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Abstract—In the era of big data, Knowledge Graphs (KGs) 

have become essential tools for managing interconnected datasets 

across various domains. This paper introduces a novel RDF 

(Resource Description Framework) based Knowledge Graph of 

Semantic Web Services (KGSWS), designed to enhance service 

discovery. Leveraging the versatile SPARQL query language, the 

framework facilitates precise querying operations on KGSWS, 

enabling customized service matching for user queries. Through 

comprehensive experimentation and analysis, notable 

improvements in accuracy (69.75% and 90.01%) and rapid 

response times (0.61s and 1.57s) across two semantic search levels 

are demonstrated, validating the efficacy of the approach. 

Furthermore, research questions regarding the interlinking of 

ontologies, methods for formulating automatic queries, and 

efficient retrieval of services are addressed, offering insights into 

future avenues for research. This work represents a significant 

advancement in the domain of semantic web services, with 

potential applications across various industries reliant on 

efficient service identification and integration. Future phases of 

research will focus on logical inference and the integration of 

machine learning-based graph embedding models, promising 

even greater strides in knowledge discovery within the KGSWS 

framework, thus reshaping the domain of semantic web services. 

Keywords—Ontologies; knowledge graph; semantic web 
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I. INTRODUCTION 

In today's rapidly changing computing environment, the 
fundamental paradigm of Service Oriented Architecture 
(SOA) is supported by core engineering principles of 
Reusability, Discoverability, and Interoperability. These 
principles provide a robust framework for orchestrating 
communication in distributed computing environments 
characterized by services encapsulated in discrete units. SOA 
leverages standardized interfaces and protocols, enabling 
seamless integration and communication between 
heterogeneous systems, thereby fostering a modular and 
extensible architecture [1]. Web Services (WS), the 
embodiment of SOA, play a pivotal role in contemporary 
enterprise solutions by enabling the integration of systems 
across organizational boundaries. WS, being self-described 
and disseminated by organizations, facilitate interoperable, 
machine-to-machine interactions and promote code reusability 
across networks. The orchestration of this integration relies on 
the convergence of components such as WSDL (Web Service 
Description Language), UDDI (Universal Description, 

Discovery and Integration), and SOAP (Simple Object Access 
Protocol), including the Service Consumer, Service Registry, 
and Service Provider. These components empower manual 
examination of WS within the UDDI repository, enabling 
users to identify services based on their specific functionalities 
[2] . However, the use of XML as the standard language for 
describing WS capabilities, while crucial for service 
description, introduces ambiguity in keyword-based 
matchmaking due to the absence of machine-understandable 
semantic information. This challenge in the software 
landscape necessitates the introduction of formal knowledge 
representation—a shared, universally harnessed resource 
within intricate software engineering systems [3] [4]. 

Semantic Web Services (SWS) build upon the foundation 
of WS by incorporating semantic extensions through metadata 
vocabularies from the Semantic Web. These extensions are 
either realized through semantic annotations known as 
SAWSDL (Semantic Annotations for WSDL) or by 
employing domain ontologies rooted in description logic, as 
seen in OWL-S. Ontologies, acting as metadata vocabularies, 
provide a formal, machine-understandable representation of 
concepts and their relationships within a domain, enhancing 
knowledge comprehension. Among the conceptual models 
defining SWS, OWL-S distinguishes itself through the 
integration of domain ontologies into WS descriptions. This 
integration enables logical reasoning, facilitating more precise 
and automated service discovery. Rules and constraints, 
defined on the concepts and properties of domain ontologies, 
serve as reference points for logical inference, fortifying 
specification, consistency, and conceptualization during 
service discovery. It, therefore empower domain experts to 
navigate knowledge contexts across domains with 
unambiguous precision. However, the intricacies of 
description logic formalism within domain ontologies, and the 
proliferation of SWS services have presented efficiency 
challenges for industries and organizations in terms of service 
discovery [5-7].  

