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Abstract—Autism Spectrum Disorder (ASD) is a permanent 

neurological maturation condition that impacts communication, 

social interaction, and behavior. It is also associated with atypical 

walking patterns. This study aims to create an automated 

classification model to distinguish ASD children during walking 

based on the muscles Electromyography (EMG) signals. The 

study involved 35 children diagnosed with ASD and an equal 

number of typically developing (TD) children, all aged between 6 

and 13 years. The Trigno Wireless EMG System was used to 

collect EMG signals from specific muscles in the lower limb 

(Biceps Femoris - BF, Rectus Femoris - RF, Tibialis Anterior - 

TA, Gastrocnemius - GAS) and the arm (Biceps Brachii - BB, 

Triceps Brachii - TB) on the left side. To identify the most 

significant features influencing walking in ASD children, a 

statistical analysis using the Mann-Whitney Test was conducted. 

The dataset contained 42 features derived from the analysis of six 

muscles across seven distinct walking phases throughout a single 

gait cycle. Following this, the Mann-Whitney Test was utilized 

for feature selection, uncovering five significantly distinctive 

features within the EMG signals between children with ASD and 

those who were typically developing. The most notable EMG 

features were subsequently employed in constructing 

classification models, namely an Artificial Neural Network 

(ANN) and a Support Vector Machine (SVM), aimed at 

distinguishing between children with ASD and those who were 

typically developing. The results indicated that the SVM 

classifier outperformed the ANN classifier, achieving an accuracy 

rate of 75%. This discovery shows potential for employing EMG 

signal analysis and classification model algorithms in diagnosing 

autism, thereby advancing precision health. 
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I. INTRODUCTION 

Autism Spectrum Disorder (ASD) is a lifelong 
neurodevelopmental condition distinguished by speech 
impairments, atypical behaviors, and difficulties in social 
communication. Certain children diagnosed with ASD may 
display motor-related challenges concerning gross motor skills, 
encompassing issues with motor coordination, muscle tone, 
arm movement, postural stability and gait. These motor 
difficulties are linked to the intricate interplay between the 
neurotransmitter system and specific brain structures, which 

influence both basic motor skills and sensory-motor 
performance [1]. Typically, children with ASD display distinct 
gait patterns, often characterized by clumsiness [2], subtlety, 
and a wide base [3-4]. In some cases, children with ASD may 
exhibit toe-walking tendencies, which are more closely 
associated with motor behavior than language development. 
Therefore, early detection of ASD can rely on motor indicators 
[5-6]. Children with ASD may experience motor delays in 
gross and fine motor skills, affecting their locomotion [2, 7]. 

Electromyography (EMG) is an experimental methodology 
employed in the development, recording, and analysis of 
myoelectric signals. Its application, particularly in the 
biomedical field, has grown significantly. EMG-based models 
have provided accurate results in adjusting musculoskeletal 
geometry, such as muscle-tendon lengths, velocities, and arm 
moments for individuals with high-functioning hemiparesis 
during walking [8]. EMG signal analysis can also measure 
variations in EMG waveforms during different walking 
conditions, contributing to human-machine interactions and the 
adaptability of locomotion activities [9]. Research indicates a 
notable decrease in the activity of hip adductors and hamstring 
muscles during walking among individuals with wider pelvises 
[10]. 

Gait, the method by which walking occurs, can undergo 
clinical assessment through various means, such as laboratory 
tests like surface EMG, force plates, and kinematic 
assessments. The central nervous system plays a pivotal role in 
transmitting commands that activate the muscular system, 
ultimately facilitating movement. Measuring muscular activity 
through non-invasive EMG is a suitable method for 
characterizing motor activity [11]. The application of EMG in 
the rehabilitation of central neurological disorders, including 
autism and cerebral palsy, has demonstrated successful 
outcomes [12-13]. 

