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Abstract—Traditional Graph Convolutional Networks (GCNs)
primarily utilize graph structural information for information
aggregation, often neglecting node attribute information. This
approach can distort node similarity, resulting in ineffective
node feature representations and reduced performance in semi-
supervised node classification tasks. To address these issues, this
study introduces a similarity measure based on the Minkowski
distance to better capture the proximity of node features.
Building on this, SGCN, a novel graph convolutional network,
is proposed, which integrates this similarity information with
conventional graph structural information. To validate the ef-
fectiveness of SGCN in learning node feature representations,
two classification models based on SGCN are introduced: SGCN-
GCN and SGCN-SGCN. The performance of these models is
evaluated on semi-supervised node classification tasks using three
benchmark datasets: Cora, Citeseer, and Pubmed. Experimen-
tal results demonstrate that the proposed models significantly
outperform the standard GCN model in terms of classification
accuracy, highlighting the superiority of SGCN in node feature
representation learning. Additionally, the impact of different
distance metrics and fusion factors on the models’ classification
capabilities is investigated, offering deeper insights into their
performance characteristics. The code and datasets are available
at https://github.com/YONGLONGHU/SGCN.git.
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I. INTRODUCTION

In recent years, Convolutional Neural Networks (CNNs)
have achieved rapid advancements in fields such as image
recognition and natural language processing, primarily due to
their ability to conveniently perform convolutional operations
on structured data like images and texts, which exhibit regular
patterns [1]. Graph data, on the other hand, is unstructured
with irregular connections between nodes, rendering traditional
CNN convolution operations difficult to directly apply [2].
Nevertheless, the research and application of graph data hold
extensive and profound significance. For instance, by studying
knowledge graphs, one can leverage the entity and relationship
information within existing knowledge graphs to predict novel
facts [3]. The investigation of brain functional networks turns
on the diagnosis of brain disorders such as autism and depres-
sion [4]. Moreover, the study of molecular networks helps to
a deeper understanding of protein functions [5].

In deep learning research, the annotation of vast amounts
of data is often required, yet the process of data annotation
is labor-intensive, resource-consuming, and time-consuming,

especially for graph data such as those found in social networks
and biological networks, where the cost of labeling each node
or edge is prohibitively high [6]. Semi-supervised learning
addresses this challenge by leveraging a small amount of la-
beled data alongside a large quantity of unlabeled data to learn
more powerful models [7]. Learning from graph-structured
data primarily involves three tasks: node classification, graph
classification, and link prediction [8]. Among these, node
classification treats each node as a data sample, utilizing both
the information from labeled data and the graph’s structural
information to predict the classes of unlabeled nodes. This
represents a typical semi-supervised learning problem.

Graph Convolutional Networks have achieved great suc-
cess in the field of semi-supervised node classification for
graph data by propagating and aggregating information from
neighboring nodes through the graph structure to learn and
represent target nodes. GCNs utilize the adjacency matrix to
obtain aggregation weights from neighbors for graph con-
volution [9]. Unlike traditional approaches, Graph Attention
Networks (GATs) employ graph attention modules to learn
discriminative aggregation weights for neighbor nodes, en-
abling graph convolution [10]. Given that a node can have
numerous neighbors, aggregating information from all neigh-
bors is inefficient. Therefore, GraphSAGE performs graph
convolution by sampling a fixed number of neighbors for each
node and aggregating their information [11]. However, all these
methods fail to fully exploit the original attribute information
between nodes. Furthermore, literature [12] theoretically and
empirically demonstrates that GCNs tend to disrupt node
similarity in the original feature space during information
aggregation, reducing the effectiveness of learned node rep-
resentations and subsequently impacting downstream tasks.
Consequently, a new graph convolutional model is designed
based on cosine similarity and a self-supervised module to
preserve the similarity of original nodes. Nevertheless, cosine
similarity describes the mathematical closeness in direction
between vectors [13], which is not suitable for characterizing
feature proximity between nodes. Additionally, Incorporating
a self-supervised module into a graph convolutional network
requires the delicate design of pretext tasks based on specific
problems [14], which is not conducive to the generalization
of the model. The degree of proximity between node fea-
tures should be more aptly described using distance, and
improving graph convolution operations is more conducive
to the generalization of the model. Therefore, we propose
a similarity measure based on the Minkowski distance [15]
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between node features and design a novel graph convolutional
network named SGCN that integrates structural information
with the similarity information, building upon classic graph
convolutional network architectures.

The goal of this paper is to construct a novel similarity
measure based on the Minkowski distance and integrate this
similarity information with the traditional GCN structural
information to design a new graph convolutional network.
Essentially, two challenges are addressed. First, how to con-
struct a similarity measure using the feature distances between
nodes to describe the proximity between nodes in terms of
their features? In this paper, a linear similarity measure based
on the Minkowski distance is proposed, which better captures
the proximity between node features. Second, how to utilize
the constructed similarity measure information to design a
new graph convolutional network that can better learn node
representations? This paper integrates similarity information
with the structural information used in the classical GCN to
design a novel graph convolutional network that combines both
structural and similarity information to learn better node repre-
sentations. The contributions of this work can be summarized
as follows:

• A linear similarity measure function has been devel-
oped in this study, utilizing three specific forms of
Minkowski distance: Manhattan distance, Euclidean
distance, and Chebyshev distance. This measure en-
hances the description of similarity between node
features.

