
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

Near-Optimal Traveling Salesman Solution with
Deep Attention

Natdanai Kafakthong, Krung Sinapiromsaran
Department of Mathematics and Computer Science, Chulalongkorn University, Bangkok, Thailand, 10330

Abstract—The Traveling Salesman Problem (TSP) is a well-
known problem in computer science that requires finding the
shortest possible route that visits every city exactly once. TSP
has broad applications in logistics, routing, and supply chain
management, where finding optimal or near-optimal solutions
efficiently can lead to substantial cost and time reductions.
However, traditional solvers rely on iterative processes that can
be computationally expensive and time-consuming for large-
scale instances. This research proposes a novel deep learning
architecture designed to predict optimal or near-optimal TSP
tours directly from the problem’s distance matrix, eliminating
the need for extensive iterations to save total solving time. The
proposed model leverages the attention mechanism to effectively
focus on the most relevant parts of the network, ensuring accurate
and efficient tour predictions. It has been tested on the TSPLIB
benchmark dataset and observed significant improvements in
both solution quality and computational speed compared to
traditional solvers such as Gurobi and Genetic Algorithm. This
method presents a scalable and efficient solution for large-scale
TSP instances, making it a promising approach for real-world
traveling salesman applications.

Keywords—Traveling salesman problem; deep learning; genetic
algorithm

I. INTRODUCTION

The Traveling Salesman Problem (TSP) [1] is a classic
combinatorial optimization problem that involves finding the
shortest possible tour for a salesman to visit a given set of
cities, exactly once. Each city is connected by a set of weighted
edges that represent the distances between cities, and the
objective is to minimize the total travel distance. Despite its
seemingly simple formulation, TSP is known to be NP-hard,
meaning the computational complexity grows exponentially
with the number of cities, making it extremely difficult to solve
for large instances within a reasonable time frame.

TSP has significant importance in both theoretical research
and practical applications. It serves as a benchmark for op-
timization techniques and has a wide range of real-world
uses, such as logistics, manufacturing, and routing problems.
Solving TSP efficiently can result in substantial cost savings
and improved resource management in industries that rely
on optimized routing and scheduling. Beyond its practical
implications, TSP also represents a fundamental challenge
in computational theory, driving the development of new
algorithms and techniques that have broader applications in
other complex optimization problems.

Several methods have been developed to solve TSP [1],
including exact algorithms and heuristics. Exact methods, such
as brute force, branch-and-bound, and dynamic programming,
attempt to find the optimal solution but they are compu-
tationally expensive and infeasible for large-scale problems

due to their exponential time complexity. On the other hand,
heuristic and metaheuristic approaches like genetic algorithms
(GA) [5], simulated annealing, and ant colony optimization [9]
offer approximate solutions by exploring the solution space
more efficiently without guaranteeing an optimal result. These
methods are often favored for large instances due to their
ability to provide good solutions within a reasonable time
frame. The effectiveness of these solvers is therefore highly
dependent on the initial solution or tour. A poor starting
solution can lead to long convergence times and suboptimal
solutions, while a good initial solution can significantly reduce
the number of iterations and improve the overall performance
of the solver.

A near-optimal initial solution can improve the perfor-
mance of traditional solvers by reducing the search space and
accelerating convergence. Deep learning models, trained on
problem data such as city distances, can predict a near-optimal
tour. However, these models may not always predict a valid
tour that meets the tour constraints. In such cases, the predicted
solution must be refined or corrected before it is passed to a
traditional solver.

This paper proposes a hybrid approach that uses deep
learning to predict an initial solution for TSP and introduces an
algorithm to reformulate this prediction into a valid tour. If the
predicted solution from the deep learning model is not a valid
tour, the tour correction algorithm adjusts it by ensuring that
each city is visited exactly once and the path forms a valid
loop. This refined initial solution is then fed into traditional
optimization methods, such as GA or Gurobi [23], significantly
reducing the time and iterations required to reach an optimal
or near-optimal solution. The key advantage of this approach is
that even if the predicted tour is not optimal tour, the generated
tour is not differ from the optimal tour too much.

This hybrid method offers a balance between speed and
accuracy. By leveraging deep learning to predict a strong initial
solution and correcting it as needed, the traditional solvers can
focus on fine-tuning, which reduces computational time and
allows for efficient optimization of large TSP instances.

A. Contributions

• This paper introduces an approach to reduce the com-
putational time of traditional TSP solvers by providing
a near-optimal tour as the starting solution, signifi-
cantly improving solver solution time.

• The proposed deep learning architecture, TSPNet,
utilizes an attention mechanism in the architecture to
handle combinatorial tasks in TSP.

www.ijacsa.thesai.org 954 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

• An algorithm is presented to convert the predicted
solution or tour from TSPNet, which may not always
be a valid tour, into a proper initial tour that satisfies
the TSP constraints.

• The effectiveness of TSPNet, combined with tradi-
tional solvers, is evaluated on the TSPLIB dataset [25],
demonstrating substantial reductions in computational
time.

The remainder of this paper is organized as follows. Section
II reviews related work on TSP solvers and deep learning
approaches. Section III introduces the mathematical notation
for the TSP. Section IV discusses traditional TSP solvers and
the use of deep learning models for predicting initial tours.
Section V details the methodology, including synthetic dataset
generation, TSPNet architecture, input preprocessing, training,
and the solving process. Section VI presents experimental
results on the TSPLIB dataset and evaluates the integration
of TSPNet with a Genetic Algorithm. Section VII discusses
findings, limitations, and future directions, and Section VIII
concludes the paper.

II. RELATED WORK

The Traveling Salesman Problem [1] is a well-known NP-
hard combinatorial optimization problem that seeks to deter-
mine the shortest possible route that visits a set of cities exactly
once and returns to the origin city. Recent advancements
in deep learning and reinforcement learning have provided
innovative approaches to tackle this complex problem. This
section will explore various methodologies, including neural
networks, genetic algorithms, and hybrid models that integrate
these techniques.