The perceptron-based technique employs algorithms rooted 
in the perceptron concept, encompassing single-layered 
perceptrons, multi-layered perceptrons, and Radial Basis 
Function (RBF) networks [14]. Between these, Artificial 
Neural Networks (ANN), a subtype of multi-layered 
perceptrons, has gained prominence in the analysis of EMG 
signals in various applications related to human gait, including 
classification [15, 16], prediction of gait angles [17, 18], and 
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muscle activation [15, 19]. ANN algorithms have been 
developed to bridge the gap between kinematic movement 
planning and human muscle activation for normal locomotion. 
These algorithms adjust parameters such as stance width, stride 
length, cadence and foot clearance [20]. Wang [15] developed 
an ANN-based model to address the challenge of accurate 
muscle activation prediction, showing a strong relationship 
between EMG signals and joint moments [15]. ANN has been 
widely used for gait pattern classification [17, 21-22]. Jung 
[22], for example, applied neural networks to classify gait 
phases for controlling exoskeleton robots, demonstrating 
superior performance compared to traditional gait classification 
methods using foot sensors. ANN has also proven effective in 
distinguishing between healthy individuals and those with 
pathological gait, as it can identify relevant parameters specific 
to classification tasks [17]. Thus, ANN is a valuable tool for 
gait classification. 

The Support Vector Machine (SVM) is a widely employed 
machine learning technique utilized for data analysis, 
classification and pattern recognition. SVM algorithms have 
been applied in numerous studies involving EMG signal 
analysis [23-26]. SVM has shown potential as a classifier for 
developing fully automatic EMG signal analysis systems for 
clinical use. It has successfully identified neuromuscular 
diseases with a classification accuracy of 100% by combining 
multi-class SVM algorithms with autoregressive (AR) features 
[24]. SVM algorithms have also excelled in distinguishing 
various human activities based on EMG signal data. An SVM 
classifier utilizing AR-based features attained a recognition 
rate more than 90% for activities like standing still, walking, 
running and jumping, and surpassing the performance of 
conventional SVM classifiers [26]. EMG signals have even 
been used for hand gesture recognition, with bend resistive 
sensors and SVM classifiers achieving a classification accuracy 
of 93.33%, making it suitable for communication by soldiers 
[27]. 

Notably, there has been limited attention given to the 
automated classification of ASD children based on EMG 
signals. Therefore, this study aims to differentiate between 
ASD and typically developing (TD) children using EMG signal 
analysis during walking. The lower limb and arm muscles 
examined in this study include Biceps Femoris (BF), Rectus 
Femoris (RF), Tibialis Anterior (TA), Gastrocnemius (GAS), 
Biceps Brachii (BB), and Triceps Brachii (TB). At the 
conclusion of this study, two classification models, namely 
ANN and SVM, were trained to distinguish EMG signals 
between children with ASD and typically developing children. 
The research seeks to assist medical practitioners in diagnosing 
ASD in children based on EMG signals from lower limb and 
arm muscles during walking, as there is currently no definitive 
medical test for ASD diagnosis [19]. 

II. METHODOLOGY 

This section provides an in-depth explanation of the 
proposed classification system illustrated in Fig. 1. The system 
comprises four key stages: EMG data acquisition, pre-
processing techniques, data selection and extraction methods, 
and the development of the classification model. 

 
Fig. 1. Overall flowchart. 

A. Data Acquisition 

In this study, 35 children diagnosed with ASD and 35 
typically developing children, aged between 6 and 13 years, 
with no history of orthopedic surgery, participated. All 
participants, both ASD and TD, displayed the capability to 
follow oral guidance given by the researcher. The ASD 
children were recruited from the National Autism Society of 
Malaysia (NASOM) center, local kindergarten and primary 
school in Selangor. The research procedures received ethical 
approval from the local ethics committee of Universiti 
Teknologi MARA (UiTM) in Shah Alam, Selangor, Malaysia, 
from May 29, 2015, to 2023 with updated database. 
Additionally, all participants were provided with written 
informed consent forms before participating. 

EMG data were collected while the subjects walked 
naturally at a normal pace. The EMG signals were recorded 
using the Trigno Wireless EMG System, a product of Delsys 
Inc. This system is specifically designed for reliable and 
consistent detection of EMG signals while minimizing noise 
interference. Each EMG sensor in the system is equipped with 
a built-in triaxial accelerometer, has a communication radius of 
40 meters, and features a rechargeable battery with a minimum 
runtime of seven hours. The system can transmit data to EMG 
Works Acquisition and Analysis software and supports up to 
16 EMG sensors (measuring 37mm x 26mm x 15mm) and 48 
accelerometer analog channels, facilitating integration with 
Vicon motion capture and data acquisition systems. 
Furthermore, the system offers full triggering capabilities, 
expanding the potential for integration with additional 
measurement technologies. 