This paper confronts these challenges by leveraging the 
burgeoning paradigm of Knowledge Graphs (KGs). The 
unique capability of KGs to incorporate semantic metadata 
descriptions of entities makes them a prime candidate for 
complex querying through semantic web technologies, 
particularly SPARQL querying [8] [9]. This work introduces a 
pioneering approach: the creation of an RDF-based 
Knowledge Graph of Semantic Web Services (KGSWS) for 
service discovery, empowered by SPARQL-based question 
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answering. At its core, this approach centers on generating 
interlinked data from domain ontologies to significantly 
augment service discovery accuracy. By employing advanced 
KG techniques and querying methodologies, SPARQL queries 
utilize the knowledge encapsulated in OWL-S service 
descriptions and their linked ontologies from KGSWS to 
address queries based on diverse user input/output requests. In 
essence, KGSWS uncover the hidden correlations between 
service descriptions and domain ontologies; and provide 
insightful recommendations to refine the user experience 
effectively and thereby serving as a bridge between the realm 
of SWS and KGs. 

The paper's structure unfolds as follows: Section II delves 
into the Background elements and techniques underpinning 
this research. Section III explores related work, elucidating the 
context that motivated our research endeavor. Section IV 
frames the research questions to be in the proposed work. 
Section V meticulously details the proposed methodology, 
laying out the innovative approach that unifies SWS 
ontologies and KGs. Following this, Section VI unveils our 
experimental results, providing a comprehensive comparative 
analysis with related work. Finally, in Section VII, we 
conclude and outline future avenues for this research, 
illuminating the potential for further advancements in the 
domain of semantic web services. 

II. BACKGROUND 

This section lays the groundwork for understanding the 
key components and concepts that underpin our research: 

A. Semantic Web 

Semantic Web is an advancement to the existing Web 2.0, 
designed to enable machines to process information 
intelligently, akin to human reasoning. This capability is 
achieved through the strategic use of semantic tags, imbuing 
data with what we call "Semantic Metadata." To exemplify, 
consider the concept of a "Service" in our context. Semantic 
Metadata goes beyond the term itself, distinguishing between 
a "Web Service" as a functional software component and a 
"Semantic Web Service" as a service enriched with semantic 
information, by providing specific details about its 
functionalities, inputs, and outputs, thereby facilitating precise 
and automated discovery. Structured Linked Open Data 
(LOD) is represented as a graph, interconnecting data across 
servers via Universal Resource Identifiers (URIs). RDF 
(Resource Description Framework) leverages URIs to denote 
relationships within this graph. In this structured environment, 
edges serve as the conduits for relationships between two 
resources, culminating in triplets within a directed graph. 
Ontologies, integral to the Semantic Web stack, enhance data 
within specific domains with semantic metadata. These 
ontologies furnish explicit, machine-understandable 
descriptions of concepts and their relationships, thus 
deepening data comprehension. OWL (Web Ontology 
Language), a logic-based language, forms the foundation of 
these ontology models, empowering RDF triple stores with 
rigorous constraints. The presence of OWL reasons ensures 
not only logical consistency but also real-time computation of 
inferred knowledge, thereby propelling data automation and 
interoperability. Incorporating Knowledge Graphs and the 

SPARQL Query language into the Semantic Web framework 
enhances our methodology for precise service discovery [10-
13].  

B. Knowledge Graph (KG) 

Knowledge Graphs (KGs) are intricate representations of 
real-world entities as interconnected nodes, serving as central 
hubs for information retrieval and complex web searches. 
Their significance in encapsulating machine-understandable 
contextual information within heterogeneous environments 
has spurred intensive research in semantic matching. In 2012, 
Google pioneered the concept with its Google Knowledge 
Graph, featuring an impressive array of 570 million entities 
[14]. Subsequently, KGs such as Geonames, FactForge [15], 
Yago [16], Wikidata [17], and more have been carefully built, 
containing a lot of Linked Open Data (LOD). Across various 
domains, including retail, entertainment, healthcare, finance, 
and more, KGs have revolutionized question answering and 
knowledge discovery, underlining their versatility. KGs 
typically adopt either the subject-property-object (s,p,o) 
notation or the entity-relation-entity representation. Formally, 
a KG is defined as a subset of (Ɛ × R × Ɛ) ∪ (Ɛ × Lr × L), 
where: 

 Ɛ refers to the set of entities. 

 R signifies the set of relations between entities. 

 Lr signifies the set of relations linking entities with 
object of literals. 

 L refers to the set of literals. 