One significant approach to solving TSP involves the use
of deep reinforcement learning (DRL). DRL formalizes TSP
as a sequential decision-making problem, allowing an agent
to select the next city to visit at each step. This method
leverages the powerful generalization capabilities of deep
neural networks, yielding impressive results in solving TSP
instances [2], [3]. For instance, Bello et al. demonstrated the
effectiveness of a pointer network trained via reinforcement
learning, which significantly improved performance on TSP
tasks [2]. Additionally, the incorporation of evolutionary al-
gorithms with DRL has shown promise in multi-objective
optimization scenarios, further enhancing the solution quality
for TSP variants [3].

Another noteworthy methodology is the application of
Hopfield neural networks, which have been historically signifi-
cant in solving combinatorial optimization problems, including
TSP. The Hopfield network utilizes an energy function to find
optimal tours by minimizing the total travel distance [4]. This
approach has been validated through various studies, demon-
strating its capability to outperform traditional computational
methods in specific instances of the TSP [4]. Moreover, the
integration of chaotic neural networks has been proposed to
enhance the performance of Hopfield networks, providing a
novel perspective on TSP solutions [4].

Genetic algorithms (GAs) also play a crucial role in
addressing the TSP [5]. These algorithms mimic the process
of natural selection to iteratively improve solutions. Recent

studies have highlighted the effectiveness of hybrid genetic
algorithms that combine traditional GA techniques with neural
networks, leading to improved convergence rates and solution
quality for TSP [6], [7]. Furthermore, the application of
multi-colony ant systems and particle swarm optimization has
been explored as alternative heuristic methods for solving
TSP, showcasing the versatility of approaches available to
researchers [8], [9].

Recent studies have highlighted the effectiveness of deep
reinforcement learning (DRL) in developing heuristics for
TSP. For instance, Kool et al. introduced a method called
Deep Policy Dynamic Programming, which integrates machine
learning with dynamic programming to yield near-optimal
solutions for TSPs with up to 100 nodes, demonstrating
competitive performance against established solvers like LKH
[10]. Similarly, Perera et al. utilized pointer networks within a
multi-objective deep reinforcement learning framework, which
enabled the model to generalize from smaller TSP instances
to larger ones, achieving optimal solutions for TSPs with over
1000 cities [11]. These advancements illustrate the capacity
of deep learning models to learn and adapt heuristics that
can significantly improve solution quality and computational
efficiency.

Moreover, the integration of graph neural networks (GNNs)
has further enhanced the ability to solve TSP. GNNs can
effectively represent the problem as a graph, allowing for
the exploration of various routes and the optimization of
path selection through learned embeddings. This approach has
been shown to outperform traditional methods by providing
a more structured understanding of the problem space [12].
The ability of deep learning models to learn from data and
improve their performance over time is particularly beneficial
in combinatorial optimization, where the search space is vast
and complex [13].

In conclusion, the integration of deep learning, reinforce-
ment learning, and genetic algorithms has significantly ad-
vanced the methodologies available for solving the Traveling
Salesman Problem. These approaches not only enhance the
efficiency of finding optimal solutions but also expand the
applicability of TSP solutions to various real-world scenarios,
such as logistics and route planning. The ongoing research
in this field continues to evolve, promising even more so-
phisticated techniques for tackling this enduring challenge in
combinatorial optimization.

III. MATHEMATICAL NOTATION FOR THE TRAVELING
SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is an optimization
problem where a set of n cities must be visited exactly once,
and the goal is to find the shortest possible route that visits
each city and returns to the starting point. Mathematically, the
TSP can be modeled as an integer linear programming (ILP)
problem. To represent this mathematically, let G = (V,E) be
a complete graph where V is the set of cities, |V | = n, and
E is the set of edges. Each edge (i, j) ∈ E is associated with
a distance or cost dij . Define the binary decision variable xij

as follows,

xij =

{
1 if the tour visits city i and then city j,

0 otherwise.

www.ijacsa.thesai.org 955 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

The objective is to minimize the total travel cost or total tour
length, which can be written as,

minimize
n∑

i=1

n∑
j=1,j ̸=i

dijxij

subject to the following constraints.

1) Visit each city exactly once,
n∑

j=1,j ̸=i

xij = 1 ∀i = 1, 2, . . . , n.

This ensures that each city i is left exactly once.
2) Enter each city exactly once,

n∑
i=1,i̸=j

xij = 1 ∀j = 1, 2, . . . , n.

This ensures that each city j is entered exactly once.
3) Subtour elimination, to prevent smaller loops that

don’t include all cities (sub tours), the following
constraint is applied for all subsets S ⊂ V , where
|S| ≥ 2, ∑

i∈S

∑
j∈S,j ̸=i

xij ≤ |S| − 1.

This constraint ensures that the solution forms a
single tour that includes all cities.

The optimal solution to TSP is the assignment of xij

values (1 or 0) that minimize the total tour length while
satisfying the constraints that ensure a valid tour. However,
finding this optimal tour is computationally challenging due
to the combinatorial nature of the problem. As the number of
cities increases, the number of possible tours grows factorially,
making it impractical for an exact algorithm to solve large
instances within reasonable time limits.

In the context of solving TSP, a distance matrix plays a
fundamental role. The distance matrix D = [dij] is an n × n
matrix, where dij represents the distance or cost of traveling
from city i to city j. Mathematically, it is defined as,

D =

0 d12 d13 . . . d1n
d21 0 d23 . . . d2n
d31 d32 0 . . . d3n

...
...

...
. . .

...
dn1 dn2 dn3 . . . 0

 . (1)

The dii = 0 since there is no distance associated with
staying in the same city. This matrix forms the core input for
solving TSP, as it provides the necessary information about the
travel costs between every pair of cities.

