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Abstract—The growth of the internet has advanced 

information-sharing capabilities and vastly increased the 

importance of global network security. However, because new 

and inconspicuous abnormal behaviors are nearly impossible to 

detect in massive network access environments, modern intrusion 

detection systems have identified a high rate of false-positive (FP) 

and false-negative (FN) attacks. To overcome this, this paper 

proposes a hybrid deep learning model that significantly 

mitigates the disadvantages of consistently imbalanced sample 

attack data. First, it resolves imbalanced data using random 

undersampling and synthetic minority oversampling techniques. 

Then, convolutional neural networks (CNNs) extract local and 

spatial features, and a transformer encoder extracts global and 

temporal features. The novelty of this combination increases 

recognition accuracy at the algorithm level, which is crucial to 

reducing FPs and FNs. The model was subjected to 

multiclassification testing on the NSL-KDD and CICIDS2017 

benchmark datasets, and the results show that our model has 

higher classification accuracy and lower FP rates than state-of-

the-art intrusion detection models. Moreover, it significantly 

improves the detection rate of low-frequency attacks.  
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I. INTRODUCTION  

The ubiquity of mobile handheld internet devices allows 
people to access digital information quickly and effortlessly, 
just about anywhere. The associated transference and storage 
of vast volumes of data over computer networks have created 
new and evolving opportunities for cybercriminals [1]. From 
2019 to 2022, the cost of repairing cyberattack damage 
increased by USD 6T, and the average detection time increased 
from 57.4 to 93.2 days [2]. Traditional cybersecurity methods 
(e.g., firewalls, user authentication, and data encryption) cannot 
handle the complex attacks that take place online. Intrusion 
detection systems (IDSs) are designed to detect a variety of 
anomalous patterns that serve as the attack signatures of new 
and known attacks [3], using advanced database systems with 
machine learning [4]. When an IDS reports potential malicious 
activities in an information system [5], it kicks off various 
analytical and alerting processes to confirm the nature of the 
attack and launch protection measures. 

IDSs generally operate in three phases: information 
collection, data analysis, and response. The fact that most 

advanced cyberattacks utilize new and unusual network and 
system penetration methods makes it nearly impossible to train 
machine learning models to recognize discrete new and 
seemingly inconspicuous threats. On the other hand, the 
models must still be trained with legacy class types from past 
attacks. Hence, IDS training datasets grow heavily imbalanced 
over time [6]. Supposing the target class is rare (< 10%) in 
terms of its representation in the training dataset, critical new 
and unusual network behaviors can be easily overlooked (as 
with human perception). 

Modern machine-learning methods that handle unbalanced 
classes typically consider both data- and algorithm-level 
remedies. That is, training data and classification algorithms 
are modified separately so that their combination will improve 
the detection and recognition accuracy of minority samples. 
Hence, advantageous tradeoffs can be gained. Unfortunately, 
even the most state-of-the-art IDS models continue to suffer 
high rates of false-positive (FP) and false-negative (FN) attack 
detection. 

To contribute to the robustness of machine-learning IDS 
accuracy and recognition, this study makes the following 
contributions. (1) We apply a novel combination of data- and 
algorithm-level techniques to specifically reduce the FP rate 
while improving the model’s recall rate. (2) We provide 
legitimate and reproducible results by applying our combined 
model to state-of-the-art NSL-KDD [7] and CICIDS2017 [8] 
benchmark intrusion detection datasets as our research objects. 
(3) To improve data-level class balancing, we provide an 
ingenious combination of random undersampling (RUS) and 
synthetic minority oversampling to adjust the data distribution 
structure and improve minority class detection. (4) To improve 
algorithm-level class balancing, we apply a hybrid 
convolutional neural network (CNN) and a Transformer model 
to adopt new detection performance efficiencies over 
contemporary models. 

Our model’s performance is compared with that of state-of-
the-art IDS models, demonstrating that our innovations have 
clear advantages in terms of accuracy, FP rate, and recall. 

To convincingly deliver this information, the remainder of 
this paper proceeds as follows. Section II covers the extant 
research that has led us to pursue our current motivations. 
Section III adequately describes the proposed model and the 
related techniques and technologies applied. Section IV 
describes our experiments and presents the comparison results, 

Fund Project: Natural Science Foundation of Fujian Province, China 
[grant no. 2021J01332] 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

122 | P a g e  

www.ijacsa.thesai.org 

configurational impacts, and implications of our findings. 
Finally, Section V presents the conclusions. 

II. RELATED WORKS 

This study provides an IDS model that can more accurately 
identify malicious traffic and detect a wider variety of intrusion 
attacks than current models. First, our model resolves sample 
imbalance problems at the data and algorithm levels based on 
the lessons learned from current studies, described briefly in 
the following sections. 

A. Data-Level Mitigation Efforts 

In terms of the current data-level mitigation efforts used to 
overcome problems related to training models with imbalanced 
datasets, data reconstruction efforts prevail. Related strategies 
focus on preprocessing original datasets to provide 
appropriately weighted training sets for model learning and 
tailoring the model’s feature classification methods to 
maximize learning and retention based on the task at hand.  

A healthy number of intrepid researchers have applied 
oversampling [9-14], undersampling [15-19], and hybrid [20-
23] preprocessing methods to restore balance to their training 
datasets. These methods are combined with feature 
classification methods to maximize benefits. For example, the 
synthetic minority oversampling technique (SMOTE) [24] is a 
widely used data reconstruction strategy that provides good 
data balancing and classification results while effectively 
avoiding overfitting. Noting that the SMOTE algorithm 
analyzes minority class samples and manually synthesizes new 
ones based on the needed additions, Dablain et al. [25] 
provided a deep learning-based SMOTE method that applies a 
novel oversampling method to counter class imbalances and 
train new skew-insensitive classifiers. Joloudari et al. [26] 
proposed a CNN that uses SMOTE to achieve a remarkable 
accuracy of 99.08% on 24 imbalanced datasets, including 
KEEL, Breast Cancer, and Z-Alizadeh Sani sets. 