• By combining the similarity information from the
linear similarity measure with the structural informa-
tion used in conventional GCNs, this study introduces
SGCN, a novel graph convolutional network that im-
proves node feature representation.

• Using the SGCN and traditional GCN frameworks,
this study constructs two semi-supervised node clas-
sification models: SGCN-GCN and SGCN-SGCN.
These models are evaluated on the Cora, Citeseer,
and PubMed datasets to validate the effectiveness of
SGCN and assess the performance of the models
with different distance metrics and fusion ratios of
structural and similarity information.

The structure of this paper is organized as follows: Section
II reviews related work on graph convolutional networks.
Section III explores the theoretical foundations of classical
graph convolutional networks and semi-supervised classifi-
cation. Section IV introduces this study proposed model,
SGCN, which incorporates similarity information. Section V
describes the experimental methods used to evaluate SGCN’s
advancements. Section VI presents the discussion of the study.
Finally, Section VII summarizes the paper and highlights the
contributions of this work.

II. RELATED WORKS

Graph convolution, as an extension of convolutional opera-
tions in structured data to graph-structured data, can be broadly
divided into two major classes: spectral-based methods and
spatial-based methods [16]. Spectral GCNs leverage Fourier
transform to transform signals from the original space to

the frequency domain, where multiplication is carried out
to address the challenge of defining convolutions on graph
structures [17]. However, directly computing graph convo-
lutions is difficult and computationally intensive. Defferrard
[18] overcame this by substituting Chebyshev polynomials
for graph convolutions, eliminating the need for Laplacian
eigendecomposition and reducing complexity. Kipf [19] further
simplified graph convolutions by stacking layers of first-order
Chebyshev polynomial filters and modifying the propagation
matrix, resulting in the GCN model.

Spatial GCNs, on the other hand, define convolutions based
on the spatial relationships between nodes. Starting from a
node and its neighboring set, spatial GCNs first aggregate
information and then combine the aggregated results to update
node information [20].The prevalent framework for spatial
GCNs is the Message Passing Neural Network (MPNN) [21].
MPNN first apply an aggregation function to each node and
its neighbors to capture local structural information. Sub-
sequently, the aggregated results are combined with node
features through an update function to obtain new node rep-
resentations. Battaglia [22] extended MNPP by proposing the
Graph Network (GN) architecture to facilitate deep models in
learning about entities, relations, and rules. Beyond defining
node attributes, the GN architecture introduces edge and global
attributes, enabling comprehensive learning of the interrelated
properties of these three attributes on graph structures through
well-designed update and aggregation functions.

In recent years, numerous researchers have improved GCNs
by domain selection or incorporating attention mechanisms.
On the one hand, differing from traditional networks like
GraphSAGE that directly sample neighbor nodes, Chen [23]
introduced FastGCN, which utilizes a novel sampling method
for graph convolutional networks. This method interprets
graph convolutions as integral transformations of embedding
functions under a probabilistic measure and employs Monte
Carlo methods to consistently estimate this integral. Zou
[24] proposed an innovative hierarchical importance sampling
approach that first selects neighbor nodes of central nodes to
construct a bipartite graph structure, upon which the impor-
tance probability of each node is calculated. Subsequently, a
certain number of nodes are probabilistically sampled based on
these probabilities.On the other hand, differing from GAT, the
Gated Attention Network (GaAN) introduces a self-attention
mechanism that computes additional attention scores for each
attention head, enriching the application scenarios of graph
attention mechanisms and enhancing network performance
[25]. Beyond applying graph attention mechanisms to the
spatial dimension, GeniePath [26] proposes an LSTM-like
gating mechanism that effectively controls information flow
between graph convolutional layers, improving the efficiency
and performance of graph convolutional networks. Zhang [27]
developed a self-attention graph neural network for hyper-
graphs to process and learn different types of hypergraph
information.

While these improvements have enhanced the performance
of graph convolutional networks models for specific tasks,
the refined models tend to be more complex, with weaker
generalization capabilities and limited scalability. In contrast to
these efforts, the approach of this work focuses on improve-
ments from a mathematical modeling perspective, achieving
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effective graph node feature representations without the need
for additional supervised modules or increasing the number of
model parameters.

III. PRELIMINARY STUDY

This work aims to enhance the performance of graph
convolutional networks in learning node feature representations
by integrating similarity information, and subsequently to
improve the accuracy of semi-supervised node classification
using the refined GCN model. To achieve this, the relevant
definitions of graph data and the fundamental concept of
semi-supervised node classification are first introduced in this
section. Following that, the classical GCN and the traditional
semi-supervised node classification models constructed using
GCN are presented.