In semantic network modeling, triplets (s,p,o) denote 
metadata statements resulting from the mapping of subject (s) 
and object (o) to nodes or entities and their associated 
properties (p) to links or relations. In this structured 
framework, Ɛ must be a URI or a blank node representing the 
subject, while R and Lr must be URIs, and the object entity 
can be a URI, blank node, or literal. In the context of SWS 
discovery, KGs herald a transformative shift from big data 
discovery to intelligent data discovery. Knowledge integration 
from domain ontologies plays a pivotal role in this 
transformation [18]. 

C. SPARQL Query 

SPARQL Protocol and RDF Query Language (SPARQL) 
stands as the preeminent query language for Semantic Web 
data, providing a means to interrogate extensive RDF-based 
KGs. Unlike SQL, tailored for relational databases, SPARQL 
caters to NoSQL graph databases like KGs, enabling the 
integration of knowledge from diverse sources to derive new 
insights. Built on the HTTP transport layer protocol, SPARQL 
facilitates querying information from multiple KGs via 
federated queries. It employs graph pattern matching, 
represented as subject, predicate, and object (s,p,o) triple 
patterns, to uncover solutions. SPARQL supports four query 
types: ASK, SELECT, CONSTRUCT, and DESCRIBE, each 
designed for specific querying purposes [19]. By harnessing 
the capabilities of SPARQL, our methodology transcends 
conventional querying techniques, providing a sophisticated 
means to navigate and utilize the rich semantic information 
encapsulated within the KG. 
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III. RELATED WORK AND MOTIVATION 

Over the past decade, substantial research efforts have 
been dedicated to enhancing the efficiency of Semantic Web 
Services (SWS) discovery algorithms. These algorithms aim 
to facilitate the discovery, selection, composition, 
classification, and ranking of SWS based on various 
functional and non-functional parameters. Numerous 
matchmaking algorithms have been devised, leveraging both 
logical and non-logical functional parameters of SWS. These 
algorithms enhance the selection and recommendation process 
for SWS. Initial variant of OWLS-M0 [20] used only logic 
based semantic similarity measure on I/O for service 
discovery. However, the other variants in [20] and notable 
work by [21, 22] employed hybrid matchmakers that consider 
logical and non-logical parameters from OWL-S and WSMO 
services. Semantic similarity metrics such as cosine similarity, 
loss-of-information, and Jensen-Shannon divergence were 
employed to assess the compatibility of services. One 
challenge encountered in this context is the time-consuming 
creation of matchmaker ontologies, particularly when 
handling a substantial number of services. To address this, 
[23, 24] introduced a caching-based mechanism called Service 
Discovery Caching (SDC). SDC involves the construction of a 
graph to cache frequently used services, thereby mitigating the 
time overhead. Another line of research [25] employed First 
Order Logic (FOL) to formally describe service capabilities. 
The study utilized SPARQL 1.0 for querying services based 
on their descriptions, particularly in cases where services 
provided Preconditions and Effects (PE) descriptions. 
Although promising, this method was constrained by the 
limited availability of services with PE descriptions in the 
dataset, limiting its generality. Efforts to reduce the problem 
space of service searching led to prefiltering mechanisms [26-
28]. These mechanisms were designed to enhance existing 
matchmaker engines using SPARQL queries, significantly 
improving response times. Nevertheless, the challenge of 
semantic matching persisted, particularly for complex 
concepts and relations within domain ontologies. Working on 
the same OWL-S dataset, the work in [29] have used 
unsupervised learning methods like DBSCAN clustering to 
cluster the services semantically closed and thereby finding 
the semantically closed cluster to user requirement using 
Latent Semantic Analysis (LSA). An ensemble model based 
approach in [30] use decision tree and logistic regression for 
service classification and recommendation of top-10 services. 
However, none of these works implemented the concept of 
KGs in the domain of SWS. The work cited in study [31] [32] 
employed machine learning methodologies; specifically K-
Means clustering was used in [31] to generate a Service 
Ontology from SWS corpus. Results demonstrated that the 
generated ontology can be used for the discovery mechanism. 
Later work in [32] utilized first K-Means clustering and then 
K-Nearest Neighbors (KNN) for classification. This analysis 
yielded a noteworthy accuracy rate of 89.28%. However, it's 
essential to emphasize that this algorithm was rigorously 
tested within a restricted range of domains. Another work in 
[33] used part of OWL-S dataset i.e. 30000 triplets to add 
domain knowledge in KG and also 

for training and testing purpose of user‘s intent. However, 
with advanced machine learning methods, the overall accuracy 
of SWS discovery has improved. However, most of these 
works [29-32] focused on a subset of domains within the 
OWLS collection, and none of the works have implemented 
an automatic querying method for user queries. Instead of 
using the relevance file provided for OWLS-TC as per user 
queries, different methods have been employed to compute 
evaluation metrics. 