B. Algorithm-Level Mitigation Efforts 

Most current algorithm-level mitigation efforts aim to 
intuitively process input data algorithmically for better 
classification results. Modern techniques match the model’s 
internal structure to the distribution characteristics of the 
original dataset as much as possible. For example, CNN-based 
autoencoders are extensively used for IDSs, resulting in high 
detection performance [27]. Yin et al. [28] proposed a recurrent 
neural network (RNN)-based IDS that provides impressive 
breakthroughs in accuracy. Vigneswaran et al. [29] used a deep 
neural network (DNN) to predict attacks directed at network 
IDSs (NIDS). The famous KDD-CUP99 [30] dataset was used 
to train and benchmark, revealing that a DNN with three layers 
outperformed all other classical machine learning algorithms at 
the time. XIAO et al. [31] proposed IDS to reduce the required 
CNN features for computational efficiency. The KDD-CUP99 
dataset was again used, showing reduced FPs and improved 
speeds. Belarbi et al. [32] proposed a multi-class NIDS based 
on a deep belief network (DBN) using the CICIDS2017 dataset 
to train and evaluate performance. The experimental results 
demonstrated that DBNs can surpass traditional multilayer 
perceptron classification performance, significantly improving 

overall recall. In 2017, Vaswani et al. [33] proposed the 
transformer model, originally designed to solve the tasks of 
language modeling and machine translation, achieving good 
results; this model has also been gradually applied to network 
IDSs. Wang et al. [34] proposed a robust unsupervised IDS 
(RUIDS) by introducing a masked context reconstruction 
module into a transformer-based, self-supervised learning 
scheme. Extensive experiments on four intrusion datasets were 
conducted to demonstrate the effectiveness and robustness of 
the RUIDS. Yang et al. [5] proposed IDS based on an 
improved vision transformer, demonstrating superior results on 
the NSL-KDD public intrusion detection via simulation 
experiments. 

C. Hybrid Solutions 

As noted, CNNs, RNNs, (Recurrent Neural Networks) and 
DBNs (Deep Belief Networks) are among the most common 
IDS solutions used to mitigate imbalanced data problems [36]. 
Hybrid models have recently become popular, based on their 
observed improvements to symbiotic and amplified model 
strength [37]. Indeed, research has shown that combined 
models consistently perform better than individual algorithms 
[38]. Table I list the best representative hybrid IDS models and 
summarize their basic algorithmic models, dataset properties, 
classification types, and accuracy results. This listing is fully 
explained in the subsequent narrative. 

1) Focused neural network combinations: Zhang et al. 

[39] proposed an IDS model based on an improved genetic 

algorithm with a DBN trained and evaluated using the NSL-

KDD dataset, demonstrating effective improvements in 

intrusion recognition rates (> 99%). Wu et al. [40] proposed a 

hierarchical CNN + RNN model (i.e., LuNet) that effectively 

extracts spatial and temporal data features, providing higher 

detection accuracy and fewer FPs than peer methods. LuNet’s 

verification accuracies on the NSL-KDD and UNSW-NB15 

datasets were 99.24% and 97.40%, respectively. Souza et al. 

[41] proposed a hybrid binary classification model comprising 

a DNN with a k-nearest-neighbors (kNN) function. This 

method achieved higher accuracy than classical machine 

learning methods, with 99.77% on the NSL-KDD dataset and 

99.85% on the CICIDS2017 dataset. Albahar et al. [42] 

proposed an approach that combines a regularization 

algorithm with an artificial neural network, achieving all-time-

high true-positive (TP) and accuracy rates on the NSL-KDD, 

UNSW-NB15, and CIDDS-001 datasets (i.e., 98.53, 94.58, 

and 97.87%, respectively) using 10-fold cross-validation. 

Ahsan et al. [43] proposed a hybrid CNN with a long short-

term memory (LSTM) network, achieving the highest known 

accuracy (at the time) of 99.70% on the NSL-KDD dataset. 

Banaamah et al. [44] adopted a CNN with an LSTM and a 

gated recursive unit (GRU) model to improve internet-of-

things (IoT) security. Using the highly reputable Bot-IoT 

dataset, the proposed model surpassed the highest accuracy, 

with a 99.8% ratio. Kamalakkannan et al. [45] developed an 

improved CNN + LSTM model that learns spatial and 

temporal data characteristics, demonstrating 98% accuracy 

and a 98.14% average detection rate on the NSL-KDD dataset. 
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Shivhare et al. [46] proposed a CNN + LSTM + SVM model 

to tackle multiclass tasks on the CICIDS 2017 dataset, 

achieving an accuracy of 97.29%. Qazi et al. [47] proposed a 

deep-layered CNN + RNN model to detect and classify 

malicious traffic using the CICIDS-2018 dataset, achieving an 

average accuracy of 98.90%. Recently, the use of transformers 

has provided new feature extraction methods. Transformers 

are deep neural networks wholly based on attention 

mechanisms that have shown great success in natural language 

processing (NLP) fields. Their versatility allows them to be 

applied to other domains, such as image classification, 

cybersecurity, and more. Xing et al. [48] sought to improve 

unknown attack learning and detection by extracting data 

features from different perspectives using CNN and 

transformer models. Xiang et al. [49] later proposed a 

transformer-based fusion deep learning architecture in which 

the transformer is used to adjust the ML-CNN-BiLSTM model 

to enhance its feature encoding ability. Ullah et al. [50] 

proposed an IDS using transformer-based transfer learning for 

imbalanced network traffic (INT). The resulting DS-INT uses 

transformer-based transfer learning to learn feature 

interactions in network feature representations, even with 

imbalanced data. A hybrid CNN-LSTM model was then 

developed to detect attacks from deep features. 