IV. TSP SOLVERS

Traditional solvers for the Traveling Salesman Problem
(TSP) rely heavily on the distance matrix [15], [16], [17], a
fundamental representation that captures the pairwise distances
between cities. This matrix plays a central role in various
exact and heuristic algorithms, such as branch-and-bound [18],

[19], dynamic programming [20], and cutting-plane methods
[21], where it helps determine the shortest path between cities.
For example, in branch-and-bound algorithms, the distance
matrix is used to calculate lower bounds and prune non-optimal
tours efficiently. Similarly, heuristic algorithms like the nearest
neighbor or genetic algorithms use the matrix to guide their
search for near-optimal solutions by iteratively considering the
shortest available edges between cities.

The distance matrix provides essential information for
constructing and refining the solution to TSP, making it indis-
pensable for solving this combinatorial problem. Solvers like
Gurobi [23], Concorde [24], and others leverage the distance
matrix at each step of their optimization process, ensuring the
best possible path is found given the constraints.

In line with these solvers, our proposed deep learning
model also takes the distance matrix as an input. Instead of
manually optimizing over possible routes, our model learns to
predict the optimal tour from the structure of the distance ma-
trix itself. By incorporating attention mechanisms, the model
can effectively learn which city connections contribute most to
form the optimal solution. The use of a distance matrix thus
remains central, both in traditional algorithms and in modern
machine learning approaches for solving TSP.

A. Predicting the Optimal Tour Using a Deep Learning Model

The complexity of solving the traveling salesman problem
arises from the factorial growth in the number of possible tours
as the number of cities increases, making it computationally
challenging for exact algorithms to handle a large-scale in-
stance. As previously discussed, deep learning has emerged
as a promising approach for approximating optimal solutions
of TSP, offering a more efficient alternative to traditional
methods.

One innovative approach leverages deep learning models to
predict optimal sub-tours or the entire tour based on historical
data or synthetically generated datasets. In this framework,
TSP can be formulated by using a distance matrix D = [dij],
which encodes the pairwise distances between cities. The deep
learning model is trained to output a matrix of probabilities
P = [pij], where each element pij ∈ [0, 1] represents the like-
lihood of a connection between city i and city j appearing in
the optimal tour. This probability matrix serves as the predicted
adjacency matrix for TSP, with the highest probability in each
row corresponding to the city that is most likely connected to
city i in the optimal tour.

The model, denoted by fθ with parameters θ, processes the
distance matrix D and outputs the adjacency matrix P ,

fθ(D) = P =

p11 p12 . . . p1n
p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn

 . (2)

Each row of P represents a probability distribution over
all cities for the next destination from city i. To obtain the
predicted tour, the argmax function is applied to each row,
selecting the city with the highest probability, resulting in the
vector T of optimal adjacent cities,

www.ijacsa.thesai.org 956 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

Fig. 1. Overview of the TSPNet framework: (a) Training involves generating distance matrices from a log-normal distribution and corresponding optimal tours
to train the TSP model. (b) The trained model predicts a feasible tour, which is validated and can serve as an initial solution for traditional solvers.

T =

t1
t2
...
tn

 =

argmax{p11, p12, . . . , p1n}
argmax{p21, p22, . . . , p2n}

...
argmax{pn1, pn2, . . . , pnn}

 . (3)

In this representation, T contains the indices of cities
selected as the next steps in the predicted tour. The predicted
tour can then be reconstructed from T , forming a solution
to TSP. This approach allows the deep learning model to
approximate optimal solutions by learning patterns in city
connections from the distance matrix efficiently, even for large-
scale instances.

V. METHODOLOGY

This paper introduces TSPNet, a deep learning model
designed to predict the optimal tour for the traveling salesman
problem by learning the relationships between cities from
distance matrices. The methodology involves two key stages:
first, the training process of TSPNet, which includes generat-
ing synthetic training data, constructing input instances, and
defining optimal tour labels for the model. The architecture
of TSPNet is also detailed in a subsequent section. Second,
TSPNet’s predictions are extended to refine the solution using
traditional solvers like genetic algorithms. By using TSPNet’s
predicted tour as an initial solution, these solvers require fewer
iterations to reach an optimal or near-optimal solution. The
next subsection discusses the dataset generation process for
training TSPNet.

A. Synthetic TSP Training Dataset

TSP necessitates the generation of a distance matrix that
accurately represents the distances between cities. In this study,
a log-normal distribution is employed due to its capacity to
model positively skewed data, which is often observed in real-
world distance measurements.

A random variable X is said to be log-normally distributed
if its natural logarithm, Y = ln(X), follows a normal distri-
bution, that is

Y ∼ N (µ, σ2)

where µ is the mean and σ is the standard deviation of
the underlying normal distribution. Consequently, X can be
expressed as

X = eY =⇒ X ∼ Log-Normal(µ, σ2).

This property ensures that the generated distances D are
strictly positive, satisfying the non-negativity constraint re-
quired for distance metrics. A list of the distributions used
to generate the training distances is shown in Fig. 2.

The figure presents the parameters used to generate various
cases of log-normal distributions. This diversity allows the
model to encounter different patterns of distances, enhanc-
ing its generalization ability and efficiency. Normally, input
instances of deep learning will be normalized by min-max
normalization before passing into the deep learning model.
They are scaled into [0, 1] then the training data of TSPNet
will focus on generating training data in the range [0, 1].

www.ijacsa.thesai.org 957 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

Fig. 2. Log-normal distributions for generating training distances.

For generating an input TSP instance of n cities or nodes
from the log-normal distribution, the synthetic TSP datasets
are executed as the following steps. The function described
can be expressed mathematically as follows:

• n is the number of cities.

• µ is the mean of the generated distances.

• σ is the standard deviation of the generated distances.

• s is the scaling factor.

• λ is the shape parameter of the log-normal distribu-
tion.

• K is the number of unique tours to generate.

• S is the set of all cities {0, 1, 2, . . . , n− 1}.
• th is the h-th optimal tour T .