During data collection, surface electrodes were used, and 
their placement followed the SENIAM convention system, 
ensuring that the distance between electrodes did not exceed 
one-fourth of the muscle fiber length [28]. Specifically, 12 
EMG sensors were affixed to the subjects' skin to capture EMG 
signals from the muscles of BF, RF, TA, GAS, BB, and TB. To 
secure the electrodes during the experiments, self-adhesive 
tapes were applied to the skin above the selected muscles, as 
depicted in Fig. 2. 
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Fig. 2. Electrode placement on subject. 

A securely positioned video camera was synchronized with 
the EMGWorks 4 Acquisition software to allow simultaneous 
recording of both movement and EMG data. This ensured 
synchronization in timing between the video camera and the 
software. To maintain consistency, a sample rate of 2000 Hz 
was chosen for recording, a rate achievable by all devices in 
this setup. EMG data for a single gait cycle was extracted and 
normalized as a percentage of the entire gait cycle duration. In 
this study, a gait cycle was defined as the duration between two 
consecutive heel strikes of the same leg. It's important to note 
that only EMG signals from the left lower limbs and arm 
muscles were considered for analysis in this study. 

B. Pre-processing Techniques 

At this stage, the raw EMG signals were normalized to a 
single complete gait cycle to minimize the influence of 
environmental noise that might have been present during data 
collection. Time normalization was selected as the most 
reliable method to enhance the quality of gait cycle analysis for 
EMG signal data [29]. It's important to note that each subject 
had varying time frames due to differences in walking speed 
and step length. To address this, EMG signal data for each 
muscle was controlled to fit within one gait cycle, ensuring 
consistency and obtaining standardized EMG signals for gait 
analysis. 

In this study, a complete gait cycle was defined as the 
duration from the left foot's initial contact to its terminal swing. 
This definition was applied due to the generally insignificant 
differences in gait parameters between the left and right legs 
during normal walking [30]. The EMG signals obtained via the 
EMG Works Acquisition software and the duration of one gait 
cycle from the video camera were synchronized. 

Fig. 3 and Fig. 4 illustrate the phases of the gait cycle and 
arm movements during normal walking, respectively. During 
walking, the ipsilateral arm and leg exhibit an anti-phase 
relationship, with the left leg in flexion and external rotation 
while the left arm is in internal rotation and extension. When 
one arm moves forward, the corresponding leg and torso move 
forward, and this relationship alternates between the left and 
right sides [31]. As walking speed increases, the contribution 
of active muscles to arm movements increases, while the total 
energy consumption decreases [31]. A previous study [32] has 
demonstrated that arm swinging during walking contributes to 
the stability of human gait. 

 
Fig. 3. Phases of one gait cycle. 

 
Fig. 4. Arms swing during normal walking [34]. 

The gait cycle normalization in this study involved two 
steps. The first step was time-normalizing the EMG signal data 
for the relevant muscles of all subjects to one gait cycle, 
expressed as a percentage. The time taken to complete one gait 
cycle in the recorded video was equated with the time frame of 
the acquired data. The 100% gait cycle represents the time 
taken for one complete gait cycle [33]. The second step 
involved averaging the normalized EMG signal data for the 
same muscle across all subjects. The normalization process for 
EMG signal analysis was conducted using Microsoft Excel 
software version 2013 (Microsoft Corp., USA). This study 
analyzed the tested muscles across seven gait phases: loading 
response (LR) spanning 0% to 10% of the gait cycle, mid-
stance (MST) covering 10% to 30%, terminal stance (TST) 
ranging from 30% to 50%, pre-swing (PSW) encompassing 
50% to 60%, initial swing (ISW) spanning 60% to 70%, mid-
swing (MSW) ranging from 70% to 90%, and terminal swing 
(TSW) from 90% to 100% of the gait cycle. 

C. Feature Selection Method 

The feature selection process involved identifying a new set 
of muscles comprising the most significant features to 
differentiate between ASD and TD children [34], subsequently 
enhancing the classification performance. Initially, the 
normalized EMG data were subjected to an examination of 
normality using the Shapiro-Wilk test. This test was employed 
to assess whether the dataset exhibited a normal distribution or 
not. Given the relatively small number of subjects, the Shapiro-
Wilk test is considered an appropriate method to determine the 
normality of the data. This test is particularly accurate and 
reliable in assessing the normality of scores [35]. Subsequently, 
non-parametric testing was applied since the data distribution 
in this study was found not to be normally distributed [35]. The 
study utilized the Mann-Whitney test with a 95% confidence 
interval to explore significant features within the EMG data of 
muscles including Biceps Brachii (BB), Rectus Femoris (RF), 
Gastrocnemius (GAS), Biceps Femoris (BF), Tibialis Anterior 
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(TA), and Triceps Brachii (TB) during walking, comparing 
children diagnosed with ASD and typically developing 
children. 