TABLE I. SUMMARY OF THE HYBRID INTRUSION DETECTION SYSTEM 

Ref. Year Authors Classification Algorithms Dataset Classes Accuracy (%) 

[39] 2019 Zhang et al. DBN, Impr. Genetic NSL-KDD Multiclass >99.00 

[40] 2019 Wu et al. CNN, RNN 

NSL-KDD 
Binary, 

Multiclass 

99.24 (Bin.) 

99.05 (Multi.) 

UNSW-NB15 
97.40 (Bin.) 

84.98 (Multi.) 

[41] 2020 Souza et al. DNN, KNN 
NSL-KDD 

Binary 
99.77 

CICIDS-2017 99.85 

[42] 2020 Albahar et al. ANN, Regularization 

NSL-KDD 

Multiclass 

98.53 

UNSWNB15 94.58 

CIDDS-001 97.87 

[43] 2020 Ahsan et al. CNN, LSTM NSL-KDD Multiclass 99.70 

[44] 2022 Banaamah et al. CNN, LSTM, GRUs Bot-IoT Binary 99.80 

[45] 2023 Kamalakkannan et al. 2D LSTM, CNN NSL-KDD Multiclass 98.00 

[46] 2023 Shivhare et al. CNN, LSTM, SVM CICIDS-2017 Binary 97.29 

[47] 2023 Qazi et al. CNN, RNN CICIDS-2018 Binary 98.90 

[48] 2023 Xing et al. CNN, Transformer UNSW-NB15 Multiclass 88.47 

[49] 2023 Xiang et al. 
ML-CNN, BiLSTM, 

Transformer 
UNSW-NB15 Binary 90.3 

[50] 2023 Ullah et al. Transformer, CNN, LSTM 

UNSW-NB15, 

CICIDS-2017, NSL-

KDD 
Multiclass 99.21 

 

2) Focused Data- and Algorithm-Level combination: Yan 

et al. [51] proposed a novel combinatorial IDS model based on 

a deep RNN and a region-adaptive SMOTE technique. This 

model significantly improved the detection rate of low-

frequency attacks and overall efficiency while improving 

unknown attack detection. Al et al. [52] proposed a hybrid 

CNN + LSTM + SMOTE and the Tomek–Link sampling 

method (i.e., STL) to improve system performance to an 

impressive extent. Cao et al. [36] designed a CNN + GRU 

model that extracts spatiotemporal features from network data 

traffic. This model combines adaptive synthetic sampling 

(ADASYN) and repeatedly edits its nearest neighbors to 

process positive and negative sample imbalances in the 

original dataset. This model resolves both low classification 

accuracy and imbalance problems. 

D. Motivation for and Purpose of this Study 

Through the research and discussion of the above literature, 
we can see that model systems combining two or more 
algorithms can often obtain better detection capabilities than 
single algorithms. Of course, with that comes an increase in the 
cost of computation. Therefore, how to achieve better detection 
results at the exact computational cost, the reasonable choice of 
classification algorithm will be the key to the problem. 

The CNN model has become one of the classification 
algorithms selected in this paper because it can 
comprehensively map the data features, mine the relationship 
between the features, and improve the accuracy of feature 
extraction. However, the CNN model focuses more on spatial 
local features and has time series characteristics for the traffic 
data studied in this paper. Therefore, the processing ability of 
sequence data will be emphasized in selecting the second 
classification algorithm. RNN, GRU, LSTM, and Transformer 
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are all sequential models in deep learning. Compared with 
RNN and LSTM, the Transformer model can obtain the 
relationship between all the information in the sequence 
through the self-attention mechanism, which can better cope 
with the long-term dependency problem and has higher 
accuracy. The model can be operated in parallel, and the 
calculation speed is faster. Based on the above reasons, the 
CNN and the Transformer models have become the algorithm 
choices for this paper's hybrid intrusion detection system. 

In addition, previous studies have primarily focused on the 
overall detection rate of the system, but for the typical 
unbalanced network traffic data, identifying a small number of 
attack samples is the key to detection classification. Therefore, 
the difference between this paper and previous studies is that 
the system focuses more on the identification rate of minority 
species without significantly affecting the overall detection rate. 
To achieve this goal, the system balances the sample size of the 
majority class and the minority class at the data level through 
data resampling technology to adapt to the common classifier 
that pursues global accuracy. 

III. PROPOSED MODEL 

The model proposed in this study uses the NSL-KDD and 
CICIDS2017 datasets as the research targets. New training, 
validation, and testing sets were divided by random sampling 
to digitize and normalize the original data. Most class samples 
were randomly undersampled to stress the sample imbalance 
problem. 

The focus of this model is on the classification research of 
imbalanced data, which are divided into two levels for 
operation. First, at the data level, a data reconstruction strategy 
is used to adjust the internal distribution structure of the data so 
that the imbalanced dataset tends toward a balanced state. The 
measure is obtained by randomly undersampling the majority 
class samples in the training set and oversampling the minority 
class samples with SMOTE to achieve balanced data. 

Second, at the algorithmic level, the model adjusts the 
traditional classification algorithm or proposes the optimization 
and improvement of existing classification ideas as an adaption 
technique to handle the inherent characteristics of imbalanced 
datasets, thereby improving the overall recognizability of the 
model. Research has shown that combined models consistently 
perform better than individual algorithms [38]. As mentioned, 
we combined the classic CNN with a transformer self-attention 
module to achieve optimization by combining multiple 
classifiers that adapt to the internal distributed structure of 
imbalanced datasets. Hence, the detection rate of the model 
will be improved. 

