM-SVM on each computing node.
: Update Local Normal Reference Model using pi7 as the frequency of the update period.

18: Using the Pruned Exact Linear Time (PELT) technique, monitor the volume of destination-IP traffic from the same host.

19: if Destination-IP amounts of traffic from the same host ; Threshold then

20: Send LNRM from detection units to the aggregation unit.
21: end if
22: (Collaborative Detection Phase)

23: for all detection units using X, Y samples on the LNRM to detect attacks do

24: Send Local Normal Reference Models (LNRMs) to the aggregation unit.
25: Aggregate LNRM m; from all detection units by computing the average of the LNRM M = i Z

26: Return M.

" om
z=1"""

27: Classify network traffic as normal or malicious.
28: end for
TP
Sensitivity = ————— 5
YT TP+ FN ©)

B. Collaborative Classifier Training and Update Unit

This core unit orchestrates a distributed learning ballet, col-
laboratively training the GBM-SVM classification algorithm
on the designated dataset. This collaborative approach allows
the classifier model to dynamically adapt to evolving data
patterns, ensuring its ongoing relevance and effectiveness. EC-
A-CAIDM leverages the Python Apache Spark framework,
renowned for efficiently handling distributed data process-
ing tasks [32], [33]. To facilitate this distributed learning,
the dataset is partitioned into Resilient Distributed Datasets
(RDDs), distributed across a dedicated cluster comprising a
head node and six worker nodes. The head node acts as
the central conductor, orchestrating the collaborative efforts
of the worker nodes, designated as detection units. These
nodes simultaneously engage in GBM-SVM classifier training,
generating their own Local Normal Reference Model (LNRM).
These LNRMs capture patterns of normalcy within each node’s
designated data partition, providing localized insights for
subsequent detection. This collaborative approach harnesses
the computational power of distributed nodes, dramatically
increasing efficiency and enhancing EC-A-CAIDM’s overall
detection capabilities.

Implementing the Collaborative Classifier training pro-
cess involves partitioning datasets into Resilient Distributed
Datasets (RDDs), facilitating parallelized processing by dis-
tributing data objects across clusters. This collaborative ap-
proach, characterized by seamless coordination among dis-
tributed nodes, maximizes computational efficiency, signifi-

cantly enhancing the model’s capability for effective intrusion
detection. Moreover, the Gradient Boosting Machine (GBM)
has been effectively combined with various machine learn-
ing algorithms such as Adaline, K-means, Perceptron, and
Support Vector Machine (SVM) for online training [34]. In
scenarios where training samples are provided sequentially,
GBM processes each data sample individually, updating the
model’s weights accordingly [35]. The incremental nature of
GBM'’s parameter updates for the Reference Model is a key
feature that offers several advantages, including adaptability
and suitability for dynamic Models that evolve over time or
in scenarios where data distribution is not static [36]. Given
that adaptability to the dynamic cloud environment is a crucial
requirement for cloud Intrusion Detection Models (IDm) [37],
this research and development effort employs GBM to achieve
an adaptive Intrusion Detection Model (IDM).

Each example z in the learning task in a supervised learning
context consists of a pair of instances z,y with z an arbitrary
input and y an associated output. The learning process involves
considering a loss function (g, y) that quantifies the cost of
prediction g errors compared to y actual outputs. This loss
function plays a crucial role in the learning process, as it guides
the selection of a family F of functions f,, () with parameters
w, represented as a weight vector, and the search function
f € F. The objective is to find the function that minimizes
the average loss across all examples, as Eq. (6) describes.
The training (Reference Model) performance is evaluated using
empirical risk, as shown in Eq. (7). This empirical risk E,, (f)
measures how well the model performs on the training data.
The SVM (hinge loss) is employed as the loss function [34],
as illustrated in Eq. (8). GBM builds a Reference Model for
classification by minimizing empirical risk E,, (f,,) after each
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iteration (¢) and updating it based on a single occurrence z;
using Eq. (9).