A. Semi-supervised Node Classification

Let G = (V,E,X) [28] be an undirected graph, where
V = {vi|i = 1, 2, . . . , N} denotes the set of N nodes,
N = L + U . L and U denote the number of labeled
and unlabeled nodes in the set of N nodes, L ≪ U .
E = {ei|i = 1, 2, . . . ,M} denotes the set of M edges.
X = [XL, XU ] = [x1, . . . , xN ]T ∈ RN×F is the feature
matrix of all nodes, where XL denotes the feature matrix of
labeled nodes and XU denotes the feature matrix of unlabeled
nodes, each node vi corresponding to a feature vector xi ∈ RF .
The adjacency matrix A ∈ {0, 1}N×N stores information
about the structure of a graph. If Aij = 1, it indicates that there
is an edge between node vi and node vj , otherwise Aij = 0.
Each node in the graph corresponds to a label. Assuming there
are C different types of labels in the graph, for each node vi, its
label yi ∈ {0, 1, . . . , C − 1}. YL ∈ RL×C represents the label
matrix of the labeled nodes. The objective of semi-supervised
learning on graphs is to learn a neural network model f(·)
from these known information, which can then predict labels
for all unlabeled nodes.

For semi-supervised node learning, the traditional approach
uses a graph Laplace regularization term in the loss function
based on the principle that connected nodes are likely to share
the same labels so that the label information is propagated over
the graph [19] as shown in Eq. (1).

{
L = L0 + λLreg

Lreg =
∑

i,j Aij∥f(Xi)− f(Xj)∥2 = f(X)⊤∆f(X)
,

(1)

where, L is the total loss function, the L0 denotes the super-
vised loss of labeled nodes, the Lreg denotes the unsupervised
loss of unlabeled nodes, the λ is the weight factor. Aij is the
value i-th row and j-th col of adjacency matrix A. f(·) is the
learned neural network model, Xi and Xj is the i-th and j-th
feature vector of feature matrix. ∆ = D−A represents the non-
normalized Laplacian regularization term for the undirected
graph G, Dii =

∑̂
jAij denotes the degree matrix.

B. Graph Convolutional Networks

The fundamental idea of Graph Convolutional Networks
lies in leveraging the structural information of graphs to learn

new feature representations for each node through information
propagation and aggregation. Given a graph G, a multi-
layer GCN for semi-supervised node classification follows a
hierarchical propagation rule [19] as shown in Eq. (2).

H(l+1) = σ

(
D− 1

2 ÃD− 1
2H(l)W (l)

)
, (2)

where Ã = A + IN represents the adjacency matrix of
the undirected graph G augmented with self-connections, A
is the original adjacency matrix of G, and IN ∈ RN×N is
the identity matrix. D denotes the degree matrix of graph G.
Â = D− 1

2 ÃD− 1
2 is the normalized adjacency matrix. H(l) and

W (l) respectively denote the input feature matrix and shared
trainable parameter matrix at the l-th layer of the model.

For each node, the rule for the hierarchical propagation of
information [19] can be shown in Eq. (3).

h
(l+1)
i = σ

( ∑
j∈Ni

1√
didj

h
(l)
j W (l)

)
, (3)

where, Ni represents the set of neighbor nodes of node i,
di and dj are the degrees of nodes i and j respectively, h(l)

j

denotes the feature vector of node j at the l-th layer, W (l) is
the shared trainable parameter matrix at the l-th layer of the
model, and σ is the activation function.

Utilizing the aforementioned classical two-layer graph con-
volutional network to construct a graph neural network model
for semi-supervised node classification in graphs has become
a popular approach in recent years. The model [19] can be
expressed as shown in Eq. (4).

f(Â,X; θ) = softmax(ÂReLU(ÂXW (0))W (1)), (4)

where, θ = {W (0),W (1)} represents the parameter matri-
ces that are optimized through gradient descent to minimize
the cross-entropy loss function. Â = D− 1

2 ÃD− 1
2 is the

normalized adjacency matrix, ReLU(.) and softmax(.) are
the activation functions applied after the first and second
layers of the network, respectively. The output of the model is
denoted as H∈ RN×C , where N is the number of nodes and
C is the number of labels for the graph nodes. Each row of H
matrix contains the scores for each possible label for a given
node.

Utilizing the aforementioned classical two-layer graph
convolutional network model f(X,A) for semi-supervised
node classification is currently the mainstream approach. This
method trains labeled nodes through a supervised loss function
L0 and adjusts parameters via a gradient descent strategy,
enabling the model to learn feature representations of both
labeled and unlabeled nodes simultaneously, thereby achieving
a satisfactory semi-supervised node classification performance.
However, during the message passing process, the classifica-
tion performance is hindered by the insufficient utilization of
attribute information between nodes and the fact that convo-
lution can disrupt the original similarity among nodes. This
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work is motivated by this observation and aims to address
these issues.