This model accounts for both data- and algorithm-level 
aspects of the problem and utilizes their combined advantages 
to achieve superior recognition accuracy with minority class 
samples. Fig. 1 presents a schematic diagram of our proposed 
model. 

 
Fig. 1. Schematic diagram of the proposed model. 
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A. Dataset Description 

1) NSL-KDD Dataset: According to [5], NSL-KDD [53] 

and KDD-CUP99 [54] are the most widely used datasets in 

IDS research (ca. 2012–2022). The NSL-KDD dataset was 

generated in 2009 and is commonly used to train models for 

anomaly detection. It is a revised version of the classic 

KDD99 dataset but retains its structure. The new dataset 

consists of four subsets: KDDTest+, KDDTrain+, KDDTest-

21, and KDDTrain+_20%, where the latter two are subsets of 

the first two, respectively. 

In the NSL-KDD dataset, each sample record contains 41 
attribute features and a classification identifier. Normal and 
abnormal network connections are marked with the 
classification identifier. The normal type is represented as 
―normal,‖ and the dataset contains many anomalies and 39 
attack identifiers. These identifiers are divided into four 
categories by type: denial of service (DoS), probe, root-to-local 
(R2L), and unauthorized-to-root (U2R).  

Our experiment uses the original data sources of 
KDDTrain+ (125,973 sample records) and KDDTest+ (22,544 
sample records). Table II presents the sample size distributions 
of each attack type. 

2) CICIDS2017 Dataset: Table II shows that the NSL-

KDD dataset is a typical imbalanced dataset. Notice the small 

proportion of Probe, R2L, and U2R attack-type samples, 

especially for U2R attacks. Although this dataset is very 

popular in IDS studies, some researchers have pointed out that 

it is somewhat outdated. 

Emerging datasets include UNSW-NB15, CICIDS2017, 
Bot-IoT, and others. Among them, CICIDS2017 is the most 
popular. Therefore, we chose CICIDS2017 as our second 
benchmark to gauge performance differences. 

The CICIDS2017 dataset was released in 2017 [55], 
providing normal data and the latest common attack types, 
similar to real-world data. It contains 2,830,743 network traffic 
samples, each containing 83 network traffic features. It also 
includes one benign and 14 attack categories, including the 
standard DoS, botnet, web, infiltration, file transfer protocol 
patator, and SSH patator types [56]. Among the 14 attack 
categories, tags with similar features and behaviors are merged 
to form five new categories. The distribution of the number of 
samples in the CICIDS2017 dataset is shown in Table III. The 
CICIDS2017 dataset is also imbalanced, with bot-and-web 
attack class samples being particularly scarce. 

TABLE II. DISTRIBUTION OF VARIOUS SAMPLES FROM THE NSL-KDD DATASET 

Dataset 
The number and proportion of various types of samples 

Total Normal DoS Probe R2L U2R 

KDD Train+ 125973 
67343 

(53.46%) 

45927 

(36.46%) 

11656 

(9.25  %) 

995 

(0.79    %) 

52 

(0.04%) 

KDD Test+ 22544 
9711 

(43.08%) 

7458 

(33.08%) 

2421 

(10.74%) 

2754 

(12.22  %) 

200 

(0.89%) 

TABLE III. DISTRIBUTION OF VARIOUS SAMPLES IN THE CICIDS2017 DATASET 

Dataset 
Number and proportion of various types of samples 

BENIGN Bot BruteForce DoS /DDoS Port Scan Web Attack 

CICIDS2017 
2035505 

(83.91   %) 

1943 

(0.08  %) 

8551 

(0.35%) 

320269 

(13.20 %) 

57341 

(2.36 %) 

2118 

(0.09  %) 

B. Data Preprocessing 

Using the NSL-KDD dataset as an example, data 
preprocessing was introduced, and the operation of the 
CICIDS2017 dataset was similarly manipulated. 

1) Numericalization: The NSL-KDD dataset contains 41 

attribute features (i.e., 38 digital and three non-digital types). 

Because the input value of the model should be a digital 

matrix, it was necessary to use a numerical method to map 

data with symbolic features into digital feature vectors. We 

used the LabelEncoder method of the preprocessing module in 

the sklearn library to convert the three non-digital features 

(i.e., protocol_type, service, and flag) into digital features. 

2) Standardization: Unlike normalization, which is easily 

affected by outliers, standardization is relatively stable; thus, it 

is suitable for noisy big data scenarios. Therefore, 

standardization was used for data preprocessing. The original 

data were transformed into a range with a mean of zero and a 

standard deviation of one so that the processed data would 

conform to a standard normal distribution. The StandardScaler 

method of the preprocessing module in the sklearn library uses 

a standard z-score scaling calculation formula, expressed 

using Eq. (1): 

 mean
X






 ,                                       (1) 

where, X   represents the converted data value,  is the 

original data value, mean is the mean value of the column data, 
and   is the standard deviation of the column data. 
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C. Dataset Partitioning 

The KDDTrain+ and KDDTest+ subsets of the NSL-KDD 
dataset were used as the original data, and new training, 
validation, and testing sets were formed by random sampling. 
It lists the number and proportions of each sample set after 
division. The CICIDS2017 dataset was also divided according 
to the same ratio, and the numbers after the division are listed 
in Table IV. To achieve good data balance, undersampling and 
oversampling were performed on the training set samples. 

TABLE IV. NUMBER AND PROPORTION OF DATASETS AFTER 

PARTITIONING 

Dataset #training set #validation set #testing set 

NSL-KDD 103,961 14,852 29,704 

CICIDS2017 1,698,008 242,573 485,146 

Proportion 70% 10% 20% 

D. Data Balancing 

1) Undersampling: The undersampling method achieves 

data equalization by randomly removing a certain proportion 

of majority instances from the RUS dataset [23]. This process 

consists of the following steps: 

a) The numbers of majority samples, N1, and minority 

samples, N2, are calculated. 

b) Based on the set sampling ratio, r, we calculate the 

number of majority class samples needing deletion (N1 - N2 * 

r). 

c) Randomly selected samples from the majority class, 

majS
, to form the sample set E ; remove sample set E  from 

majS
; generate a new dataset new maj majS S E  

. 