Q) = 1(ful®), ) ©
Bu () = iiufw (@) w0 @
[(g,y) = max(0,1 — gy) (8)
Wi = w— 1@zt w) ©

C. IP Traffic Monitoring Unit

The focus on destination IP analysis stems from the ob-
served surge in destination IPs from the same host during
DDoS attacks [38], analyzing the mean values of destination
IP addresses during normal periods. The meticulously designed
training phase of EC-A-CAIDM lays the groundwork for its
collaborative detection prowess. By harnessing the power of
feature selection, distributed classifier training, and IP traffic
monitoring, EC-A-CAIDM equips itself with the essential
insights and models required for accurate and efficient anomaly
detection in the intricate and diverse landscape of cloud
computing.

In the PELT algorithm, detecting a single change point
can be posed as a hypothesis test. The null hypothesis H
corresponds to no change point (m = 0), and the alternate
hypothesis H; is a single change point (m = 1). A test statistic
is constructed to decide whether a change has occurred. The
likelihood ratio-based approach is used to test the hypothesis,
which requires the calculation of maximum log-likelihood
under both the null and alternate hypotheses. For the null hy-
pothesis, the maximum log-likelihood is log P(y1.,|6), where
P(y1:n) is the probability density function associated with the
data distribution, and 6 is the maximum likelihood estimate
of the parameter [39]. The maximum likelihood under the
alternate hypothesis is maxy, ML(T7), where the maximum
is taken over all possible change points, as shown in Eq. 10.

A =2 | maxML(T1) — log P <y1m | é)} (10)

The test requires selecting a threshold C so that the null
hypothesis A is rejected if A exceeds C'. To identify multiple
change points, the likelihood test statistic can be expanded to
find the maximum of ML(7}.,,) across all possible combina-
tions of T1.,, as shown in Eq. 11.

m—+1
ML (Tim) = Y [C (Yeis+1yy)] + Bf(m) (1)

i=1

The cost function C' represents a segment’s cost, and
By(m) serves as a penalty to prevent overfitting. The negative
log-likelihood is commonly used as the cost function, while
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DstIPCount

Data Samples

Fig. 3. Mean destination host count during normal periods in the NSL-KDD
dataset.

Akaike’s Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) are popular choices for the penalty [39]

The threshold for sending the Local Normal Reference
Model (LNRM) to the aggregation unit was determined ex-
perimentally by examining the mean value of the destination-
host-count (the number of network connections to the same
destination host) for normal data instances using samples from
the NSL-KDD dataset.

In Fig. 3, the red horizontal line indicates the mean value
of the destination-host count during normal periods, which is
approximately 1.0. Thus, the threshold for the normal period
was set at 1.0. Thus, by integrating these advanced techniques,
EC-A-CAIDM enhances its ability to detect and respond
to anomalies, providing robust security for cloud computing
environments.

V. THE EC-A-CAIDM TESTING PHASE

The testing phase of EC-A-CAIDM seamlessly unites three
core units i) change point detection, ii) distributed attack
detection, and iii) aggregation—to create a symphony of
collaborative threat identification and response. This phase
rigorously evaluates the model’s ability to accurately detect
and address anomalies in network traffic data, with each unit
playing a distinct yet complementary role in bolstering overall
reliability.

A. Change Point Detection (CPD) Unit

The change point detection unit, our Model’s watchful
sentinel, meticulously monitors network traffic data for devia-
tions that indicate potential intrusions or anomalies. The DAD
unit vigilantly watches to identify change points within the
datasets, providing crucial insights for determining an optimal
frequency for updating the IDM reference model. This unit is
essential to guarantee prompt and accurate threat identification
by detecting subtle shifts in data patterns, enabling EC-A-
CAIDM to adapt to evolving threats proactively.

B. Distributed Attack Detection (DAD) Unit

This unit acts as the heart of the EC-A-CAIDM model
during the detection phase, conducting parallel intrusion de-
tection on test data using the LNRMs generated during the
distributed training phase. The DAD unit dynamically adjusts
the transmission of LNRMs to the aggregation unit (head node)
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based on a carefully determined threshold established through
empirical observations of traffic patterns—specifically, changes
in mean traffic volume from the same host, as detailed in the
traffic monitoring unit.