IV. PROPOSED SGCN ARCHITECTURE

Traditional graph convolutions, in the process of message
passing, not only neglect the attribute information between
nodes but also disrupt the similarity information among them.
Therefore, this work proposes the construction of a similarity
measure based on the Minkowski distance and the integration
of this similarity information with the structural information
commonly used in traditional graph convolutional networks to
design a novel graph convolutional network, termed SGCN. In
the following sections, the graph convolutional network that
integrates similarity information is first introduced, followed
by an elaboration on the similarity measure constructed using
the Minkowski distance, and finally, the construction of a graph
convolutional neural network model based on the proposed
SGCN for semi-supervised node classification tasks is pre-
sented.

A. Graph Convolutional Network with Integrated Similarity
Information

To integrate similarity information for better learning of
node embeddings, this study propose a novel graph convo-
lutional network, SGCN, with the following layered message
propagation rule as shown in Eq. (5):

H(l+1) = σ

(
(λD− 1

2 ÃD− 1
2 + (1− λ)⊕ S)H(l)W (l)

)
, (5)

where, λ ∈ [0, 1] is the fusion factor and represents the
fusion proportion for the structural information in the original
graph convolutional network. Â = D− 1

2 ÃD− 1
2 is the nor-

malized adjacency matrix corresponding to the original graph
convolutional network, where D− 1

2 on both sides normalizes
the matrix Ã, Âij denotes the weight of the feature vector
that node i aggregates from its neighbor node j, ranging
from 0 to 1. 1 − λ serves as the fusion proportion for the
similarity information, also taking values between 0 and 1. S
is a similarity matrix constructed based on the linear similarity
measure function designed in this paper using the Minkowski
distance. ⊕ is a unary operator that normalizes the S matrix.
Ŝ = ⊕S represents the normalized similarity matrix, where Ŝij

indicates the weight of the feature vector that node i aggregates
from its neighbor node j, ranging from 0 to 1.

H(l) and W (l) are the feature matrix and the trainable
parameter matrix at the l-th layer, while H(l+1) is the updated
feature matrix after the l-th layer.

To aggregate the feature information of neighbor nodes
for obtaining a better embedding representation, the original
graph convolutional network solely computes the aggregation
weights Â = D− 1

2 ÃD− 1
2 through structural information with-

out fully utilizing the similarity information between nodes.
Based on the principle that nodes with closer features are
more likely to belong to the same class, this work integrate
the similarity information between nodes, Ŝ = ⊕S, into the
aggregation weight calculation to obtain better node feature

representations. Both parts of the aggregation weights derived
from structural information and similarity information are
processed through normalization operations. Finally, the two
pieces of information are linearly combined using fusion
factors λ and 1 − λ to ensure that the final aggregation
weights range from 0 to 1. A smaller value indicates less
information aggregated from that neighbor, while a larger value
indicates more information aggregated. The proposed method
differs from other graph convolutional network models that
add self-supervised modules to achieve better classification
performance. By integrating similarity information into the
hierarchical message propagation mechanism, the approach
demonstrates enhanced generalization capabilities and a more
streamlined model architecture with reduced parameter count,
as opposed to methods that integrate supervised modules.

The hierarchical message propagation rule for each specific
node is defined as shown in Eq. (6):

h
(l+1)
i = σ

( ∑
j∈Ni

(
λ√
didj

+(1−λ)⊕Sim(hi, hj))h
(l)
j W (l)

)
,

(6)

where Ni denotes the set of neighbors of node i. di,
dj represent the degrees of nodes i and j respectively. The
function Sim(, ., ) is a linear similarity measure constructed
in this paper, which calculates the similarity between nodes i
and j to form the similarity matrix S. Regarding the unary
normalization operator ⊕, it maintains the similarity value
when Sim(hi, hj) equals l, and halves the similarity value
calculated by Sim(hi, hj) when it does not equals to l.
Specifically, it is defined as shown in Eq. (7):

⊕Sim(hi, hj) =

{
1, Sim(hi, hj) = 1
Sim(hi,hj)

2 , Sim(hi, hj) ̸= 1
. (7)

In the original graph convolutional network, if a graph
node has no neighbors, it can only aggregate all of its own
information, meaning the aggregation weight is 1. However,
if this node is not an isolated node, the aggregation weight
for any neighbor would be less than or equal to 1/2. In the
proposed approach, if the similarity between two nodes is
1, it indicates that the graph node is an isolated node, and
thus the aggregation weight is set to 1. If the similarity is not
1, similarly to the original graph convolutional network, it is
necessary to map the similarity to a value between 0 and 1/2.
Here, the classical normalization operator Ŝ = D− 1

2SD− 1
2

used in GCN is not employed. Instead, the elements that are
not equal to 1 are directly divided by 2 to achieve the desired
result. This method is supported by extensive experiments,
which demonstrate that this straightforward operator design
yields superior performance.