In the NSL-KDD dataset, NORMAL and DoS samples 
belong to the majority class, and undersampling was performed 
using RUS samples. The BENIGN and DoS/DDoS samples of 
the CICIDS2017 dataset belong to the majority class and are 
undersampled. 

2) Oversampling: Oversampling is used to rebalance a 

dataset by creating fake minority instances, and SMOTE [22] 

is the best method [57] in our case as it effectively 

compensates for the shortcomings of random oversampling 

and is superior to simple replication, which can easily cause 

model overfitting and weaken generalizability. SMOTE also 

has the advantages of a simple design and strong robustness. 

Moreover, it uses interpolation between minority class 

samples and their nearest neighbors to generate new synthetic 

samples [58]. The SMOTE steps are as follows: 

a) For each sample X  in the minority class, a k-NN is 

used to sample each minority class sample. 

b) We determine the sampling rate, N , based on the 

sample imbalance ratio and randomly select N  samples from 

K  nearest neighbors for random linear interpolations. 

c) We construct a new minority class sample using Eq. 

(2): 

 i j iNew x (0,1) y x , j 1,2, Nrand     
,        (2) 

where, 
ix  is an observation point in the minority class, jy  

is a randomly selected K -nearest neighbor, and (0,1)rand  

represents a random number generated between zero and one. 

d) New samples are combined with the original data to 

form a new dataset. 

In the NSL-KDD dataset, Probe, R2L, and U2R samples 
belong to a minority class and were oversampled with SMOTE 
to increase the number of class samples. For the CICIDS2017 
dataset, the Bot, Brute Force, PortScan, and Web Attack 
samples belong to the minority class and were oversampled. 
The training set samples were balanced at the data level via 
undersampling and oversampling. 

E. Model Structure 

1) CNN: CNNs are feedforward neural networks with 

convolution calculations and a deep structure that extract 

features accurately and efficiently [59]. The error function is 

obtained by calculating the difference between the actual and 

predicted values. Network parameters are adjusted 

retroactively until the model reaches an optimal solution [60]. 

This method has been widely used in several fields, such as 

NLP and computer vision. 

A CNN generally comprises a convolution layer, activation 
function, pooling layer, and a fully connected layer [61] as 
shown in Fig. 2. The convolution layer extracts high-level 
features from the input data, and the pooling layer performs 
feature selection and information filtering on the graph data 
output by the convolution layer, thereby reducing the amount 
of data processing. 

 

Fig. 2. CNN structure. 

2) Transformer: A transformer is a deep learning model 

[33] that is widely used for NLP and other sequential data 

processing tasks. 

The transformer differs from traditional RNNs and CNNs 
in that they adopt a novel self-attention mechanism that allows 
the model to assign different weights to different elements 
when processing input sequences. It calculates the similarity 
score between elements and uses the score to calculate the 
weighted averages of relationships among elements. Notably, 
the transformer supports parallel computing, this allows it to 
handle long sequences easily without step-by-step iterations. 
The self-attention mechanism also allows the transformer to 
incorporate information from the entire sequence into its 
calculations, which leads to better long-range dependencies. 
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CNNs are particularly adept at modeling fine-grained local 
features due to their convolutional operations and hierarchical 
structure. Nevertheless, their global modeling ability is weak, 
whereas the transformer excels at modeling global contextual 
information [62]. The proposed framework utilizes 
complementary CNN characteristics to extract local, spatial, 
and time series features. 

3) Hybrid model: This article adopts a hybrid architecture 

that combines the CNN and the transformer as illustrated in 

Fig. 3. Spatial features are extracted after preprocessing and 

sample balancing in one-dimensional (1D) convolutional and 

pooling layers. Then, by using the self-attention mechanism of 

the transformer to process the data, the shortcomings of the 

RNN’s short-term memory and the CNN’s difficulties in 

learning remote dependencies are overcome, and temporal and 

global features are extracted. Finally, using flattening and 

fully connected functions, the data are classified according to 

attack type. For the NSL-KDD dataset, the data were divided 

into five categories: one normal and four attack. The 

CICIDS2017 dataset was divided into six categories: one 

benign and five attacks. 

 

Fig. 3. Hybrid CNN–Transformer architecture.

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Evaluation Indicators 

Commonly used evaluation indicators for classification 
problems are accuracy (ACC), precision (PRE), recall (i.e., 
TPR), false-positive rate (FPR), and F1-measure. It is 
necessary to adopt reasonable evaluation criteria for 
unbalanced data, including the F1-measure, G-mean, receiver 
operating characteristic (ROC) curve, and area under the ROC 
curve (AUC) values. 

Accuracy is defined by Eq. (3), which reflects the percentage 

of correctly predicted samples among the total number of 

predicted samples: 

TP TN

TP TN FP FN
Accuracy




   .                   (3) 

Precision is the ratio of correctly predicted positive samples 
to the total number of positive samples, as shown in Eq. (4): 

FPTP

TP


Precision .                             (4) 

Recall describes the ratio of the number of correctly 
predicted positive samples to the total number of positive 
samples as formulated in Eq. (5): 

FNTP

TP


Recall .                                    (5) 

FPR is the number of false positive samples detected 
divided by the total number of TN samples, as defined by Eq. 
(6): 

TNFP

FP
FPR


 .                                        (6) 

The F1-measure is a comprehensive assessment of 
precision and recall and represents the harmonic average 
between them, as defined by Eq. (7): 

FNFPTP

TP









2

2

RecallPrecision

RecallPrecision
2=Measure-F1

 (7) 

The G-mean is a standard that comprehensively considers 
both recall and accuracy. A high G-mean value indicates good 
modularity, reflecting the geometric mean of sensitivity (i.e., 
hit rate or recall) and precision. The G-mean is defined in Eq. 
(8): 

Mean = 
TP TN

G
TP FN TN FP

 
  .                     (8) 
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The ROC curve defines TPR and FPR in terms of 
horizontal and vertical coordinates, respectively. Each 
threshold corresponds to a point (FPR, TPR), and all points are 
connected as the threshold changes. 