D. Classification Model Development 

This research presented two classification models: the 
Artificial Neural Network (ANN) and the Support Vector 
Machine (SVM); with the aim of distinguishing between ASD 
walking patterns and normal walking patterns. The 
computation of these algorithms was carried out using Matlab 
software version R2014a for evaluation. The input data for 
both classification models were derived from the significant 
muscle features that differed between ASD and TD children. 
The division of input-output data was based on the cross-
validation method, where the output represented the 
classification group for each condition, with '0' indicating ASD 
and '1' indicating TD children. 

One of the most commonly used techniques to assess the 
performance of the proposed classifier is stratified k-fold cross-
validation. In this study, five-fold cross-validation was 
conducted. This means that the original sample was randomly 
divided into five equal-sized subsamples. One of these 
subsamples was used as the training data, while the remaining 
four subsamples were retained as validation data to test the 
model. This process was repeated five times, corresponding to 
the number of folds. Each observation was used for both 
training and validation, but only once for validation in each 
fold [36]. It is worth noting that the use of K-fold cross-
validation is a reliable method and has the potential to provide 
meaningful results for estimating expected utilities [37]. 

For the ANN classification model, the number of hidden 
neurons in the hidden layer was set to achieve the best 
accuracy for adjusting the network weights. Scaled Conjugate 
Gradient (SCG) training algorithm, the optimum number of 10 
neurons are found to be the optimum model accuracy. The 
selection of the network architecture involved testing the 
performance of the network by varying the number of hidden 
neurons from 1 to 11 in two-interval increments. The scaled 
conjugate gradient method was employed to train the network, 
which updates weight and bias values. 

Regarding the SVM classification model, the input data 
were trained using name-value pair arguments for the kernel 
function. In this study, the linear kernel function, also known 
as the dot product, was used to obtain the best accuracy. 
Subsequently, each row of the sample data was classified using 
the information in the SVM classifier structure. The 
performance of both the ANN and SVM classification models 
was evaluated using a confusion matrix, which included 
measures such as accuracy, precision, sensitivity, and 
specificity. 

III. RESULTS AND DISCUSSION 

In this segment, we will examine the acquired results and 
initiate a discussion. A total of sixty children took part in this 
study, with 35 diagnosed with ASD and 35 TD children. The 
demographic information for both the ASD and TD groups is 
outlined in Table I. Notably, both groups exhibited a similar 
mean age, with ASD children having a mean age of 8.10 and 

TD children having a mean age of 9.40. However, the age 
variation was slightly wider among TD children, ranging from 
6.30 to 11.06 years, compared to ASD children, whose ages 
ranged from 6.30 to 10.50 years. Correspondingly, TD children 
had a higher mean height and weight compared to ASD 
children, with mean heights of 128.5 cm and 124.7 cm and 
mean weights of 30 kg and 28.8 kg, respectively. The range of 
heights for TD children was more extensive, spanning from 95 
cm to 159.5 cm, resulting in a higher standard deviation (SD) 
of 18.07, compared to ASD children's SD of 13.26. However, 
the weight variation among both ASD and TD children 
exhibited a comparable pattern, with standard deviation (SD) 
values of 11.14 and 11.60, respectively. It is noteworthy to 
mention that a substantial proportion of the ASD subjects 
approached by the researcher were boys, as depicted in Fig. 5. 
Approximately 60% of the ASD children involved in this study 
were male. This observation may be attributed to the fact that 
diagnosing autism in boys is often more straightforward than in 
girls. This finding aligns with previous research, which has 
consistently shown that ASD is nearly five times more 
common in boys than in girls [38]. 

