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Abstract—During driving, drivers often overlook the traffic
signs along the roads compromising road safety and increasing the
risk of accidents. To address this, artificial intelligence (AI) and
deep learning techniques are employed, taking into consideration
the improvement of advances in Artificial Neural Networks
(ANNs) and image processing for robust road sign detection.
In this work, we compare the performance of existing state-of-
the-art object detection models for road sign detection, including
YOLOv8, YOLOv9, RTMDet, Faster-RCNN and RetinaNet, using
a large dataset of images of road signs. These models are fine-
tuned and hyperparameters are optimized with varied settings
like auto-orientation and augmentation during the preprocess-
ing and training phase. The models are then tested, and key
performance indicators such as mean average precision (mAP),
number of inferences performed per second [frames per second
(fps)], and total loss are evaluated. Our study reaffirms the
earlier findings in which YOLOv9 and YOLOv8 outperform
other detectors in real-time detection tasks because they are
faster in inference or prediction than most detectors, but with a
compromise in accuracy, as highlighted by the fast fps rates. In
contrast, RTMDet is fast and reliable, making it a highly effective
option for detecting various road signs. The insights presented
in this research are useful in identifying the appropriateness and
drawbacks of each model, thereby benefiting from the selection
of the best suited model for real-world applications, such as
autonomous vehicles or self-driving cars.
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I. INTRODUCTION

A. Background

Over the last few years, the use of computer vision and
object detection has become prominently efficient because
of the shift in deep learning models. Such advancements
have embellished object identification in both pictures and
videos with great precision and efficacy. The relevance of an
object being detectable by a vehicle increases with the overall
progress in autonomous vehicles and smart and connected
roads. Road sign detection has the necessary accuracy and
operational capacity for serving its purpose in ensuring the
safety for autonomous vehicles and advanced driver assistance
systems ADAS.

B. Current State of Object Detection Models

This research paper presents a thorough comparative
analysis of five leading object detection models: YOLOv9,

YOLOv8, RetinaNet, RTMDet, and Faster R-CNN [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19]. Each of these models epitomizes
state-of-the-art techniques in object detection, boasting unique
strengths and characteristics that influence their performance
in identifying objects within visual data.

• YOLO: You Only Look Once (YOLO) series, specif-
ically YOLOv9 and YOLOv8, are most famous with
real-time object detection, and that is why such models
are applicable in areas that require high response rates
[20], [21], [22]. They are particularly remarkable in
terms of speed and efficiency of detection, which is
crucial in contexts, such as autonomous driving, where
minimizing detection time is of utmost importance.

• RetinaNet: Distinguished by its ability to accurately
detect objects of varying sizes within images, making
it a robust choice for scenarios involving diverse object
scales. RetinaNet employs a Feature Pyramid Network
(FPN) and a focal loss function to address the class
imbalance and enhance detection accuracy [23], [24].

• Faster R-CNN: Widely recognized for its precise
localization of objects, achieved through a region-
based convolutional neural network that meticulously
analyzes different regions within an image to ensure
accurate detection [25], [26].

• RTMDet: RTMDet is known for its robustness in
managing complex scenes and occlusions, demon-
strating a superior ability to detect objects even un-
der challenging conditions [27]. RTMDet integrates a
modified ResNet-50 backbone with spatial and feature
alignment modules to optimize detection performance.

C. Motivation

While YOLO series has been the object detection models
that has made remarkable progress, there is a lack of extensive
comparative analysis that is not only centered on the recent
versions of the YOLO models (YOLOv9 and YOLOv8) but
other cutting-edge models like RetinaNet, RTMDet, and Faster
RCNN. Earlier works have mostly focused on giving atten-
tion to overall object identification or testing only a few of
these models under various circumstances, which really did
not enable researchers to make a Comparative analysis of
these models for the purpose of road sign identification. This
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research intends to address this gap by comparing these models
in detail and side by side in the context of road sign detection
focusing on several measures and metrics and with an eye to
useful recommendations for implementation in self-driving car
technologies and as well in the driver assistant systems.