Apache Spark’s shared variables, known as accumulators,
facilitate seamless communication between detection units
(agent nodes) and the aggregation unit, enabling cohesive
assessment of the intrusion detection process. Additionally,
EC-A-CAIDM employs a synchronized approach to optimize
computational resources and response times. The transmission
of results is meticulously coordinated using the mini-batch
parameter of GBM-SVM, ensuring alignment with periods
of heightened destination-IP volume indicative of potential
threats.

C. Aggregation Unit (AU)

In this final stage of the detection phase, the aggregation
unit acts as a central conductor, synthesizing individual insights
into a comprehensive global perspective. The AU collects,
amalgamates, and consolidates the Local Normal Reference
Models (LNRMs) contributed by participating detection nodes
using Eq. (6) through (9), forming a robust Global Normal
Reference Model (GNRM) as shown in Eq. (12). This collab-
orative approach is fundamental to the core objectives of our
model. By drawing upon the collective strengths of each node’s
unique perspective, the AU empowers EC-A-CAIDM to effec-
tively detect anomalies and adapt to evolving threat landscapes,
ultimately enhancing its overall performance and adaptability.
The detection phase of EC-A-CAIDM showcases the power
of collaborative intelligence needed for effective intrusion
detection. EC-A-CAIDM demonstrates its ability to recognize
and address risks efficiently in a dynamic and distributed
cloud environment by carefully coordinating i) change point
detection, ii) distributed attack detection, and iii) aggregation.
This process, as elucidated by [40], is fundamental to the core
objectives of our collaborative model.

M =

| =

k
> mi (12)
i=1

VI. THE EC-A-CAIDM RETRAINING AND UPDATING
PHASE

The final phase of the Enhancing Adaptive and Col-
laborative (EC-A-CAIDM) model, retraining and updating,
constitutes the driving force of its continuous evolution and
adaptation to the ever-evolving threat landscape. This phase
is governed by the Feedback unit, which acts as the Model’s
learning engine, enabling it to continuously refine its capabil-
ities through insights extracted from real-time and historical
data.

A. Feedback Unit

In an adaptive and collaborative intrusion detection model,
the role of feedback mechanisms is paramount. These mecha-
nisms gather crucial information from detected intrusions and
anomalies, providing valuable fuel for model improvement.
Upon detecting an event, the feedback model meticulously
captures relevant data, including the nature of the threat,
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its specific characteristics, and the model’s response. This
rich data reservoir is then analyzed and processed to extract
valuable insights and patterns. These extracted insights are
subsequently fed into the training phase, serving as an essential
input for the adaptive refinement of intrusion detection models.

This iterative feedback loop forms the cornerstone of the
model’s continuous learning and improvement. By incorporat-
ing experiences into its training arsenal, EC-A-CAIDM con-
tinuously updates its detection algorithms, fine-tunes decision-
making processes, and expands its knowledge base on potential
threats. This continuous evolution empowers the Model to
consistently improve its accuracy in identifying and mitigating
diverse intrusion attempts, ultimately enhancing its resilience
against the ever-shifting threat landscape in dynamic cloud
environments. Now, lets consider the combining of elements
in the above Eq. (12) for the feedback unit, which adjusts
the model continuously based on feedback from detected
anomalies. The process can be summarized as shown in Eq.
(13):

1 n
Wiyl = W — V¢V (n ;maX(Oa 1~ fu, (ch)yz)) (13)

Here, ~; represents the learning rate at time ¢, and V,,
denotes the gradient with respect to the weight vector w.
This equation ensures that the model weights are updated
continuously based on the feedback from detected anomalies,
thereby improving the model’s performance over time.

VII. DATASET

The NSL-KDD benchmark dataset has been selected to
evaluate the proposed Enhanced Adaptive and Collaborative
Cloud Intrusion Detection Model (EC-A-CAIDM) due to its
widespread acceptance in the research community. Despite
being derived from the KDD-Cup 99 dataset and its potential
limitations in representing real-world cloud intrusions, NSL-
KDD offers a diverse and labelled network traffic data set that
includes both normal and malicious activities. This dataset
provides a standardized evaluation platform and aligns with
standard research practices, reassuring the readers about the
research’s validity and reliability [41] and comparability.