Although the ROC curve can comprehensively and 
intuitively express the performance of a classifier, it cannot 
provide a specific value. Therefore, it is usually evaluated 
using the area AUC, as defined in Eq. (9): 

2

2( ) ( )

TP FP TP TN FN TN
AUC

TP FN FP TN

    


  
.             (9) 

AUC values range from zero to one; the larger the AUC, 
the better the classification performance. 

B. Experimental Results 

The experiment was conducted on a desktop Intel 3.10 GHz 
processor with 64-GB memory, no GPU acceleration, and a 
64-bit Windows 11 operating system. The programming tool 
was Keras 2.9.0, based on TensorFlow. The NSL-KDD and 
CICIDS 2017 datasets were used to train the model shown in 
Fig. 1. For the NSL-KDD dataset, owing to the small amount 
of data, the batch size was set to 256, and the training epochs 
were set to 200. The CICIDS2017 dataset contains a 
considerable amount of data. To accelerate the convergence 
speed of the model, the batch size was set to 512, and 40 
epochs of training were performed. Finally, the model 
parameters with the best effects on the corresponding datasets 

were obtained. Subsequently, the model with the optimal 
parameters was tested on the testing set to obtain classification 
results, and the confusion matrix was constructed as shown in 
Fig. 4 and Fig. 5. 

Multiple classification experiments were conducted for 
different attack categories. The NSL-KDD dataset included 
normal, DoS, Probe, U2R, and R2L classes. The CICIDS 2017 
dataset consisted of BENIGN and five attack classes: bot, 
brute-force, DoS/DDoS, PortScan, and web types. The 
experimental results are presented in Tables V and VI, 
respectively. For most class samples, the classification 
performance of the model was good. For the minority class 
samples, the model’s classification performance decreased to 
some extent; however, the degree of decrease was not 
significant. The model does not sacrifice the classification 
performance of other categories to improve the classification 
accuracy of any specific category. Therefore, the overall 
classification performance of the model is very well-balanced. 

The overall classification results of the model are presented 
in Table VII. Although the overall accuracy was not very high, 
the model did not sacrifice the classification effects of a few 
classes in exchange for higher overall accuracy, which is a 
unique demonstration of superior classification procedures. 
Therefore, the model showed little difference in the 
classification effects between the majority and minority classes. 
Moreover, it tended to improve the recognition rate of minority 
classes (e.g., U2R and R2L) in the NSL-KDD dataset and Bot 
and Web classes in the CICIDS2017 Dataset). 

 

Fig. 4. Confusion matrix of classification results of the NSL-KDD dataset. 
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Fig. 5. Confusion matrix of classification results of the CICIDS2017 dataset. 

TABLE V. FIVE CLASSIFICATION RESULTS FOR THE NSL-KDD DATASET 

Type Accuracy (%) Precision (%) Recall (%) FPR (%) F1 (%) G-mean (%) AUC 

Normal 99.32 99.60 99.09 0.43 99.35 99.33 99.97 

DOS 99.91 99.90 99.84 0.06 99.87 99.89 99.99 

Probe 99.81 99.01 99.01 0.10 99.01 99.45 99.98 

U2R 99.95 77.42 96.00 0.05 85.71 98.01 99.95 

R2L 99.57 87.85 96.40 0.35 91.93 97.96 99.77 

TABLE VI. SIX CLASSIFICATION RESULTS FOR THE CICIDS2017 DATASET 

Type Accuracy (%) Precision (%) Recall (%) FPR (%) F1 (%) G-mean (%) AUC 

BENIGN 99.78 99.97 99.76 0.16 99.87 99.80 99.99 

Bot 99.89 41.03 98.20 0.11 57.88 99.04 99.89 

Brute Force 99.99 97.21 100.00 0.01 98.59 99.99 1.00 

DoS / DDoS 99.95 99.84 99.81 0.02 99.82 99.89 1.00 

PortScan 99.95 98.21 99.77 0.04 98.98 99.86 99.99 

Web Attack 99.98 83.73 99.53 0.02 90.95 99.76 1.00 

TABLE VII. MODEL CLASSIFICATION RESULTS 

Dataset Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

NSL-KDD 99.28 92.75 98.07 95.17 

CICIDS 2017 99.77 86.66 99.51 91.01 
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C. Analysis and Discussion 

1) Impact of model structure on results: In this section, 

the structure of the proposed model is discussed. We 

compared the classification effects of the model before and 

after data balancing and the single-network model with the 

hybrid model of both. The following conclusions were drawn 

from the NSL-KDD dataset, as listed in Table VIII. 

The overall effect of the model after data balancing was 
better than that of the model without data balancing. Moreover, 
the impact of the hybrid model was better than that of the 
single-network model. 

At the same time, data balancing is beneficial for 
improving the classification effect of minority classes. Fig. 6 
and Fig. 7 show the comparison of precision before and after 
data balancing for the minority classes U2R and R2L, 

respectively. From the figures, we can see that regardless of 
whether it is a single algorithm model or a hybrid model, the 
classification accuracy after data balancing has increased to 
varying degrees. This also confirms the necessity of data 
balancing operations. 

Similar conclusions were drawn for the CICIDS2017 
dataset. The effect of the hybrid model was better than that of 
the single network model. Data balancing provided better 
improvements to accuracy and precision indicators, as shown 
in Table IX. 