B. Linear Similarity Measure based on Minkowski Distance

The Minkowski distance is a method used to measure
the distance between two points in a multidimensional space,
playing a significant role in quantifying the similarity between
sample points. In the task of semi-supervised node classifi-
cation, nodes with closer features are more likely to belong
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to the same class. Therefore, in this study, the Minkowski
distance is employed instead of cosine similarity to construct
a similarity measure that characterizes the proximity between
node features.

In Euclidean space, for two sample points x =
(x1, x2, ..., xn) and y = (y1, y2, ..., yn), their Minkowski
distance [29] d(x, y) is defined as shown in Eq. (8):

d(x, y) = (

n∑
i=1

| xi − yi |p)
1
p , (8)

where p is a positive real-valued parameter that controls the
sensitivity of the metric distance.When p = 1, it corresponds
to the Manhattan distance as shown in Eq. (9):

d(x, y) =

n∑
i=1

| xi − yi | . (9)

When p = 2, it becomes the Euclidean distance as shown
in Eq. (10):

d(x, y) = (

n∑
i=1

| xi − yi |2)
1
2 . (10)

As p approaches infinity, it converges to the Chebyshev
distance as shown in Eq. (11):

d(x, y) = max
i

| xi − yi | . (11)

Based on the Minkowski distance, for the features hi, hj

of nodes i and j, this study construct the following linear
similarity measure function [Eq. (12)]:

Sim(hi,hj) = −d(hi,hj)−Dmin

Dmax −Dmin
+ 1, (12)

where D is a distance matrix composed of Minkowski
distances between different nodes, Dmax = max

∑
i,j dij

is the maximum value among all elements in the distance
matrix, Dmin = min

∑
i,j dij is the minimum value among

all elements in the distance matrix, and d(hi, hj) represents
the Minkowski distance between the features of node i and
node j.

This study normalizes the distance d(hi, hj) to a uniform
scale by computing dij =

d(hi,hj)−Dmin

Dmax−Dmin
. A value of dij closer

to 1 indicates that the features of nodes i and j are less similar,
whereas a value closer to 0 signifies greater similarity. The
closer the features, the higher the similarity, and vice versa.
This suggests that the similarity measure function needs to be
designed in such a way that it maps a smaller di to a larger
similarity value, and a larger di to a smaller similarity value.
It requires the function to be monotonically decreasing and
have its range within [0, 1] in the interval [0, 1]. Based on this
principle, various similarity measure functions were designed,
such as Sim(dij) = cos

(
π
2 dij

)
, Sim(dij) = 1 − sin

(
π
2 dij

)
,

and Sim(dij) = sigmoid(−x) + 1
2 . Nonetheless, the com-

prehensive experimental evaluation revealed that the linear
similarity measure function, defined as Sim(dij) = −dij +1,
consistently outperformed the other methods, showcasing its
superior performance.

C. SGCN for Semi-supervised Node Classification

To demonstrate the effectiveness of the proposed SGCN
in learning graph node feature representations, this work
follows the same approach as Kipf [19], employing a two-
layer graph convolutional network for semi-supervised node
classification. Two graph convolutional neural network models,
SGCN-GCN and SGCN-SGCN, are constructed to tackle the
semi-supervised node classification task. Here, GCN refers to
the original classical graph convolutional network. The SGCN-
GCN model is defined as shown in Eq. (13):

fSGCN−GCN (Â,X; θ) =

softmax(ÂReLU((λÂ+ (1− λ)Ŝ)XW (0))W (1))
, (13)

where ReLU((λÂ + (1 − λ)Ŝ)XW (0)) represents the
first layer of this work proposed SGCN. The second layer,
softmax(ÂX(1)W (1)), corresponds to the classical GCN
network before improvement, where X(1)= ReLU((λÂ+(1−
λ)Ŝ)XW (0)) is the graph node feature matrix output by
the first convolutional layer. The schematic diagram of the
constructed model is shown in Fig. 1, where the first layer
is the proposed SGCN, and the second layer is the traditional
GCN.

Fig. 1. Schematic diagram of the SGCN-GCN model.

The SGCN-SGCN model is formulated as follows [Eq.
(14)]:

fSGCN−SGCN (Â,X; θ) =

softmax((λÂ+ (1− λ)Ŝ(1))

ReLU((λÂ+ (1− λ)Ŝ(0))XW (0))W (1))

, (14)

where, ReLU((λÂ + (1 − λ)Ŝ(0))XW (0)) represents the
first layer of the proposed SGCN. softmax((λÂ + (1 −
λ)Ŝ(1))X(1)W (1)) also represents the second layer of the
proposed SGCN. X(1)= ReLU((λÂ + (1 − λ)Ŝ(0))XW (0))
represents the graph node feature matrix output by the first
convolutional layer’s processing. A larger fusion factor λ
indicates that structural information has a greater weight in
the information propagation between nodes, while the weight
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of attribute information is relatively smaller. Like many pa-
rameters in deep learning models, W is a parameter matrix
that needs to be trained using the gradient descent algorithm.
If the model is extended to L layers and the expanded SGCN-
SGCN model is used for semi-supervised node classification,
the process is shown in Algorithm 1.