Step 1. Generate the distances: The generated distances are
sampled from a log-normal distribution with parameters log(s)
and λ,

dij ∼ LogNormal(log(s), λ),∀i, j ∈ {1, . . . , n(n− 1)

2
}, i < j.

Step 2. Adjust the mean and the standard deviation: Normalize
the generated distances to have mean µ and standard deviation
σ,

d′ij =
dij − d̄

std(d)
· σ + µ

where d̄ is the mean of dij and std(d) is the standard deviation.
Step 3. Replace out-of-bound values: If d′ij < 0 or d′ij > 1,
replace it with a uniformly random value within bounds,

d′ij = Uniform(0, 1), if d′ij /∈ [0, 1].

Step 4. Construct the distance matrix: The distance matrix D
is symmetric and filled using the adjusted distances,

Dij = Dji = d′ij , ∀i < j.

The diagonal elements are set to zero

Dii = 0, ∀i.

Step 5. Create an optimal tour vector T : Defining a permuta-
tion th of the city indices,

th : S → S, for h = 1, . . . ,K.

Each th is a random shuffle of the set S.

Step 6. The distance values in the distance matrix Dh corre-
sponding to the cities in the optimal tour vector th will be
reduced to ensure the distance matrix reflects the optimal tour.

Step 7. Convert the optimal tour vector th to be adjacency
matrix using the one-hot-encoding technique for training the
TSPNet model.

Thus, the distance matrix D ∈ Rn×n is constructed based
on the adjusted and bounded distances. By employing the
log-normal distribution in this manner, the resulting distance
matrix is both realistic and statistically appropriate, facilitating
the effective training of the TSPNet model to predict the
optimal adjacency matrix for varying configurations of cities.

B. TSPNet Input Preprocessing

To prepare the data for training the TSPNet model (as
illustrated in Fig. 1(a), both the distance matrices and the
corresponding optimal tour vectors are first created. As the
input size for deep learning models is generally fixed, this
research limits the maximum number of cities N in TSP to
200. To accommodate TSP instances with fewer than 200
cities, the distance matrices and optimal tour vectors are
padded with zeros.

Let D be a distance matrix of size n × n, where n ≤ N ,
represents a TSP with n cities. The distance matrix D for n
cities is structured as follows:

D =

0 d12 d13 . . . d1n
d21 0 d23 . . . d2n
d31 d32 0 . . . d3n

...
...

...
. . .

...
dn1 dn2 dn3 . . . 0

 . (4)

For cases where n < N , D is padded to match the
maximum size of N ×N , resulting in the following matrix,

D′ =

[
D 0
0 0

]
. (5)

Similarly, the optimal tour vector T of size n×1 is padded
to size N × 1 as follows:

T ′ =

[
T
0

]
. (6)

Once the distance matrices and optimal tour vectors have
been padded to the standard size of N × N and N × 1,
respectively, they are used as input instances for training
the TSPNet model, described in the TSPNet training process
subsection.

www.ijacsa.thesai.org 958 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

C. TSPNet Architecture

The TSPNet model is designed to predict the optimal
tour for the TSP instance using the distance matrix as input.
The model efficiently predicts near-optimal solutions to TSP
instances by leveraging deep learning techniques. The Table I
provides a detailed summary of the architecture.

TABLE I. MODEL ARCHITECTURE SUMMARY

Layer (Type) Output Shape Param #
Input layer 1 (InputLayer) (None, 200, 200) 0

Flatten 1 (Flatten) (None, 40000) 0

FC1 (Dense) (None, 64) 2,560,064

Reshape 1 (Reshape) (None, 1, 64) 0

MHA (MultiHeadAttention) (None, 1, 64) 132,672

LN1 (LayerNormalization) (None, 1, 64) 128

FC2 (Dense) (None, 1, 128) 8,320

Dropout 1 (Dropout) (None, 1, 128) 0

LN2 (LayerNormalization) (None, 1, 128) 256

FC3 (Dense) (None, 1, 40000) 5,160,000

Reshape 2 (Reshape) (None, 200, 200) 0

Softmax (Softmax) (None, 200, 200) 0

Total params 7,861,440

The input to the model is a 200×200 distance matrix repre-
senting the pairwise distances between cities in a TSP instance
with 200 cities. After flattening the matrix, the model applies a
fully connected (Dense) layer to embed the data into a lower-
dimensional feature space. This is followed by a reshaping step
that adjusts the dimensions for further processing with a Multi-
Head Attention (MHA) layer, which captures dependencies
across different city pairs. Normalization, dense layers, and
dropout regularization are employed to stabilize the learning
process. Finally, the output is reshaped back into a 200× 200
matrix, with a softmax layer of each row of the output matrix to
provide probability distributions over the possible arcs between
cities to become the predicted adjacency matrix of the TSP
problem.

The use of attention mechanisms in deep learning has been
explored to enhance the performance of algorithms. Attention
mechanisms allow models to focus on relevant parts of the
input data, thereby improving the decision-making process in
selecting routes [14]. This approach has been successfully ap-
plied in various combinatorial optimization tasks, showcasing
the versatility and effectiveness of deep learning techniques in
tackling NP-hard problems like TSP.

D. TSPNet Training Process

The TSPNet training process begins with compiling the
model using the AdamW optimizer [22], which operates with
a learning rate of 0.001 and 64 batch sizes, alongside the
Categorical Cross-Entropy (CCE) Loss function to address the
problem’s multi-class classification nature. The model’s output
is structured as a 2D matrix, where each row corresponds to a
city in the traveling salesman problem. The softmax function is
applied to convert the logits into probabilities representing the
likelihood of each city-to-city connection. The loss function is
defined as

L = − 1

N

N∑
i=1

C∑
j=1

yi,j · log(pi,j),

where N is the total number of cities (representing the rows
of the output matrix), C is the total number of cities in TSP
(representing the columns of the output matrix), set at 200, yi,j
denotes the true label (either 0 or 1) for the connection between
city i and city j (derived from the one-hot encoded label
matrix), and pi,j represents the predicted probability for that
connection obtained from the softmax output. This summation
is performed over all rows and columns of the output matrix.