D. Contributions

The purpose of this work is to advance the prior art related
to object detection and present a comprehensive and compara-
tive evaluation of five of the most relevant approaches. When
assessing the accuracy of each model, we have apply a set of
unified metrics stemmed from a dataset of road signs, which
provides useful information on the merits and drawbacks of
each model. It can help researchers and practitioners on how
best to choose the most suitable object detection model for
intelligent transportation systems and autonomous driving.

This paper presents a comprehensive comparison of five
prominent object detection architectures: YOLOv8, YOLOv9,
RTMDet, RetinaNet, and Faster RCNN for the road sign
detection study without leaving out the factors such as mAP
and inference time. This paper is organised as follow: Section
II presents the literature review relevant to this work, where
we discuss the current state of object detection algorithms as
well as road sign detection. Section III describes the three
step model architectures of the aforementioned algorithms
while Section III(B) explains the design principles and features
of these algorithms. Section IV explains the experimental
setup, procedures on how the datasets were prepared, training
configurations that were used for training the models as well
as the evaluation metrics that were employed in the assessment
of the performance of each model. Results and discussion
are discussed in Section V. Lastly, Section VI of this paper
offers the conclusion and a discussion of the experiments to
derive the factors that should be preferred while choosing
between accuracy, speed, and confidence in detecting a road
sign from the ones listed above or some other algorithms as
per the parameters that will be followed strictly at the time of
implementing the vision based systems.

II. LITERATURE REVIEW

The recognition of road signs is one of the critical segments
of Intelligent Transportation Systems (ITS) performance, so
its function is significant for providing road safety and effec-
tiveness. In addition, as the deep learning starts to become
more popular, object detection models show great potential
in recognizing road sign. Road sign detection is revealed in
this literature review as a line of research that experienced
significant development in the last five years. In this section,
the object detection models are introduced and analyzed based
on the approach used, efficiency, effectiveness, and the kind of
application which is road sign detection. The given review cul-
minates the prior studies in order to perceive common aspects,
issues, and opportunities in order to further establish more
reliable and accurate type of road signs detection systems.

• This research enhanced YOLOv8 by adding blur and
noise, and incorporating an asymptotic feature pyra-
mid network, which improved the detection of small
target objects. It achieved a 3.31% increase in mean
Average Precision (mAP) and a 3.59% increase in

recall on the TT100K dataset. These improvements
were confirmed through ablation studies, highlighting
the contributions of both data augmentation and the
AFPN enhancements [28].

• Enhanced YOLOv8 algorithm for traffic sign recogni-
tion using the Kaggle dataset incorporated Cross-Stage
Partial connection and Path Aggregation Network,
achieving 80% accuracy, 64% precision, and 65.67%
recall on test data. The use of stochastic gradient de-
scent optimization and dropout helped curb overfitting,
demonstrating the model’s efficacy in complex traffic
sign analysis [29].

• In a comparative study, YOLOv5 demonstrated supe-
rior performance over SSD in traffic sign recognition,
achieving a mAP@0.5 of 97% and processing images
at 30 FPS on the VOC dataset. SSD showed 90% ac-
curacy but was significantly slower, processing images
at only 3 FPS. YOLOv5’s faster recognition speed and
higher recall score make it a better solution for traffic
sign recognition in Intelligent Transportation Systems
[30].

• This research improved traffic sign detection using
Faster R-CNN with enhancements like feature pyra-
mid, deformable convolutions, and ROI alignment.
Tested on the TT100K dataset, it achieved high ac-
curacy rates of 92.6% in sunny conditions, 90.6% at
sunset, and 86.9% in rainy conditions, outperforming
SSD, YOLOv2, and even YOLOv5 in less favorable
lighting and weather conditions [31].

• A real-time traffic sign detection system using Faster
R-CNN was trained on a dataset of 1880 images
from Turkey and the German Traffic Sign Recognition
Benchmark (GTSRB). The model, trained over 10,000
iterations, achieved an accuracy of 88.99% and a
total loss rate of 0.220, demonstrating robust detection
capabilities [32].