The outcomes of the Mann-Whitney test unveiled 
noteworthy distinctions (p < 0.05) in muscle activation 
between these two cohorts of children, as succinctly outlined in 
Table II. Specifically, five muscles were found to be 
significantly useful in distinguishing between 'Normal' and 
'Autism' categories. The p-value for the TA (30%) muscle was 
found to be 0.017, whereas for the BB the corresponding p-
values were 0.021 (10%) and 0.018 (80%), respectively. 
Meanwhile, the GAS muscle displayed p-values of 0.049 
(50%) and 0.034 (60%) respectively. Drawing from the results 
detailed in Table II, it can be deduced that there exist notable 
distinctions (highlighted in gray) in the activation of lower 
limb and arm muscles between ASD and TD children during 
walking, particularly in the TA, GAS, and BB muscles. 

TABLE I.  SUBJECTS DEMOGRAPHIC DATA 

Subjects 
Age (years) Height (cm) Weight (kg) 

Ave SD Ave SD Ave SD 

ASD 8.10 2.20 124.5 13.26 27.5 11.14 

TD 9.40 2.67 128.5 18.07 30.0 11.60 

 
Fig. 5. Gender data for ASD children. 
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TABLE II.  RESULTS FROM MANN-WHITNEY TEST 

Gait 
Cycle 

LR 
10% 

MST 
30% 

TST 
50% 

PSW 
60% 

ISW 
80% 

MSW 
90% 

TSW 
100% 

BF 0.688 0.494 0.495 0.441 0.415 0.321 0.54 

RF 0.925 0.803 0.75 1.001 0.651 0.635 0.232 

TA 0.974 0.017 0.273 0.534 0.477 0.852 0.69 

GAS 0.136 0.162 0.048 0.033 0.305 0.182 0.52 

BB 0.02 0.401 0.173 0.864 0.002 0.83 0.491 

TB 0.475 0.277 0.964 0.858 0.573 0.682 0.284 

The performance of the ANN classifier was assessed using 
a confusion matrix, as depicted in Table III. The confusion 
matrix reveals that out of the ASD children group, 3 data 
points were accurately classified as belonging to the ASD 
group, and 5 data points from the TD children group were 
correctly classified as TD. However, there were 3 instances 
where data from the ASD children group were erroneously 
classified as TD children, and only 1 data point from the TD 
children group was incorrectly categorized as ASD children. 
The accuracy of the SCG ANN classifier is calculated at 
66.7%. Additionally, the classifier exhibited a specificity of 
91.7%, sensitivity of 79.2%, and precision of 90.5%. 

The performance of the SCG ANN classification model 
was calculated based on the disparity between the actual and 
predicted gait parameters derived from the EMG signal data. 
As illustrated in Fig. 6, the x-axis denotes the number of 
hidden neurons, while the y-axis represents the MSE values. 
The highest error was observed with four hidden neurons, 
resulting in an MSE value of 0.9482. In contrast, the lowest 
error was achieved when using 10 hidden neurons, yielding an 
MSE value of 0.1542. Notably, in this study, the SCG ANN 
system with 10 hidden neurons exhibited the most favorable 
performance among the classification model algorithms. The 
distribution of error within a neural network serves as a 
valuable area for exploration and is recommended for 
determining improved neural network performance criteria and 
addressing conflicting classification results [39]. 

TABLE III.  CONFUSION MATRIX FOR SCG ANN CLASSIFICATION MODEL 

 Positive Negative 

Positive 3 (TP) 1 (FN) 

Negative 3 (FP) 5 (TN) 

 
Fig. 6. MSE value in testing performance. 

TABLE IV.  CONFUSION MATRIX FOR SVM CLASSIFICATION MODEL 

 Positive Negative 

Positive 7 (TP) 2 (FN) 

Negative 1 (FP) 2 (TN) 

The performance of the SVM classifier was assessed using 
a confusion matrix, as presented in Table IV. The confusion 
matrix indicates that 7 data points from the ASD children 
group were accurately classified as belonging to the ASD 
group, and 2 data points from the TD children group were 
correctly classified as TD. However, 1 data point from the 
ASD group was erroneously classified as TD, and 2 data points 
from the TD group were incorrectly categorized as ASD. With 
an accuracy of 75%, the SVM classifier demonstrates robust 
classification capabilities for distinguishing between ASD and 
TD children. Additionally, the classifier exhibited a specificity 
of 50%, sensitivity of 87.5%, and precision of 78%. 