Algorithm 1 Expanded SGCN-SGCN for Semi-Supervised
Node Classification
Require: Graph (V,E,X), Adjacency matrix A, Initial labels

Y(0), Number of SGCN layers L, Fusion factor λ
Ensure: Predicted labels YU

1: Initialize node embeddings H(0) = X
2: Initialize transformation matrices W(0), W(1), ...

,W(L−1)

3: Compute Ã = A+ IN ,Dii =
∑

jÃij

4: Compute Â = D−1/2ÃD−1/2

5: for l = 1 to L do
6: Calculate similarity matrix S(l−1) using Equation (12)
7: Ŝ(l−1) = ⊕S(l−1)

8: Z(l) = σ(λÂH(l−1)W(l−1) + (1− λ)Ŝ(l−1))
9: H(l) = Z(l)

10: end for
11: Train the model using labeled nodes L:
12: L0 =

∑
i∈L loss(H(L)

i ,Y
(0)
i )

13: Predict labels for unlabeled nodes U:
14: YU = softmax(H(L)

U )
15: Return YU

This work construct two graph convolutional models for
semi-supervised node classification by combining the proposed
SGCN with the traditional GCN. In addition to utilizing graph
structural information to obtain neighbor aggregation weights,
SGCN also takes into account the attribute information of
similarity between nodes. The similarity measure constructed
using the Minkowski distance differs from cosine similarity
in that it more precisely captures the closeness between node
features, focusing on the similarity of feature content rather
than spatial proximity. It is straightforward to envision that, in
the context of semi-supervised node classification, nodes with
similar features are more likely to belong to the same cate-
gory. From this perspective, the rationale behind the approach
becomes evident.

D. Analysis of Algorithm Complexity

Assuming L is the number of graph convolutional layers,
N is the number of nodes, ∥A∥0 is the number of non-zero
elements in the adjacency matrix A, and F is the number of
node features. The time complexity of training a traditional
GCN model for semi-supervised classification is O(L ∥ A ∥0
F+LNF 2) and the space complexity is O(LNF+LF 2) [30].
For the L-layer SGCN this study designed, the time complexity
required for training is O(2L ∥ A ∥0 F + LNF 2), and the
space complexity is O(2LNF + LF 2). It is evident that the
proposed scheme can learn better node feature representations
while maintaining the same order of magnitude of time and
space complexity as the classical GCN. Taking the Cora dataset
as an example and keeping consistent with the experimental
setup detailed in Section 5, this work utilized a two-layer GCN
architecture to perform semi-supervised node classification

over 300 epochs. The training time for the GCN model was
8.21 seconds, while the proposed enhanced SGCN model took
9.08 seconds. The slight increase in time consumption of the
proposed scheme is mainly attributed to the calculation of the
similarity matrix.

V. EXPERIMENT AND RESULT ANALYSIS

To validate the effectiveness of the proposed SGCN in
graph node representation learning, this study leverages the
two graph convolutional neural network models outlined in
the preceding section to evaluate their performance on semi-
supervised node classification tasks. In this section, the ex-
perimental datasets, benchmark models, and experimental pa-
rameter settings are first introduced. Then, the experimental
results of different models are analyzed. Finally, the impact
of different metric distances, namely Manhattan distance,
Euclidean distance, and Chebyshev distance, as well as varying
fusion factors, on the performance of the two constructed semi-
supervised node classification models is explored.

A. Datasets and Baseline Methods

This work evaluate the performance of the two proposed
models on three benchmark citation network datasets: Cora,
Citeseer, and PubMed [31]. These citation network datasets
are structured as graphs with papers represented as nodes and
citations between papers as edges. The specific details of these
datasets are presented in Table I. Taking the Cora dataset as
an example, it contains 2708 graph nodes and 5429 edges,
with 7 domain categories represented by 7-dimensional one-
hot vectors. Each paper is described by a 1433-dimensional
one-hot feature vector, where each dimension takes a value of
0 or 1, indicating whether the corresponding word appears in
the paper. The label rate in the dataset is 5.2%, meaning that
94.8% of the data is unlabeled.

TABLE I. THE DETAILS OF CITATION NETWORK DATASETS

Dataset Nodes Edges Classes Features Labeled rate

Cora 2708 5429 7 1433 5.2%
Citeseer 3327 4732 6 3703 3.6%
Pubmed 19717 44338 3 500 0.3%

To validate the effectiveness and advancement of the pro-
posed models for semi-supervised node classification tasks,
this study compare them with the following benchmark meth-
ods: Multi-Layer Perceptron (MLP) [32], Label Propagation
(LP) [33], Semi-supervised Embedding (SemiEmb) [34], Man-
ifold Regularization (ManiReg) [35], Iterative Classification
Algorithm (ICA) [36], DeepWalk [37], Planetoid [38], GCN
[19], GraphSAGE [11] and GAT [10].