Fig. 8 and Fig. 9 present a comparative analysis of the 
precision of rare classes—Bot and Web Attack—in the 
CICIDS2017 dataset, both before and after the application of 
data balancing techniques. Similar to the NSL-KDD dataset, 
the conclusion drawn from these figures is that data balancing 
is beneficial for improving the classification accuracy of 
minority classes. 

TABLE VIII. COMPARISON OF THE RESULTS OF THE NSL-KDD DATASET UNDER DIFFERENT MODEL CONFIGURATIONS 

 Before data balancing After data balancing 

Model CNN Transformer CNN+Transformer CNN Transformer CNN+Transformer 

Accuracy (%) 98.47 98.41 98.56 99.24 98.81 99.22 

Precision (%) 82.36 80.82 82.62 91.94 86.18 91.68 

Recall (%) 97.98 97.47 98.07 98.04 97.82 98.19 

F-Measure (%) 87.31 85.35 87.51 94.64 90.47 94.56 

 
Fig. 6. Comparison of the U2R class accuracy rate before and after data balancing. 

CNN Transformer CNN+Transformer

Before data balancing(%) 99.72 99.59 99.72

After data balancing(%) 99.93 99.91 99.95

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Accuracy rates of U2R class  

Before data balancing(%) After data balancing(%)
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Fig. 7. Comparison of the R2L class accuracy rate before and after data balancing. 

TABLE IX. COMPARISON OF THE RESULTS OF THE CICIDS2017 DATASET UNDER DIFFERENT MODEL CONFIGURATIONS 

 
Before data balancing After data balancing 

Model CNN Transformer CNN+Transformer CNN Transformer CNN+Transformer 

Accuracy (%) 98.55 97.15 98.36 99.73 98.24 99.77 

Precision (%) 69.38 67.12 71.24 85.84 69.53 86.66 

Recall (%) 99.34 98.14 99.52 99.55 99.16 99.51 

F-Measure (%) 73.21 69.34 75.15 90.26 72.52 91.01 

 
Fig. 8. Comparison of Bot class accuracy rates before and after data balancing. 

CNN Transformer CNN+Transformer

Before data balancing(%) 99.22 99.25 99.26

After data balancing(%) 99.57 99.52 99.60

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

Accuracy rates of R2L class 

Before data balancing(%) After data balancing(%)

CNN Transformer CNN+Transformer

Before data balancing(%) 99.19 98.57 98.75

After data balancing(%) 99.87 98.83 99.89

97.6

97.9

98.2

98.5

98.8

99.1

99.4

99.7

100

Accuracy rates of Bot class 

Before data balancing(%) After data balancing(%)
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Fig. 9. Comparison of Web Attack class accuracy rate before and after data balancing.

2) Impact of sampling rate on results: The previous 

section showed that data balancing benefits minority class 

detection. In this section, we focus on comparing the different 

sampling rates of rare classes to explore the impact of 

sampling rates. For the NSL-KDD dataset, we checked the 

U2R category. In contrast, for the CICIDS2017 dataset, we 

checked the Bot and Web Attack categories due to their low 

representation. During model training, 100, 300, 500, and 

1,000% samples were considered for the given categories, and 

the optimal model parameters generated were predicted using 

the testing set. The experimental results are presented in 

Tables X to XII. 

TABLE X. COMPARISON OF RESULTS FOR THE U2R CATEGORY UNDER 

DIFFERENT SAMPLING RATES 

Sampling 

rate (%) 
Recall   (%) 

Accuracy 

(%) 

F-Measure 

(%) 

G-mean 

(%) 

100 70.00 99.93 76.09 83.66 

300 72.00 99.92 75.79 84.84 

500 74.00 99.91 74.00 86.00 

TABLE XI. COMPARISON OF RESULTS FOR THE BOT CATEGORY UNDER 

DIFFERENT SAMPLING RATES 

Sampling 

rate (%) 

Recall    

(%) 

Accuracy 

(%) 

F-Measure 

(%) 

G-mean 

(%) 

100 32.65 99.95 52.24 57.14 

300 61.44 99.94 62.41 78.37 

500 94.34 99.93 67.82 97.09 

1000 94.86 99.93 69.82 97.19 

TABLE XII. COMPARISON OF RESULTS FOR THE WEB ATTACK CATEGORY 

UNDER DIFFERENT SAMPLING RATES 

Sampling 

rate (%) 

Recall    

(%) 

Accuracy 

(%) 

F-Measure 

(%) 

G-mean 

(%) 

100 82.08 99.99 96.43 90.59 

300 95.52 99.99 96.36 97.72 

500 97.41 99.99 95.10 98.67 

1000 97.64 99.99 94.49 98.80 

These results show that increasing the sampling rate 
significantly improved the recall rate, F-measure, and G-mean 
for rare categories. However, this had little impact on overall 
classification accuracy. Due to the small proportions of rare 
classes in the original dataset, it was difficult for the model to 
train effectively for class recognition. Therefore, increasing the 
sampling rate is equivalent to increasing the training 
opportunities of the model for that category, thereby improving 
the recall of subsequent testing data. Thus, improving the 
detection rate for minority classes comes at the cost of 
increasing training time. 

D.  Comparisons of Experimental Results 

We compared the above experimental results with methods 
from the relevant literature to verify our model’s effectiveness 
with multiclassification problems using unbalanced data. We 
first compared NSL-KDD data, as the related literature is 
abundant. 

First, the classification accuracy of multiple classifications 
was compared, as presented in Table XIII. Our model had the 
highest classification accuracy for all five categories, and there 
were no cases in which the accuracy of a specific category was 

CNN Transformer CNN+Transformer

Before data balancing(%) 99.57 98.89 99.78

After data balancing(%) 99.98 99.53 99.98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

Accuracy rates of Web Attack class 

Before data balancing(%) After data balancing(%)
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particularly low. Again, the accuracy of a few categories was 
not sacrificed in exchange for higher overall accuracy. 