The NSL-KDD dataset, with its realism and diversity of at-
tack types, provides a robust tool for assessing intrusion detec-
tion models in both traditional networks and cloud computing
environments. This dataset comprises 41 features with labels,
including instances from KDD-Cup 99 and introduces some
new attacks into the test set. The dataset includes categories
such as DoS, Probe, User to Root (U2R), and Remote to Local
(R2L), with detailed class distributions in the training and
test sets. These comprehensive features enable a thorough and
rigorous evaluation of the EC-A-CAIDM, instilling confidence
in the research’s methodology and results [42].

For a detailed breakdown of the dataset’s composition, refer
to Table I and Table II.

www.ijacsa.thesai.org

949 |[Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE 1. DISTRIBUTION OF INSTANCES IN THE TRAINING AND TESTING
NSL-KDD DATASET

Class Training Testing
Normal 67,343 9711

DoS 45,927 7460

Probe 11,656 2421

R2L 995 2885

U2R 52 67

Total 125,973 22,544
VIII. RESULTS

Evaluating the Enhanced Adaptive and Collaborative Cloud
Intrusion Detection Model (EC-A-CAIDM) is a practical as-
sessment of the proposed model’s real-world application. We’ll
explore its performance across the following key areas:

A. Feature Selection

Examines the effectiveness of the Hybrid Feature Selection
(HSO-SUF) technique, which leverages Harmony Search Opti-
mization and a Symmetrical Uncertainty Filter, for identifying
the most relevant features for intrusion detection within the
cloud environment. The feature selection process identified a
refined set of 13 features from the original 41 features within
the NSL-KDD dataset. This selection process plays a crucial
role in improving the efficiency and accuracy of the intrusion
detection model. In particular, these 13 features are the key
to validating our improved model. The features are Network
Traffic Characteristics: Service, flag, src-bytes, and dst-bytes.
Connection Details: logged-in, count. Error Rates: error-count,
dst-host-serror-rate, dst-host-srv-serror-rate. Traffic Patterns:
same-srv-rate, diff-srv-rate, dst-host-srv-count, dst-host-same-
srv-rate.

B. IP Traffic Monitoring Unit

We evaluate the performance of the PELT change point
detection algorithm employed by the IP Traffic Monitoring
Unit. This analysis focuses on its ability to detect anomalies in
destination IP traffic patterns. The IP Traffic Monitoring Unit,
with the crucial assistance of the PELT change point detection
algorithm, identifies significant changes in the mean volume
of traffic directed towards specific destination IPs originating
from the same source. This analysis, driven by the PELT al-
gorithm, is key in determining when to trigger the aggregation
of Local Normal Reference Models (LNRMs) from various
detection units. As illustrated in Fig. 4, the destination host
count surpasses the pre-defined normal threshold established
during the destination-IP monitoring phase. This significant
threshold violation between the 1000th and 2300th instances
in the data demands immediate action. Consequently, during
this specific period, the detection units will send their LNRMs
to the aggregation unit for further processing.
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DstIPCount

Data Samples

Fig. 4. Mean destination host count during Smurf DDoS attacks from
NSL-KDD.

IX. DISCUSSION

The results of the proposed Enhanced Collaborative and
Adaptive Cloud Anomaly Intrusion Detection Model (EC-
A-CAIDM) demonstrate significant improvements in perfor-
mance metrics, as shown in Table III. The EC-A-CAIDM
achieved an impressive accuracy of 100%, a detection rate of
99.99%, and a false positive rate of 0.01%. This 100% accu-
racy is a significant achievement, indicating that the model is
highly effective in identifying and mitigating such intrusions in
cloud environments. It is important to note, that this accuracy
was achieved on a comprehensive and diverse dataset, ensuring
that the model does not over fit a specific set of data.