During training, the model iteratively adjusts its weights
to minimize the computed loss, while the accuracy of its
predictions is continuously monitored. Upon completion of
the training process, the model’s output probabilities are
transformed back into a tour by selecting the city with the
highest probability from each row of the output matrix. The
average accuracy of the predicted tour is calculated by com-
paring it with the actual optimal tour. As illustrated in Fig.
3, the loss incurred during the training of TSPNet, which
involved 100,000 training instances and 20,000 instances from
a synthetic dataset, stabilizes after 7,146 iterations. The model
achieves a maximum accuracy exceeding 98%, as shown in
Fig. 4. Following this training phase, the model is evaluated
against the TSPLib dataset, with results discussed in the
subsequent experimental section.

Fig. 3. Categorical cross-entropy loss values during training process.

Fig. 4. Accuracy values during training process.

Although the model aims to predict the optimal tour, it

www.ijacsa.thesai.org 959 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

may occasionally yield invalid tours or infeasible solutions.
To address this issue, the next subsection will introduce an
algorithm designed to generate a valid tour when an optimal
solution is not attained, before applying traditional optimiza-
tion techniques, such as genetic algorithms, to search for the
optimal tour.

E. TSPNet Solving Process

This section describes the process of solving the travel-
ing salesman problem using the trained TSPNet model, as
illustrated in Fig. 1(b). Given a TSP instance with n nodes,
the first step is to generate an n × n distance matrix by
calculating the pairwise distances between the coordinates
of each city. This distance matrix is then normalized using
min-max normalization before being fed into the pre-trained
TSPNet model. The model outputs a zero-padded adjacency
matrix, which represents the probabilities of each city being
connected to another.

For a clearer understanding, let’s consider Fig. 5, which
shows a TSP instance with five cities. The predicted output
matrix (adjacency matrix) from the TSPNet model is trans-
formed into a predicted tour vector by selecting the city with
the highest probability from each row, resulting in the tour
vector T , as represented in Eq. (7),

T̂ =

t1
t2
t3
t4
t5

 =

2
4
5
3
1

 =

argmax{p11, p12, . . . , p15}
argmax{p21, p22, . . . , p25}
argmax{p31, p32, . . . , p35}
argmax{p41, p42, . . . , p45}
argmax{p51, p52, . . . , p55}

 . (7)

This represents an ideal prediction of the optimal tour from
the city ith to the jth city. However, when TSPNet encounters
more complex instances, the predicted tour vector T may
include errors, leading to infeasible or suboptimal solutions.
To mitigate this issue, the tour correction algorithm is used to
adjust the predicted solution to better approximate the optimal
tour while minimizing the total cost or the tour length.

The algorithm consists of four main steps: Step 1 initializes
all variables. Step 2 involves separating the predicted tour
into subpaths, where each subpath contains unique nodes or
cities. In Step 3, missing nodes, those not included in the
model’s predictions are identified and added as isolated paths
containing only one node. After this step, the algorithm will
have several subpaths, each containing unique node. Finally, in
Step 4, these subpaths are connected by finding the minimum
distance between the last node of one subpath and the first
node of another, thereby forming a complete and feasible tour.
The details of this algorithm are outlined in Algorithm 1.

Once the tour is obtained from Algorithm 1, it can be used
as the initial solution for traditional solvers, such as a genetic
algorithm. This integration allows the TSPNet prediction to
serve as a starting point for other optimization methods,
ensuring that the process begins with a feasible tour close to
the optimal tour.

The following section presents the experimental results of
TSPNet on a benchmark TSP dataset:

Algorithm 1 Find a Single Feasible Tour (With Missing Nodes
and Distance Comparison)

1: Input: Predicted tour (T̂), Distance matrix (D),
Number of cities (n)

2: Output: T (feasible tour)
3:
4: 1. Initialize Variables
5: T ← An empty feasible tour
6: SP ← A set of subpaths
7: AN ← A set of total nodes
8: N ← A set of existing nodes
9: MN ← A set of missing nodes

10: MD ← Minimum distance between nodes
11: Si← Start index
12:
13: # 2. Split Predicted Tour into Subpaths
14: for each node i in T̂ do
15: if node i is not in N then
16: Add node i to N
17: Update Si
18: else
19: if Si is set then
20: Add the subpath from Si to i to SP
21: Reset Si
22: end if
23: end if
24: end for
25:
26: if Si is set then
27: Add the remaining subpath to SP
28: end if
29:
30: # 3. Add Paths for Missing Nodes into Subpaths
31: MN ← AN −N
32: for each node m in MN do
33: Add node m as a separate subpath to SP
34: end for
35:
36: # 4. Connect Split Subpaths to Form a Tour
37: Set T to the first subpath and remove it from SP
38: while Length of T < n do
39: Initialize MD to infinity
40: for each subpath in SP do
41: Calculate the distance from the last node of T to

the first node of the subpath
42: if this distance is smaller than MD then
43: Update MD and store the index of the subpath
44: end if
45: end for
46: Add the closest subpath to T
47: Update the last node in T and remove the selected

subpath from SP
48: end while
49: return T

www.ijacsa.thesai.org 960 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

Fig. 5. The optimal tour of a five cities TSP.

VI. EXPERIMENTAL RESULTS

The system architecture is based on an x86 64 platform
with an AMD EPYC 7B12 CPU, featuring 8 online CPUs
(4 cores per socket with 2 threads each). The deep learning
model is trained using TensorFlow [26] on an L4 GPU with 22
GB of VRAM, enhancing processing efficiency. Additionally,
the research employs the DEAP [27] library for implementing
genetic algorithms and the Gurobi solver for optimization
tasks.