• Zhu et al. developed a RetinaNet-based algorithm
achieving a final F1 score of 0.923. While the model
performed well in favorable conditions, it faced lim-
itations in adverse weather, indicating a need for
future research to improve performance under varied
conditions [33].

• Inspired by YOLOv4 and YOLOv5, the TSR-SA
method enhanced traffic sign detection by incorporat-
ing high-level features, a receptive field block-cross
in the neck, and a Random Erasing-Attention data
augmentation method. This approach achieved a state-
of-the-art mAP of 90.2% on the TT100K dataset,
surpassing YOLOv4 and YOLOv5-x, though it faced
challenges with category imbalance [34].

• Senthilnayaki’s system used Faster R-CNN for detec-
tion and Inception V2 for classification, improving
detection in varied conditions by increasing anchor
thickness and enhancing feature map resolution. This
method proved effective and resilient, with plans for
future enhancements to refine feature maps for more
robust proposals [35].
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• A system using the RetinaNet model was developed
for real-time traffic light detection, employing trans-
fer learning and modifications to anchor box sizes
to detect small traffic lights. The model achieved
a weighted mean average precision (mAP) of 0.54
with an execution time of 108ms, showing significant
improvements in detection accuracy and speed [36].

• Jiang’s work on an improved YOLOv5 network intro-
duced a balanced feature pyramid and a global context
block, enhancing feature fusion and extraction. Tested
on the TT100K dataset, the model showed signifi-
cant performance improvements with a 1.9% increase
in mAP@.5, a 2.1% increase in mAP@.5:0.95, and
improvements in precision and recall by 2.4% and
3.3%, respectively, proving its superiority for traffic
sign detection [37].

III. MODELS ARCHITECTURE

A. YOLOv8

The YOLOv8 model architecture represents a significant
advancement in object detection, offering improved accuracy
and speed over its predecessors. As shown in Fig. 1, the
backbone of YOLOv8 is a modified CSPDarknet53 with 53
convolutional layers and cross-stage partial connections to
enhance information flow [38].

The head of YOLOv8, includes multiple convolutional and
fully connected layers responsible for predicting bounding
boxes, objectiveness scores, and class probabilities. A notable
feature of the head is the self-attention mechanism, which
enables the model to focus on different parts of an image,
adjusting the importance of various features.

YOLOv8 adopts an anchor-free detection approach, di-
rectly predicting object centers instead of offsets from prede-
fined anchor boxes, thus speeding up post-processing steps like
Non-Maximum Suppression (NMS). Additionally, YOLOv8
introduces changes in convolutions, such as replacing a 6x6
conv with a 3x3 conv in the stem and modifying the main
building block, which enhances performance and efficiency.

B. YOLOv9

The YOLOv9 model architecture represents a significant
advancement in real-time object detection, offering superior
accuracy and efficiency compared to previous models. The
backbone architecture utilizes Cross-stage Partial (CSP) Con-
nection blocks to enhance gradient flow and reduce data loss
during the feed-forward process, optimizing performance and
accuracy. The head of YOLOv9 incorporates Programmable
Gradient Information (PGI) and the Generalized Efficient
Layer Aggregation Network (GELAN), which are crucial for
preventing data loss, ensuring accurate gradient updates, and
optimizing lightweight models for efficient object detection
tasks (see Fig. 2 and 3). YOLOv9 also brings two new
architectures, namely, YOLOv9-C and YOLOv9-E that im-
prove accuracy and object detection efficiency in different
applications through information choking and gradient flow
rectification [39]. In addition, the YOLOv9 model has top-level
accuracy and efficiency among the current models, including
RT-DETR, YOLO-MS, or others due to the efficient use of
conventional convolutions.

Fig. 1. YOLOv8 architecture.

Fig. 2. YOLOv9 programmable gradient information.

C. RetinaNet

RetinaNet is a pioneering one-stage object detection model
known for its exceptional performance in detecting objects
at various scales. The unified network includes a backbone
Convolutional Neural Network (CNN) and two task-specific
subnets: the Classification Subnet and the Box Regression
Subnet.