Fig. 7 provides a comparison of the performance measures 
of the SCG ANN and SVM classifiers. Notably, the ANN 
classifier outperformed the SVM classifier in terms of 
precision and specificity, achieving values of 90.5% and 
91.7%, respectively. Conversely, the SVM classifier surpassed 
the SCG ANN classifier in terms of accuracy and sensitivity, 
with values of 75% and 87.5%, respectively. It is worth 
mentioning that specificity is particularly valuable when 
interpreting positive test results to estimate an individual's 
probability of having a disease [40]. Overall, both developed 
classifiers demonstrated impressive performance with 
consistent rates of accuracy, sensitivity, specificity, and 
precision. 

 
Fig. 7. Comparison of performance measures for ANN and SVM classifier. 

As previously mentioned, the primary objective of this 
investigation was to categorize ASD and TD children by 
analyzing EMG signals recorded during walking. Despite its 
inherent challenges, the analysis of EMG data provides 
valuable insights into diagnosing ASD children through the 
assessment of muscle activation during walking. In the initial 
phase of the study, a database of EMG signals for both ASD 
and TD children during walking was established through the 
data collection process. The Mann-Whitney test, with a 95% 
confidence interval, was utilized to scrutinize significant 
differences in muscle activation among BF, RF, TA, GAS, BB, 
and TB muscles in both groups of children. The analysis of 
EMG signals has emerged as a promising diagnostic approach 
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for identifying autism based on muscle activation patterns 
during walking. 

The subtle motor deficits in individuals with autism can 
manifest as abnormal gait patterns, with variations in muscle 
extension being a contributing factor [41]. Difficulties in 
walking among children with ASD may arise due to 
heightened variability in velocity and the manifestation of 
irregularities in stride length and duration [42]. Additionally, a 
study by [43] demonstrated that movement disorders were 
observable in ASD children, characterized by irregular steps 
and vigilant gait during normal walking, as observed in video 
recordings during experiments. This study has revealed that 
three muscles—TA, GAS, and BB—were affected during 
walking in ASD children. The TA muscle, in particular, 
showed significant activation differences between ASD and 
TD children [44]. This discovery aligns with earlier research 
indicating that body movement and arm swing during walking 
can amplify TA muscle activity [45]. 

Similarly, while the walking patterns of ASD children may 
appear relatively normal on the surface, many of them exhibit 
subtle gait abnormalities that can impact lower limb muscle 
activation [41]. The BB muscle exhibited significant disparities 
between ASD and TD children during walking, likely 
attributable to its role as a primary mover during the concentric 
phase [45]. Consequently, the BB muscle in ASD children was 
notably affected and distinct from that in TD children during 
walking. These results substantiate the study's hypothesis, 
which proposed that EMG data from ASD children during 
walking could be precisely classified using SCG ANN and 
SVM classifiers. 

As far as we are aware, our study constitutes the initial 
exploration into the classification of ASD and TD children 
based on muscle activation in both lower limb and arm muscles 
during walking. The results demonstrate that the proposed 
method successfully classifies ASD and TD children, with high 
accuracy, specificity, sensitivity, and precision. This research 
has significant implications for both rehabilitation and clinical 
applications. The experimental results validate the 
accomplishment of the study's objectives, and the selected 
parameters for investigating gait in ASD children during 
walking have been validated by previous researchers. 

The developed classification model system exhibits robust 
performance, achieving high accuracy rates, specificity, 
sensitivity, and precision. While this study has succeeded in 
classifying ASD and TD children, future research may consider 
classifying the severity of ASD conditions, as suggested by 
[46]. Additionally, expanding the sample size of ASD 
participants could further validate the EMG signal patterns 
observed in this study. 

IV. CONCLUSION 

In conclusion, this study has revealed significant 
differences in muscle activation patterns in the lower limbs and 
arms of individuals with ASD during walking, focusing on 
muscles including BF, RF, TA, GAS, BB, and TB. Notably, 
the TA, GAS, and BB muscles exhibited distinctive features 
between ASD and typically developing individuals. Two 
classification models, SCG ANN and SVM, were then 

introduced to discern these features from the EMG signals. 
Following classifier training, the SVM model emerged as 
particularly promising for distinguishing between ASD and TD 
children. These findings underscore the significant 
characteristics present in EMG signals between ASD and TD 
individuals, affirming the efficacy of classification model 
algorithms in differentiation. This discovery holds substantial 
potential for automating ASD screening and diagnosis, 
facilitating the design of more effective treatments and 
rehabilitation strategies by parents and therapists, thus 
advancing precision health. 
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