Comparative analysis with existing collaborative anomaly
intrusion detection models (AIDMs) highlights the superior
performance of EC-A-CAIDM. For instance, the Distributed
Collaborative Intrusion Detection System (D-CIDS) achieved
a notable accuracy of 99.6%, a detection rate of 99.7%, and
a false positive rate of 0.03%. While D-CIDS shows strong
performance, EC-A-CAIDM outperforms the D-CIDS across
all metrics, emphasizing its enhanced detection capabilities and
lower false positive rate.

Similarly, the Hybrid Detection Classifier (HDC) proposed
by [8], combining KNN and SVM, achieved an accuracy of
99.85%, a detection rate of 99.78%, and a false positive rate
of 0.09%. Despite the effectiveness of HDC, EC-A-CAIDM’s
results are superior, indicating a more precise and reliable
detection mechanism.

The Distributed Anomaly Detection (DAD) system, which
utilizes Gaussian Mixture-based Correntropy, demonstrated
high performance with an accuracy of 99.9%, a detection rate
of 99.92%, and a false positive rate of 0.11%. Although DAD
is highly effective, EC-A-CAIDM still provides better accuracy
and a significantly lower false positive rate, making it a more
effective choice for cloud anomaly detection.

Lastly, the Distributed Anomaly Detection using the En-
semble Hybrid (DADEH) technique achieved an accuracy of
93%, a detection rate of 99%, and a false positive rate of
0.3%. The notable performance gap between DADEH and
EC-A-CAIDM further highlights the latter’s advancements in
accuracy and false positive reduction.

The EC-A-CAIDM’s novel approach to determining the
optimal timing for sharing attack information among nodes
in the collaborative AIDM has contributed to its enhanced
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TABLE II. NSL-KDD DATASET FEATURES

Feature number Description Type Feature Description Type
number

1 duration Numeric 22 is_guest_login Numeric
2 protocol_type Symbolic 23 count Numeric
3 service Symbolic 24 srv_count Numeric
4 flag Symbolic 25 Serror_count Numeric
5 src_bytes Numeric 26 SI'V_Serror_rate Numeric
6 dst_bytes Numeric 27 rerror_rate Numeric
7 land Numeric 28 SI'V_error_rate Numeric
8 wrong_fragment Numeric 29 same_srv_rate Numeric
9 urgent Numeric 30 diff_srv_rate Numeric
10 hot Numeric 31 srv_diff_host_rate Numeric
11 num_failed_login Numeric 32 dst_host_count Numeric
12 logged_in Numeric 33 dst_host_srv_count Numeric
13 num_compromised Numeric 34 dst_host_same_srv_rate Numeric
14 root_shell Numeric 35 dst_host_diff_srv_rate Numeric
15 su_attempted Numeric 36 dst_host_same_srv_host_rate Numeric
16 num_root Numeric 37 dst_host_srv_diff_host_rate Numeric
17 num_file_creation Numeric 38 dst_host_serror_rate Numeric
18 num_shell Numeric 39 dst_host_srv_serror_rate Numeric
19 num_access_file Numeric 40 dst_host_rerror_rate Numeric
20 num_out_of_bound_cmd Numeric 41 dst_host_srv_rerror Numeric
21 is_hot_login Numeric

performance. By effectively synchronizing attack information
dissemination and employing adaptive learning techniques,
the model achieves higher accuracy and detection rates and
significantly reduces the occurrence of false positives. This
adaptive and collaborative approach ensures that the model
remains robust against evolving threats and maintains high
performance in diverse cloud environments, reassuring the
audience.

In conclusion, the EC-A-CAIDM sets a new benchmark
and standard in cloud anomaly intrusion detection by achieving
outstanding performance metrics. Compared to existing mod-
els, its superior accuracy, detection rate, and low false positive
rate underscore its potential as a highly effective solution for
ensuring the security of cloud-based systems. The efficiency
of EC-A-CAIDM is sure to impress all stakeholders.