A. TSPLIB Dataset

The TSPLIB (Traveling Salesman Problem Library) is a
widely used collection of benchmark instances for the traveling
salesman problem and its variations, offering a range of
instances from small to large sizes. The dataset is formatted
in plain text files with problem details such as name, type,
dimension, and coordinates or distance matrices. TSPLIB
encompasses various problem types, including classic TSP,
asymmetric TSP (ATSP), and vehicle routing problems (VRP),
allowing researchers to benchmark and compare algorithm
performance. The dataset is accessible through its official
website and repositories like GitHub.

B. Genetic Algorithm (GA)

The Genetic Algorithm (GA) used in this study was con-
figured with specific parameters to optimize the performance
of the TSPLIB dataset. The population size was set to 300
individuals, and the crossover probability was 0.7, allowing a
significant proportion of the population to exchange genetic
information during each iteration. The mutation probability
was set to 0.3, introducing randomness and variation into the
population to avoid local optima. A gap threshold of 0.07%
was implemented, meaning the algorithm would terminate
early if the gap between the best-found solution and the
optimal solution was less than 0.07%. The exact optimal
distance values were retrieved from the third column of the
official TSPLIB web resource and set as the best-known

distances for the algorithm to target. The DEAP library was
used to run the algorithm, with multiprocessing enabled to
parallelize the workload and reduce runtime. Additionally, a
local search technique known as 2-opt was applied to refine
the best individuals, improving their solutions by eliminating
suboptimal edges and enhancing the overall quality of the tour.

The Table II presents a comparison of different TSP
solvers, including Mixed-Integer Programming (MIP) solvers
(Gurobi and a Genetic Algorithm), and heuristic solvers (TSP-
Net and TSPNet combined with GA), evaluated on multiple
TSP instances from the TSPLIB dataset. The performance
metrics compared include the objective value, the percentage
gap from the optimal solution, and the time taken to solve
the problems. The gap is calculated as a percentage difference
between the best objective value found by Gurobi, GA, TSP-
Net, or TSPNet GA and the optimal solution from the official
TSPLIB web resource. The formula used for the gap is,

Gap =
100× (Best objective value from solver− Optimal)

Objective value from solver
.

This formula expresses the relative deviation of the obtained
solution from the known optimal solution. A lower gap value
indicates a closer match to the optimal solution, with a gap of
0% representing a perfect match.

Gurobi was given an upper bound of 3600 seconds, and
it consistently achieves objective values close to the opti-
mal with minimal gaps, though its computation time varies
significantly depending on the problem size, ranging from
around 0.1 seconds to over 600 seconds, with some instances
nearly reaching the time limit. The Genetic Algorithm and
TSPNet GA were both given a time limit of 600 seconds.
The Genetic Algorithm shows larger gaps and longer com-
putation times compared to Gurobi, with instances such as
d198 showing a gap of over 80%. The TSPNet heuristic
solver performs exceptionally well, achieving objective values
close to the optimal and minimal gaps for most instances,
while being significantly faster than the MIP solvers, often
solving problems in fractions of a second. The combination of
TSPNet with GA slightly improves the objective values and
maintains competitive computation times, showing minimal
gaps and similar performance to TSPNet in terms of objective
values. Overall, TSPNet proves to be a highly effective and
fast heuristic solver, delivering accurate results with minimal
gaps and outperforming traditional MIP solvers in terms of
speed. The combination of TSPNet and GA offers additional
benefits by balancing high accuracy with efficient computation
times, demonstrating the practicality of heuristic approaches
for solving large-scale TSP problems.

VII. DISCUSSION

This research presents a deep learning model based on
an attention mechanism for solving the Traveling Salesman
Problem (TSP), contributing to the growing body of literature
exploring innovative approaches to combinatorial optimization.
Similar to the study by Kool et al. 2019 [14]. in “Attention,
Learn to Solve Routing Problems,” which employs an attention
model that utilizes model architecture inspired by the LSTM
(Long Short-Term Memory) network to effectively predict
optimal tours, this work also leverages attention mechanisms
to enhance solution accuracy for TSP. Some experiments’

www.ijacsa.thesai.org 961 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

TABLE II. COMPARISON OF DIFFERENT TSP SOLVERS PERFORMANCE

No. TSP name Optimal
MIP solver Heuristic solver

Gurobi GA TSPNet TSPNet GA
Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time

1 att48 10628 10628 0.00 125 10628 0.00 157 10628 0 0.082 10628 0 0.41
2 ch150 6528 6555 0.41 3600 6804 4.06 600 6530 0.03 0.064 6530 0.03 0.4
3 berlin52 7542 7544 0.03 0.742 7544 0.03 41 7544.36 0.03 0.064 7544 0.03 0.43
4 d198 15780 16440 4.01 3600 91319 82.72 600 16245 2.86 0.073 16245 2.86 600
5 fri26 937 937 0.00 0.579 937 0.00 1.36 937 0 0.061 937 0 0.41
6 ftv33 1286 1286 0.00 0.6 1467 12.34 600 1286 0 0.059 1286 0 0.4
7 ftv35 1473 1473 0.00 0.817 1630 9.63 600 1473 0 0.062 1473 0 0.4
8 ftv47 1776 1776 0.00 1.027 1776 0.00 3 1776 0 0.064 1776 0 0.4
9 ftv38 1530 1530 0.00 0.885 1617 5.38 600 1530 0 0.066 1530 0 0.4

10 ftv64 1839 1839 0.00 3.815 2052 10.38 600 1839 0 0.063 1839 0 0.39
11 ftv55 1608 1608 0.00 1.634 1662 3.25 600 1608 0 0.068 1608 0 0.42
12 ftv44 1613 1613 0.00 0.714 1640 1.65 600 1613 0 0.067 1613 0 0.45
13 bier127 118282 118293 0.01 3600 119340 0.89 600 118293 0.01 0.068 118293 0.01 0.43
14 ch130 6110 6128 0.29 3600 6213 1.66 600 6110 0 0.077 6110 0 0.48
15 burma14 3323 3323 0.00 0.28 3323 0.00 0.89 3323 0 0.087 3323 0 0.4
16 brazil58 25395 25395 0.00 50 25395 0.00 4 25395 0 0.063 25395 0 0.4
17 brg180 1950 1950 0.00 8238 2010 2.99 600 1950 0 0.07 1950 0 0.43
18 bays29 2020 2020 0.00 0.817 2020 0.00 1.28 2020 0 0.063 2020 0 0.43

notable gaps include 1.76% for n = 50 and 4.53% for n =
100, showcasing its competitive performance. This research
extends the exploration to more complex instances, specifically
focusing on TSP127. The model developed in this study
achieved a remarkable objective gap of only 0.01% for the
TSP127 instance, demonstrating its capability to deliver highly
accurate solutions for large problem sizes. The TSPNet solver
has the potential to be more powerful if trained on a large
dataset with diverse training distributions.