Fig. 3. YOLOv9 GELAN.
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Fig. 4. RetinaNet structure.

Fig. 5. Detailed structure.

The backbone incorporates a Feature Pyramid Network
(FPN), which generates a multi-scale feature pyramid by
combining low-resolution semantically strong features with
high-resolution features for accurate object detection. The
Classification Subnet predicts object presence probabilities,
while the Regression Subnet handles bounding box regression
from anchor boxes, both using feature maps from the FPN (Fig.
4) and (Fig. 5). A key innovation is the Focal Loss function,
which addresses class imbalance by assigning higher weights
to hard examples, enhancing detection accuracy [24], [40].
Translation-invariant anchor boxes at different pyramid levels
(P3 to P7) cover various scales and aspect ratios, enabling
precise object localization and classification. During training,
Stochastic Gradient Descent (SGD) is used with learning rate
adjustments and data augmentation techniques like horizontal
flipping to improve generalization.

D. RTMDet

RTMDet is an architecture will be proposed for real time
object detection on the basis of the YOLO series of algorithms.
It is used in scenarios where the detection of objects within
images or videos in real-time is required, which makes this
option highly effective in real-life designs. It uses ResNet-50
as its backbone after reducing the number of layers and pa-
rameters it uses for feature extraction. That is, some important
modules: spatial attention module (SAM) is used to improve
the feature extraction and the feature alignment module (FAM)
to align the features from different scales [27].

The detection head of RTMDet uses a single convolutional
layer to predict object bounding boxes and class probabilities,
handling objects at three different scales: Depending on the
amount of work, there are small, medium, and large offices.
The RTMDet has three losses: CIoU loss that measures
the loss of shapes and sizes, objectiveness loss that boosts
completeness, and classification loss to maximize accuracy.
For training, this model is trained on a large number of
images and their corresponding labels and for the purpose of
data augmentation has a considerable number of techniques
incorporated. In inference, RTMDet replied it supports real-
time object detection on still image and video, and it is
deployable on different hardware environment such as GPU
and TPU.

Fig. 6. RTMDet Architecture.

Fig. 7. Faster RCNN Architecture.

In this work, RTMDet presents itself with several advan-
tages compared to the existing architectures of object detection
such as high accuracy, high speed along with lesser computa-
tional complexity. Due to these characteristics, the technology
is applied in self-driving cars, the monitoring systems, and
robots among other areas. The above mentioned architecture
including details of its subcomponents can be evident from
Fig. 6.

E. Faster RCNN

Faster RCNN is a renowned object detection architecture
that has significantly influenced the field of computer vision.
The architecture comprises convolution layers trained to ex-
tract specific features from images, akin to how coffee filters
allow only desired elements to pass through.

The Region Proposal Network (RPN) is a pivotal com-
ponent of Faster RCNN, efficiently generating high-quality
region proposals for subsequent detection. Fully connected
neural networks are utilized to predict object classes and refine
bounding boxes based on the regions proposed by the RPN (see
Fig. 7).

Training Faster RCNN involves optimizing convolution
layers filters, RPN weights, and the last fully connected layer
weights using Stochastic Gradient Descent (SGD), ensuring
effective and efficient object detection [26]. Faster RCNN has
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demonstrated remarkable performance improvements over its
predecessors, achieving faster processing speeds during both
training and testing phases and setting new standards in object
detection accuracy and efficiency.

IV. EXPERIMENT

A. Dataset

The “Road Signs” dataset sourced from Roboflow-100
consists of 21 classes falling under the super category “Road
Signs”. The images sample is shown in Fig. 8.

Fig. 8. Dataset images.

The dataset encompasses around 20 classes. It consists
of a total of 2095 images, divided into a training set with
1378 images, a validation set with 488 images, and a test
set with 229 images. Preprocessing techniques applied include
auto-orientation to adjust image orientation and resizing to a
resolution of 640x640 pixels, with no manual augmentations

initially applied. However, each object detection model used
in the study incorporated its own set of image augmentations
during the training process to enhance the training data and
improve model robustness and performance. This dataset offers
a diverse collection of road sign images across multiple classes,
ensuring uniformity in image dimensions and orientation for
effective model training and testing.