TABLE XIII. ACCURACY COMPARISONS OF FIVE CLASSIFICATIONS 

References 
Normal 

(%) 

DOS 

(%) 

Probe 

(%) 

U2R 

(%) 

R2L 

(%) 

Zhang-2019- 

[39] 
- 99.45 99.37 98.68 97.78 

Ahsan-2020- 

[43] 
98.5 98.8 0 99.4 94.6 

LIU-2023- [63] 97.7 94.6 94.7 0.3 0.4 

Proposed model 99.32 99.91 99.81 99.95 99.57 

Next, multi-classification recall rates were compared, and 
the results are listed in Table XIV. It can be seen from the table 
that the recall rates of the DOS and R2L categories were the 
highest compared with those reported in the relevant literature. 
The difference between the other three categories and the 
highest values in the literature was insignificant. 

TABLE XIV. RECALL COMPARISONS OF FIVE CLASSIFICATIONS 

References 
Normal 

(%) 

DOS 

(%) 

Probe 

(%) 

U2R 

(%) 

R2L 

(%) 

Zhang-2019- 

[39] 
- 99.7 99.4 98.2 93.4 

Albahar-2020- 

[42] 
98 97.8 95.6 96.9 92.4 

Ahsan-2020- 

[43] 
98.5 98.8 0 99.4 94.6 

Onah-2021- [64] 97.5 96.9 93.4 73.5 77.1 

LIU-2023- [63] 97.7 94.6 94.7 0 0 

Kamalakkannan-

2023- [45] 
99.57 99.76 99.15 25 88.41 

Proposed model 99.09 99.84 99.01 96 96.40 

The classification FPRs of multiple classifications were 
then compared, as shown in Table XV. It can be seen that, 
apart from a few R2L cases, the FPR of our model was the 
lowest of all. 

TABLE XV. FPR COMPARISONS OF FIVE CLASSIFICATIONS 

References 
Normal 

(%) 

DOS 

(%) 

Probe 

(%) 

U2R 

(%) 

R2L 

(%) 

Zhang-2019- 

[39] 
- 0.8 0.7 1.8 7.3 

Albahar-2020- 

[42] 
0.73 0.54 0.67 0.33 0.87 

Ahsan-2020- 

[43] 
1.5 1.2 1 0.6 5.4 

Onah-2021- 
[64] 

0.6 0.6 0.4 0.2 0.1 

Proposed 

model 
0.43 0.06 0.10 0.05 0.35 

Finally, for imbalanced data classification problems, the F1 
measure is often more important than other metrics. Table XVI 
presents the results of the multicategory F1-measure 
comparisons. Apart from the U2R category, the F1 measure of 
our model was the best. 

TABLE XVI. F1-MEASURE COMPARISON OF FIVE CLASSIFICATIONS 

References 
Normal 

(%) 

DOS 

(%) 

Probe 

(%) 

U2R 

(%) 

R2L 

(%) 

Albahar-2020- 

[42] 
98.5 98.3 94.8 97.3 66.5 

Ahsan-2020- 
[43] 

99.1 98.3 0 99.2 85.4 

LIU-2023- 

[63] 
98.9 97.2 97.3 0.5 0.7 

Proposed 

model 
99.35 99.87 99.01 85.71 91.93 

Using the CICIDS2017 dataset, our model also showed 
advantages in accuracy and recall, as shown in Table XVII. 

TABLE XVII. COMPARISON OF THE RESULTS OF THE CICIDS2017 DATASET 

References Accuracy (%) Recall (%) 

Abdel-Basset-2021- [65] 99.69 96.29 

Khan-2021- [66] 98.76 98.69 

Chen-2022- [67] 99.73 79.13 

Wu-2022- [68] 99.35 98.83 

Proposed model 99.77 99.51 

Through the above comparative analyses, our hybrid model, 
based on data balancing and two deep learning networks, has 
clear advantages and achieved excellent results in 
multiclassification problems with unbalanced data. 

V. CONCLUSIONS AND FUTURE RECOMMENDATIONS 

NIDS plays vital network security roles in identifying, 
preventing, and countering network threats. Owing to the large 
amount of unbalanced data collected in network datasets, FPs 
and omissions significantly reduce the detection efficiency of 
extant IDSs. This paper proposed a deep learning model that 
combines data balancing and a CNN + Transformer hybrid to 
improve the data distribution of the original dataset via 
undersampling and oversampling techniques. Our data 
redistribution method increases the likelihood of identifying 
minority classes based on model training, and the experimental 
results show that our innovations effectively improve this 
detection rate. Our hybrid model’s algorithm-level 
improvements increased recognition training based on fused 
spatiotemporal features, and the experimental results show that 
the proposed system, combined with multiple combined 
processes, identifies anomalies more efficiently and accurately 
than any single network model. 

For the classic NSL-KDD and modern CICIDS2017 
datasets, our model was more effective in multiclassification 
data applications and was superior to existing IDS models in 
terms of accuracy, FPR, F1-mean, and other indicators. 
Notably, the CICIDS2017 dataset showed superiority in 
training compared with existing models in terms of accuracy 
and recall. 

Although the model proposed in this paper has advantages 
over existing systems, several other data balancing activities, 
such as the edited nearest neighbor, Tomek–Links, 
SMOTEBoost, and ADASYN methods described, should be 
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tested. Many LSTM, GRU, DBN, and other variants should 
also be tested. The objective is to improve the detection effects 
of data classifications based on innovative model structures so 
that network security professionals and scholars can obtain 
better IDS results, even in the face of scarce data. 
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