However, training on a wide range of problems requires
significant computational resources. In this study, the synthetic
training data were generated from a log-normal distribution as
in Fig. 2, which presents some limitations. When data points do
not conform to this distribution, the solver may fail to predict
the optimal tour, as demonstrated in Fig. 6. The distribution
exhibits two peaks in frequency values, which the TSPNet
model has not been trained on, representing a limitation of
the current model. This issue could be addressed by training
the model on a wider variety of distributions in the future.

Fig. 6. The best tour predicted by the TSPNet solver for the d198 problem.

VIII. CONCLUSION

Solving a Traveling Salesman Problem (TSP) with iterative
processes in a traditional solver is computationally expensive
and time-consuming for a large-scale instance. However, this

issue can be alleviated by determining the initial optimal or
near optimal valid tour to the solver to start. This paper
introduces TSPNet, a deep learning-based solver equipped
with an attention mechanism for TSP, to effectively predict
an optimal or a near-optimal valid tour. TSPNet trained on
diverse syntactic data across various distance distributions and
it evaluated its performance from the TSPLIB dataset. In cases
where the predicted solution is infeasible or does not represent
a valid tour, the proposed algorithm adjusts the output to ensure
feasibility.

TSPNet consistently generates valid tours that can serve
as effective warm starts for traditional solvers, providing a
strong initial solution. When evaluated against the TSPLIB
benchmark dataset, TSPNet outperformed both Gurobi and
a genetic algorithm enhanced with a 2-opt local search, sig-
nificantly reducing computational time by circumventing the
iterative processes typically required in traditional methods.
Most results achieved nearly a 0% gap, highlighting the
model’s effectiveness. However, training on larger problem
sizes necessitates substantial computational resources.

Future work will focus on expanding the training dataset
to encompass a broader range of distributions and problem
instances, thereby enhancing the model’s generalization capa-
bilities. Additionally, exploring more efficient training tech-
niques or hybrid approaches that combine deep learning with
traditional optimization methods could help reduce resource
requirements. Integrating TSPNet with other metaheuristic
algorithms represents another promising direction to improve
solution accuracy and efficiency for larger-scale TSP instances.

ACKNOWLEDGMENT

This research was supported by the Science Achieve-
ment Scholarship of Thailand and the Applied Mathemat-
ics and Computational Science Program in the Department
of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Thailand. The authors acknowledge

www.ijacsa.thesai.org 962 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 12, 2024

using an LLM to enhance the clarity and coherence of this
manuscript. However, all scientific content and conclusions are
solely the authors’ responsibility.

REFERENCES

[1] Cook, William J., et al. The traveling salesman problem: a computational
study. Princeton university press, 2011.

[2] I. Bello, “Neural combinatorial optimization with reinforcement learn-
ing”, 2016. doi: 10.48550/arXiv.1611.09940

[3] W. Liu, R. Wang, T. Zhang, K. Li, W. Li, and H. Ishibuchi,“Hybridization
of evolutionary algorithm and deep reinforcement learning
for multi-objective orienteering optimization”, 2022. doi:
10.48550/arXiv.2206.10464

[4] N. Xu, L. Liu, and Y. Xu, “A novel chaotic neural network with radial
basis function and their application to tsp,” Appl. Mech. Mater., vol. 151,
pp. 532–536, 2012. doi: 10.4028

[5] A. Philip, A. Adio, and O. Kehinde, “A Genetic Algorithm for Solving
Travelling Salesman Problem,” Int. J. Adv. Comput. Sci. Appl., vol. 2,
no. 1, 2011. doi: 10.14569/IJACSA.2011.020104

[6] R. Mahajan and G. Kaur, “Neural networks using genetic algo-
rithms,” Int. J. Comput. Appl., vol. 77, no. 14, pp. 6–11, 2013. doi:
10.5120/13549-1153

[7] N. Boyko and A. Pytel, “Aspects of the study of genetic algorithms
and mechanisms for their optimization for the traveling salesman prob-
lem,” International Journal of Computing, pp. 543–550, 2021. doi:
10.47839/ijc.20.4.2442

[8] P. Fu, Y. Wang, and P. Yang, “A particle swarm optimization based
on evolutionary game theory for discrete combinatorial optimization,”
Journal of Convergence Information Technology, vol. 7, no. 21, pp. 369–
376, 2012.