The data in Table III and Fig. 5, 6 and 7 unequivocally
demonstrate that EC-A-CAIDM outperforms these existing
models regarding accuracy, detection rate, and false positive
rate. Additionally, EC-A-CAIDM has a lower detection time
in seconds compared to CAIDM. The superior performance of
the EC-A-CAIDM can be attributed to the effective strategy in
determining the optimal timing for sharing attack information
among nodes in the collaborative IDM. One of the critical
challenges in collaborative IDMs is deciding when to share
attack information among detection units to minimize the rate
of false alarms that can result from inappropriate timing. EC-
A-CAIDM successfully addresses this challenge, leading to the
aforementioned enhanced performance.

X. CONCLUSION

This paper introduced the Enhanced Collaborative and
Adaptive Cloud Anomaly Intrusion Detection Model (EC-A-
CAIDM), a pioneering approach crafted to combat the escalat-
ing threat of sophisticated attacks in cloud environments. EC-
A-CAIDM operates on a distributed architecture with seven
specialized units, including feature selection, collaborative
classification, IP traffic monitoring, change point detection,
distributed attack detection, aggregation units, and a feedback

mechanism for continuous learning. The core strength of EC-
A-CAIDM lies in its strategic sharing of attack information
among detection units, guided by the PELT change point
detection algorithm, which effectively mitigates the challenge
of false alarms prevalent in collaborative intrusion detection
models. Its comprehensive evaluation using the NSL-KDD
dataset demonstrates superior accuracy, detection rate, and very
low false positive rate compared to existing models, instilling
confidence in its effectiveness. However, the model’s reliance
on predefined feature sets may limit its adaptability to zero-
day attacks and advanced persistent threats (APTs), and its
computational complexity could pose challenges in highly
dynamic cloud environments. Future research should address
these limitations by exploring adaptive feature engineering
techniques, lightweight architectures for real-time process-
ing, and adversarial learning methods to enhance resilience.
Advancing these areas can further improve EC-A-CAIDM’s
robustness and scalability, contributing to the evolving field of
cloud security and intrusion detection.
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Fig. 5. Comparison of accuracy between the proposed EC-A-CAIDM vs.

D-CIDM and HDC (KNN + SVM)). Example legend text.
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TABLE III. COMPARISON ANALYSIS OF EC-A-CAIDM ON THE NSL-KDD DATASET WITH PREVIOUS WORK

Metrics EA-C-CIDS D-CIDS[43] HDC (KNN + DAD[24] DADEH[25]
SVM)[8]
Accuracy (%) 100 99.6 99.85 99.9 93
Detection Rate 99.99 99.7 99.78 99.92 99
(%)
False Positive Rate 0.01 0.03 0.09 0.11 0.3
(%)

100.2 [S] Y. Otoum and A. Nayak, “As-ids: Anomaly and signature based ids for
100 the internet of things,” Journal of Network and Systems Management,
998 vol. 29, no. 3, p. 23, 2021.

9 9'6 [6] W.Li, W. Meng, and L. F. Kwok, “Surveying trust-based collaborative

' intrusion detection: state-of-the-art, challenges and future directions,”

99.4 IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 280-
99.2 305, 2021.

99 [7]1 C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated

08.8 attacks and collaborative intrusion detection,” computers & security,

' vol. 29, no. 1, pp. 124-140, 2010.
98.6 . . . .
[8] K. Samunnisa, G. S. V. Kumar, and K. Madhavi, “Intrusion detection
984 . . system in distributed cloud computing: Hybrid clustering and classifi-
EA-C-CIDS ~ D-CIDS HES&ESN DAD DADEH cation methods,” Measurement: Sensors, vol. 25, p. 100612, 2023.
Techniaues [9] M. Idhammad, K. Afdel, and M. Belouch, “Distributed intrusion detec-
echniques

6. Comparison of detection rate between the proposed EC-A-CAIDM
vs. D-CIDM and HDC (KNN + SVM). Example legend text.
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Fig. 7. Comparison of false positive rate between the proposed

EC-A-CAIDM vs. D-CIDM and HDC (KNN + SVM)). Example legend text.
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