In parallel with advancements in SWS discovery, 
Knowledge Graphs (KGs) have emerged as a powerful tool 
for representing and retrieving knowledge from large 
interlinked datasets. These KGs integrate domain ontologies at 
a universal level, creating extensive graphical representations 
of interlinked data that support complex queries and unified 
knowledge discovery. Recent work on KGs has generated 
KGs in different domains whereas some works perform 
querying over the existing KGs to improve the tasks like 
recommendation systems, link prediction, node classification,  
and knowledge discovery [34-36]. Another line of works in  
[37-40] generate SPARQL queries from natural language for 
existing KGs like DBpedia, Wikidata for complex querying. 
Furthermore, Graph Neural Network-based learning models 
have been employed to enhance KGs' performance in tasks 
such as link prediction and multihop querying [41-43]. Our 
motivation for this research stems from the intersection of 
SWS discovery and KGs. Both domains utilize ontologies as a 
foundation, making them amenable to integration. While 
previous works have primarily focused on matchmaking 
within SWS or querying KGs independently, there is a notable 
gap in seamlessly integrating SWS discovery with Knowledge 
Graphs (KGs) specific to our domain of SWS for service 
discovery. This is the key motivation behind our research. We 
aim to bridge these domains by creating a Knowledge Graph 
of Semantic Web Services (KGSWS). This integrated 
approach enables enhanced SWS discovery using KG-based 
querying techniques. 

IV. RESEARCH QUESTIONS 

The motivation for this proposed work arose from an 
extensive review of related research papers and the challenges 
discussed in the field. Our objective is to establish a 
centralized Knowledge Graph (KG) for Semantic Web 
Services (SWS) and address the following research questions: 

1) How can ontologies from different domains be 

interlinked to form an extensive Knowledge Graph enriched 

with semantic metadata thereby enhancing the discovery of 

SWS? 

2) What methods can be used to formulate the automatic 

queries on the KG, aligned with varying numbers of inputs-

outputs for effective querying purposes? 

3) How can we efficiently retrieve SWS from big KG that 

precisely matched the user requirements for service 

discovery? Additionally, how can we identify the closely 

related services when an exact match is not available, 

maintaining the integrity of the user's query? 
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V. PROPOSED APPROACH 

In this section, the detailed experimentation done to design 
a framework for discovery of relevant services across KGSWS 
has been discussed. The framework includes the steps required 
to create, visualize, and query the KGSWS as shown in Fig. 1. 

The detailed insights to these steps have been discussed in 

Phase 1 and Phase 2 of the framework. Phase 3 discussed the 

validation process of the results. 

 
Fig. 1. Proposed work methodology. 

A. Phase 1: Preprocessing Phase to Generate Knowledge 

Graph 

The core step of our approach is the creation of a 
Knowledge Graph designed explicitly for Semantic Web 
Services (KGSWS). This phase describes the steps involved in 
constructing the KGSWS from the OWL-S service 
descriptions and their associated domain ontologies with an 
example. Through this, semantic metadata was integrated with 
KGSWS that forms the backbone of the proposed approach. 

1) OWL-S service descriptions and KGSWS Construction: 

OWL-S services are based on frameworks that add semantic 

extensions to non-semantic web services using domain 

ontologies. In OWLS approach, Service Profile describes the 

capabilities of the service and refer as the upper ontology, 

Service Modelling demonstrates data flow and control flow 

within the services and Service Grounding specify the 

procedure of interaction with these services using protocols 

and message formats. OWL-S service description is mainly 

provided by the upper ontology Service Profile where 

different terms describe the inputs, outputs, preconditions, and 

their effects (IOPE); postconditions, assumptions based on the 

transition rules, if required. Once the service based on the 

brief description of IOPE concepts in the Profile is selected; 