B. Training Hyperparameters

Yolov8 and Yolov9 were trained using Ultralytics, Reti-
naNet and FasterRCNN using Detectron2 while RTMdet was
trained using MMDetection. In this study, all the models
were trained for 30 iterations through the dataset. YOLV8
and YOLV9 were set to 16, while RetinaNet, Faster RCNN,
and RTMDet were set to 8. Here, parameters were adjusted
for YOLOv8 with AdamW optimizer where the learning rate
was set to 0. 0004, momentum of 0.9 and weight decay of
0.0005. As for optimization, YOLOv9 uses Standard Gradient
Descent (SGD) with a learning rate of 0.01, momentum of
0.9 and weight decay to 0.0005. YOLOv9 employed SGD
with a learning rate of 0.01, momentum of 0.9, and weight
decay of 0.0005. RetinaNet and Faster RCNN both used SGD
with a learning rate of 0.001, momentum of 0.9, and weight
decay of 0.0001. RTMDet was optimized using AdamW with a
learning rate of 0.004, momentum of 0.0002, and weight decay
of 0.0001. The notes on the training dataset for both YOLOv8
and YOLOv9 were YOLOv5CocoDataset and COCO for Reti-
naNet, Faster RCNN, and RTMDet.

C. Data Augmentation Techniques

To increase the reliability of object detection models with
respect to input images, the concept of data augmentation
was used at the time of training. This was achieved by pre-
processing the images by using albumentations for YOLOv8,
YOLOv9, and RTMDet which applied blur, median blur,
combining the image into grayscale, and CLAHE. On the other
hand, RetinaNet and Faster RCNN stacked the pre-process
tools provided by Detectron2, which involved resizing and
random flipping.

D. Evaluation

While evaluating the results of object detection model,
COCO evaluation metrics was used to make the evaluation.
For instance, in using the model, COCO bounding box(bbox)
test methodology was employed to assess the effectiveness of
the method in identifying objects and determining the degree of
precision. As this evaluation framework was widely employed
in determining the effectiveness of such models in detecting
malicious data, its use gave us a better chance to arrive at
sound conclusions on performance of our powerfully designed
model. The classification accuracy are recorded in Fig. 9 to
13.

V. RESULTS AND DISCUSSION

A. Mean Average Precision (mAP)

The mean average precision (mAP) is a key metric in
evaluating the performance of object detection models. The
mAP scores for mAP50-95, mAP50, and mAP75 are shown
in Table I.
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Fig. 9. Faster RCNN: Classification accuracy.

Fig. 10. Faster RCNN: False negatives.

Fig. 11. Faster RCNN: Foreground classification accuracy.

Fig. 12. RTMDet: mAP50.

Fig. 13. RTMDet: mAP.

TABLE I. MEAN AVERAGE PRECISION

Model mAP50-95 mAP50 mAP75
YOLOv8 0.814 0.961 0.892
YOLOv9 0.826 0.973 0.904
RTMDet 0.702 0.923 0.799

Faster RCNN 0.704 0.891 0.816
RetinaNet 0.755 0.911 0.854

Fig. 14. YOLOv8: Loss and accuracy.

Fig. 15. YOLOv9: Loss and accuracy.

YOLOv9 achieves the highest mAP scores across all met-
rics, indicating its superior accuracy. YOLOv8 also performs
very well, especially in terms of mAP50 and mAP75. Reti-
naNet shows a balanced performance, while Faster R-CNN
and RTMDet exhibit relatively lower mAP scores.

B. Inference Time

Inference time is critical for applications requiring real-
time object detection. The inference time of these models is
shown in Table II.