B. Implementation Details

Experimental setup was equipped with an 11th Gen Intel®
CoreTM i7-1165G7 processor, operating at 2.80 GHz and ac-
companied by 16GB of RAM. this work developed the SGCN-
GCN and SGCN-SGCN models utilizing Python 3.9.10, Py-
Torch 2.2.1, and torch-geometric 2.5.3, all within the Windows
10 environment. The models were evaluated on three distinct
datasets, employing uniform hyperparameter configurations: an
L2 regularization factor of 5×10−4, a hidden layer size of 128
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units, the Adam optimizer, 300 training epochs, and a learning
rate set to 0.01. The reported experimental outcomes reflect
the mean classification accuracy across 10 distinct model
parameter initializations, ensuring the reliability and robustness
of these findings.

C. Experimental Results and Analysis of Different Models

Table II reports the average accuracy of different semi-
supervised node classification models, with the highest and
second-highest accuracies highlighted in bold. In addition to
the experimental results on classification accuracy for MLP,
GCN, GraphSAGE, GAT, and the two models proposed in this
study, the results for all other models are derived from their
original publications. As can be seen from the table, the two
proposed models demonstrate superior performance compared
to other models on all three datasets. This is attributed to
the proposed SGCN, which considers not only the structural
information of the graph but also the similarity information
between nodes during information aggregation. Unlike the
cosine similarity in mathematical space, a linear similarity
measure using the Minkowski distance was designed, which
better describes the proximity relationship between node fea-
tures.

TABLE II. CLASSIFICATION ACCURACY (%) OF VARIOUS MODELS

Model Cora Citeseer Pubmed

MLP 57.6 58.9 72.9
ManiReg 59.5 60.1 70.7
SemiEmb 59.0 59.6 71.1
LP 68.0 45.3 63.0
DeepWalk 67.2 43.2 65.3
ICA 75.1 69.1 73.9
Planetoid 75.7 64.7 73.9
GCN 80.6 68.7 78.7
GraphSAGE 80.0 62.4 76.0
GAT 81.3 68.5 77.2
SGCN-GCN 81.5 69.5 79.5
SGCN-SGCN 81.3 68.9 79.9

In contrast, other methods have limitations: MLP only
uses node attribute information without considering the graph’s
structural information; ManiReg relies heavily on the data
structure within local neighborhoods and can easily overlook
global information; SemiEmb has high requirements for labels;
DeepWalk cannot model attribute information; Planetoid suf-
fers from information loss in the graph structure during random
sampling; GCN, GraphSAGE, and GAT adopt a neighborhood
aggregation scheme to improve performance by mixing the fea-
tures of nodes and their neighbors, but they do not fully utilize
the attribute information of the nodes themselves during the
aggregation process. The SimP-GCN model proposed in [12]
achieves the preservation of node similarity and the adaptive
integration of structural and similarity information through the
K-Nearest Neighbors (KNN) algorithm, a Node Similarity Pre-
serving Aggregation module, and a Self-Supervised Learning
module. In comparison, the scheme proposed in this study is
more straightforward and efficient, has a reduced number of
parameters, and exhibits stronger generalization capabilities.
Since the code provided for constructing the SimP-GCN model
in the original text did not utilize the same torch-geometric
package as the one used in this study for building graph
neural networks, significant errors occurred when attempting to

reproduce the results. Consequently, the relevant experimental
results for this model are not reported in this work.

The experimental results of the proposed SGCN-GCN and
SGCN-SGCN compared to the classical GCN are presented in
Fig. 2 below. Specifically, the SGCN-GCN achieves improve-
ments of 0.9%, 0.8%, and 0.8% in accuracy over the traditional
GCN on the three datasets, respectively, while SGCN-SGCN
achieves improvements of 0.7%, 0.2%, and 1.2%, respectively.

Fig. 2. Comparison chart with classical GCN classification accuracy.

D. Experimental Results and Analysis at Different Distances

This work report the classification accuracy of SGCN-GCN
and SGCN-SGCN under different metric distances on the Cora,
Citeseer, and Pubmed datasets in Fig. 3 and Fig. 4, respectively.
The horizontal axis represents the tested datasets, while the
vertical axis represents the classification accuracy, which is
the average of ten experimental results.

Fig. 3. Comparison of accuracy of SGCN-GCN at different metric distances.

The analysis of the figures reveals that both models perform
best using Manhattan distance and Euclidean distance on the
Cora and Pubmed datasets, while the Chebyshev distance
yields the best results on the Citeseer dataset. This can be
primarily attributed to the fact that the node feature dimensions
in the Cora and Pubmed networks are relatively low (1433 and
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Fig. 4. Comparison of accuracy of SGCN-SGCN at different metric
distances.

500, respectively), whereas the Citeseer network has a higher
dimension (3703). For nodes with lower-dimensional features,
which tend to be denser, using Manhattan and Euclidean
distances to calculate similarity can fully utilize each feature
value. In contrast, for nodes with higher-dimensional features,
which are relatively sparse, using the Chebyshev distance to
calculate similarity can better avoid interference from invalid
feature values.