[9] S. Sharma, and V. Garg, “Multi colony ant system based solution to
traveling salesman problem using opencl,” Int. J. Comput. Appl., vol.
118, no. 23, pp. 1–3, 2015. doi: 10.5120/20882-3637

[10] W. Kool, H. Hoof, J. Gromicho, and M. Welling, “Deep policy dynamic
programming for vehicle routing problems,” Lect. Notes Comput. Sci.,
vol. 13292, pp. 190–213, 2022. doi: 10.1007/978-3-031-08011-1 14

[11] J. Perera, S. Liu, M. Mernik, M. Črepinšek, and M. Ravber, “A
graph pointer network-based multi-objective deep reinforcement learning
algorithm for solving the traveling salesman problem,” Mathematics, vol.
11, no. 2, p. 437, 2023. doi: 10.3390/math11020437

[12] M. Prates, P. Avelar, H. Lemos, L. Lamb, and M. Vardi, “Learning to
solve np-complete problems: A graph neural network for decision tsp,”
Proc. Conf. AAAI Artif. Intell., vol. 33, no. 01, pp. 4731–4738, 2019.
doi: 10.1609/aaai.v33i01.33014731

[13] U. Gunarathna, R. Borovica-Gajić, S. Karunasekara, and E. Tanin,
“Solving dynamic graph problems with multi-attention deep reinforce-
ment learning,” 2022. doi: 10.48550/arxiv.2201.04895

[14] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!,” 2018. doi: 10.48550/arxiv.1803.08475

[15] Y. Jin, Y. Ding, X. Pan, K. He, L. Zhao, T. Qin, et al., “Pointerformer:
Deep reinforced multi-pointer transformer for the traveling salesman
problem,” Proc. Conf. AAAI Artif. Intell., vol. 37, no. 7, pp. 8132–8140,
2023. doi: 10.1609/aaai.v37i7.25982

[16] E. Bellodi, A. Bertagnon, M. Gavanelli, and R. Zese, “Improving
the efficiency of euclidean tsp solving in constraint programming by
predicting effective nocrossing constraints,” Lect. Notes Comput. Sci.,
vol. 12414, pp. 318–334, 2021. doi: 10.1007/978-3-030-77091-4 20

[17] M. Purnomo, M. Iqbal, and M. Sufa, “Solving multiple
routes travelling salesman problem using modified genetic
algorithm,” Adv. Mat. Res., vol. 576, pp. 718–722, 2012. doi:
10.4028/www.scientific.net/amr.576.718

[18] J. Sarubbi, G. Miranda, H. Luna, and G. Mateus, “A cut-and-branch
algorithm for the multicommodity traveling salesman problem,” 2008
IEEE International Conference on Service Operations and Logistics, and
Informatics, 2008. doi: 10.1109/SOLI.2008.4682823

[19] A. Arigliano, T. Calogiuri, G. Ghiani, and E. Guerriero, “A branch-and-
bound algorithm for the time-dependent traveling salesman problem,”
Networks, vol. 72, no. 3, pp. 382–392, 2018. doi: 10.1002/net.21830

[20] T. Kenea, “Solving shortest route using dynamic programming prob-
lem,” Indian J. Sci. Technol., vol. 15, no. 31, pp. 1527–1531, 2022. doi:
10.17485/ijst/v15i31.1342

[21] T. Vo, M. Baiou, V. Nguyen, and P. Weng, “Improving subtour elimina-
tion constraint generation in branch-and-cut algorithms for the tsp with
machine learning,” Lect. Notes Comput. Sci., vol. 14286, pp. 537–551,
2023. doi: 10.1007/978-3-031-44505-7 36

[22] I. Loshchilov, and F. Hutter, “Decoupled Weight Decay Regularization,
”International Conference on Learning Representations (ICLR),” 2019.
1711.05101.

[23] L. L. C. Gurobi Optimization, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[24] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Concorde: A code
for solving traveling salesman problems,” AT&T Labs, 2003. [Online].
Available: http://www.math.uwaterloo.ca/tsp/concorde.html

[25] G. Reinelt, “TSPLIB – A Traveling Salesman Problem Library,” In-
stitut für Mathematik, Universität Heidelberg, Heidelberg, Germany,
1991. [Online]. Available: http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al.,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015. [Online]. Available: https://www.tensorflow.org

[27] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C.
Gagné, “DEAP: Evolutionary algorithms made easy,” J. Mach. Learn.
Res., vol. 13, pp. 2171–2175, Jul. 2012. [Online]. Available: https:
//github.com/DEAP/deap

www.ijacsa.thesai.org 963 | P a g e

https://doi.org/10.48550/arXiv.1611.09940
https://doi.org/10.48550/arXiv.2206.10464
https://doi.org/10.48550/arXiv.2206.10464
www.scientific.net/AMM.151.532
https://doi.org/10.14569/IJACSA.2011.020104
https://doi.org/10.5120/13549-1153
https://doi.org/10.5120/13549-1153
https://doi.org/10.47839/ijc.20.4.2442
https://doi.org/10.47839/ijc.20.4.2442
https://doi.org/10.5120/20882-3637
https://doi.org/10.1007/978-3-031-08011-1_14
https://doi.org/10.3390/math11020437
https://doi.org/10.1609/aaai.v33i01.33014731
https://doi.org/10.48550/arxiv.2201.04895
https://doi.org/10.48550/arxiv.1803.08475
https://doi.org/10.1609/aaai.v37i7.25982
https://doi.org/10.1007/978-3-030-77091-4_20
https://doi.org/10.4028/www.scientific.net/amr.576.718
https://doi.org/10.4028/www.scientific.net/amr.576.718
https://doi.org/10.1109/SOLI.2008.4682823
https://doi.org/10.1002/net.21830
https://doi.org/10.17485/ijst/v15i31.1342
https://doi.org/10.17485/ijst/v15i31.1342
https://doi.org/10.1007/978-3-031-44505-7_36
https://arxiv.org/abs/1711.05101.
https://www.gurobi.com
http://www.math.uwaterloo.ca/tsp/concorde.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://www.tensorflow.org
https://github.com/DEAP/deap
https://github.com/DEAP/deap

	Introduction
	Contributions

	Related Work
	Mathematical Notation for the Traveling Salesman Problem
	TSP Solvers
	Predicting the Optimal Tour Using a Deep Learning Model

	Methodology
	Synthetic TSP Training Dataset
	TSPNet Input Preprocessing
	TSPNet Architecture
	TSPNet Training Process
	TSPNet Solving Process

	Experimental Results
	TSPLIB Dataset
	Genetic Algorithm (GA)

	Discussion
	Conclusion
	References