TABLE II. INFERENCE TIME

Model Inference Time
YOLOv8 0.0105s
YOLOv9 0.0311s
RTMDet 0.0576s

Faster RCNN 0.0844s
RetinaNet 0.0768s

YOLOv8 is the fastest model, making it highly suitable for
real-time applications. YOLOv9, while slower than YOLOv8,
still offers reasonable inference time. RTMDet, Faster R-CNN,
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and RetinaNet are significantly slower, with Faster R-CNN
having the highest inference time.

C. Total Loss

Total loss is a metric that indicates the overall error of a
model during training, where lower values typically signify
better performance. The total loss values for different ob-
ject detection models: YOLOv8, YOLOv9, RTMDet, Faster
RCNN, and RetinaNet, are depicted in Fig. 14 to 18 and
presented in Table III. Among the models compared, YOLOv8
and YOLOv9 exhibit higher total loss values, indicating rel-
atively higher error rates during training. On the other hand,
RTMDet, Faster RCNN, and RetinaNet demonstrate signifi-
cantly lower total loss values, suggesting better performance
and potentially more effective learning during training.

TABLE III. TOTAL LOSS

Model Total Loss
YOLOv8 2.0793
YOLOv9 2.1627
RTMDet 0.408

Faster RCNN 0.1519
RetinaNet 0.0735

Fig. 16. Faster RCNN: Total loss.

Fig. 17. RetinaNet: Total loss.

Fig. 18. RTMDet: Total loss.

D. Confusion Matrices

The performance of the YOLOv8, YOLOv9, Faster-RCCN,
Retina Net and RTMDet is depicted by confusion matrices in
Fig. 18 to 23.

Fig. 19. YOLOv8.

Fig. 20. YOLOv9.

E. Inference Result and Discussion

It is apparent from Fig. 24 to 28, that YOLOv9 followed
by YOLOv8 have the highest values of accuracy scores of all
the models in the paper. These models are also very accurate
especially when it comes to place recognition which is very
important with regards to road signs especially for safety
reasons. However, on the tradeoff – YOLOv8 is slightly faster
on the detection in comparison with YOLOv9. Therefore,
if the need is to detect an object in real-time on the road,
it may be desirable to use YOLOv8. However, there were
other approaches in our experiments, such as RTMDet, Faster
RCNN, and RetinaNet, slightly less effective in terms of speed
but providing a good enough accuracy. They may be useful
when speed is not the major factor into consideration as in case
of roads of high importance or, self-driven cars. Besides, in
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Fig. 21. Faster RCNN.

Fig. 22. RetinaNet.

terms of observing the curve of the total loss values, RetinaNet
presents the best learning status in training so that it could
develop more with more the training dataset. In conclusion,
the decision of the specific model to be selected depends with
the most valued criterium when it comes to the detection of
road signs which can include speed or accuracy or both.

VI. CONCLUSION

In conclusion, this paper analyzes the performance of
different object detection models which include YOLOv8,
YOLOv9, RTMDet, RetinaNet and Faster-RCNN for road sign
detection. YOLOv9 provides satisfactory results in terms of
identification speed and accuracy measure; however, its infer-
ence time is relatively longer than the other versions includ-
ing YOLOv8 with better real-time application performance.
RTMDet achieves a better balance which very importantly
is essential in scenarios where speed and accuracy are given
utmost importance. Faster RCNN and RetinaNet have high
enough accuracy, but the time for evaluation takes longer,

Fig. 23. RTMDet.

Fig. 24. YOLOv8.

Fig. 25. YOLOv9.

Fig. 26. Faster RCNN.

Fig. 27. RetinaNet.

Fig. 28. RTMDet.

which may be useful for applications requiring a higher proba-
bility of correct result. The work underlines the parameters of
accuracy, time and confidence in detecting the road contours
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and signs that can help to choose the best option for the given
application and to contribute to the creation of effecting road
safety as well as autonomous driving systems. Our future work
includes investigating more sophisticated ensemble approaches
to achieve high accuracy and avoid overfitting problem, as well
as to using more progressive data augmentation methodologies
for increasing model’s ability to generalize such as generative
adversarial network (GAN) or self-supervised learning to real-
world conditions and diverse environments, such as varying
weather, lighting, and occlusions.
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