E. Experimental Results and Analysis of Different Fusion
Factors

This work reports the variation in classification accuracy
of SGCN-GCN across various fusion factors on the Cora,
Citeseer, and Pubmed datasets, with Fig. 5, Fig. 6, and
Fig. 7 depicting the performance under Manhattan distance,
Euclidean distance, and Chebyshev distance, respectively. The
horizontal axis represents the fusion factor, while the vertical
axis indicates the classification accuracy, which is the average
of ten experimental results.

Fig. 5. SGCN-GCN classification accuracy variation map at Manhattan
distance.

The analysis of the figures reveals that the SGCN-GCN
model achieves better classification performance on the three
datasets when the similarity information allocated to the first

Fig. 6. SGCN-GCN classification accuracy variation map at Euclidean
distance.

Fig. 7. SGCN-GCN classification accuracy variation map at Chebyshev
distance.

layer of the graph convolutional network carries a larger
weight. This is because only the first layer of the network
utilizes similarity information for aggregation. Specifically, the
model performs well when the fusion factor λ ranges from
0.1 to 0.5. When λ = 1 and λ = 0, the model solely
relies on graph structural information (original GCN) and sim-
ilarity information, respectively, for information aggregation.
Notably, this study observes that the model using similarity
information computed by Manhattan and Euclidean distances
achieves better classification performance than the classical
GCN when λ = 0 (i.e. using only similarity information).
Irrespective of the value of the fusion factor λ, the model
that integrates similarity information computed by Manhattan
and Euclidean distances consistently demonstrates excellent
classification results on the Cora and PubMed datasets. This
verifies the validity of the approach to integrate similarity
information into the original GCN framework.

This work reports the variation in classification accuracy
of SGCN-SGCN across various fusion factors on the Cora,
Citeseer, and Pubmed datasets, with Fig. 8, Fig. 9, and Fig.
10 depicting the performance under Manhattan distance, Eu-
clidean distance, and Chebyshev distance, respectively. The
horizontal axis represents the fusion factor, while the vertical
axis indicates the classification accuracy, which is the average
of ten experimental results.
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Fig. 8. SGCN-SGCN classification accuracy variation map at Manhattan
distance.

Fig. 9. SGCN-SGCN classification accuracy variation map at Euclidean
distance.

The analysis of the figures indicates that the SGCN-SGCN
model, which leverages similarity information for information
aggregation in both layers of the network, achieves superior
classification performance on the Cora and Pubmed datasets
when each layer of the graph convolutional network is assigned
a lower weight to the similarity information. Specifically, the
model performs well when the fusion factor λ is greater than or
equal to 0.6. When λ = 1 and λ = 0, the model relies solely on
graph structural information (original GCN) and similarity in-

Fig. 10. SGCN-SGCN classification accuracy variation map at Chebyshev
distance.

formation, respectively, for information aggregation. However,
the model’s performance on the Citeseer dataset is suboptimal,
likely due to the sparsity of the feature vectors caused by its
higher node feature dimension (3703).

VI. DISCUSSION

This study introduces SGCN, a novel graph convolutional
network that integrates a linear similarity measure based on
Minkowski distance with traditional graph structural informa-
tion, addressing the limitations of conventional GCNs. Tradi-
tional GCNs typically overlook node attribute information and
tend to disrupt the similarity information between nodes during
information aggregation. Methods like GraphSAGE and GAT
improve neighborhood aggregation but fail to fully capture
node feature similarity and require the addition of supervised
modules with more parameters and black-box characteristics.

Experimental results demonstrate that SGCN performs best
when similarity information is weighted more heavily in the
first layer, with the fusion factor between 0.1 and 0.5. This
indicates that, while structural information plays a dominant
role in the information propagation and aggregation of graph
nodes, attribute information also provides a complementary,
supportive function. Among the distance metrics tested, Man-
hattan and Euclidean distances consistently yield better results,
suggesting they are more effective at capturing feature prox-
imity in node classification tasks.

Future work may focus on extending SGCN to more
specific graph data, such as functional brain networks, and
implementing adaptive fusion factor adjustments to learn bet-
ter node embedding representations, aiming to improve the
recognition accuracy of brain diseases such as Alzheimer’s
and autism.

VII. CONCLUSION

Traditional Graph Convolutional Networks (GCNs) pri-
marily rely on graph structure for node aggregation, often
overlooking node attribute information. This approach can
reduce node similarity and impede effective node feature
learning, particularly in semi-supervised classification tasks. To
address these issues, this study proposes SGCN, a novel Graph
Convolutional Network. SGCN introduces a linear similarity
measure based on Minkowski distance between node features,
enhancing the description of similarity. By integrating this
measure with traditional graph structure, SGCN improves node
feature representation. Experimental validation on datasets
such as Cora, Citeseer, and PubMed demonstrates that SGCN
models (SGCN-GCN and SGCN-SGCN) significantly outper-
form traditional GCNs in node feature learning. The impact
of metric distances and fusion factors on performance is also
analyzed, providing insights for model optimization.
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