Process Model related with Service Profile is used for further 

interaction with these services by linking them to their domain 

ontologies. For instance, consider the Profile and Process 

Model in the Service Description of finding author of the book 

as shown in Fig. 2(a). In the Profile of the service 

<profile:serviceName>, <profile:textDescription>, 

<profile:hasInput> and <profile:hasOutput> provides the 

information of the book whereas the <process: 
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parameterType> in the process model linked the I/O concepts 

―Book‖ and ―Author‖ to the ontology ―books.owl‖ for the 

semantic matching of the concepts. In order to construct 

KGSWS from of these services, these I/O terms are referred as 

entities and their associated properties and restrictions form 

the relations are then mapped to literal or another entity. Since 

these I/O concepts refer to some domain ontologies 

description in the Process Model, these ontologies are also 

linked in KGSWS by extracting an interoperable definition of 

each concept from their properties and restrictions from 

domain ontology. This was done by first serializing the service 

descriptions concepts and their associated ontologies to Triple 

Notation (Turtle Notation. ttl). Apache Jena Fuseki was used 

for integration, thus all the OWL mappings, alignment axioms 

that indicate equivalence or relationships between terms were 

preserved. Afterwards, KGSWS graph was created using 

network and rdf based libraries like rdflib, networkx in Python 

which consists of 1,21,542 Triplets. Fig. 2(b) shows the 

snippet of turtle representation for example shown in Fig. 2(a). 

 
(a) 

 
(b) 

Fig. 2. (a) Example of service description structure [42]. (b) Shows the 

snippet of turtle notation for above service description example used to 

construct KGSWS. 

B. Phase 2: Discovery Phase 

The main objective of this phase was to perform queries over 

KGSWS created in phase 1 of the proposed framework. 
 

1) Querying and Searching from KGSWS: KGSWS, 

generated in Phase 1, comprises millions of entities and their 

attributes represented as nodes and edges. To query such 

specialized KGs, specialized knowledge of the querying 

language and a deep understanding of the underlying structure 

are required. Addressing the challenge of searching for 

relevant services based on the I/O concepts mentioned in the 

user request, we automated the generation of SPARQL queries 

based on the OWL-S service description model. These queries 

are then executed across the KGSWS to search and retrieve 

relevant services. The proposal used SPARQL 1.1 query due 

to its efficient results in pre filtering of domain wise services 

[28] and recommendation by W3C for querying over graphical 

databases. However, the work lacked its own matchmaker and 

has not integrated different domain ontologies to create big 

KG due to which services based on equivalent concepts were 

not retrieved. For instance, to find the name of books giving 

title or other information as input retrieve the service no.1 and 

2 with output concept ―Book‖ from ―books.owl‖ domain 

ontology as valid services as shown in Table I. In the given 

query, the service no. 3 having interface description 

―Publication-number‖ as input and ―Book‖ as output concept 

from ―univ.owl‖ is also valid due to equivalence relation of 

―books:Book ≡ univ:Book‖ where books and univ are 

namespaces for ―books.owl‖ and ―univ.owl‖ ontologies 

respectively. 

As show in Fig. 3(a) of ―books.owl‖ ontology, the ―Book‖ 
concept was used to describe information of different types of 
books and in Fig. 3(b) of ―univ.owl‖, the same highlighted 
concept was added as a subclass of ―Publication‖ concept. To 
query the KGSWS, two methods were implemented with a 
view to include different degree of semantic matching. 

2) Semantic matching: To evaluate the performance of 

different degree of semantic match of concepts during 

discovery of services from their knowledge graph, two 

methods namely Method 1 and Method 2 were used to 

generate query wise relevant list. These two matchmaking 

algorithms focus solely on the input and output parameters of 

the service and employ two levels of semantic concept 

matching, namely ‗Qeach‘ and ‗Qfew‘ as outlined in Table II. 

This is followed by the pseudocodes for both discovery 

methods. The Phase 1 of constructing KGSWS is followed by 

the process of parsing I/O concepts based on user requests. 

Subsequently, a SPARQL query, guided by steps 9-12, was 

executed to retrieve a list of relevant services using Select, 

Where, Filter, Bind, Regular expressions options in the query. 

For the determination of services using "Qeach," each concept 

in the user request was considered, and services aligned with 

equivalent concepts in other ontologies within the same 

domain were retrieved through the 'owl:equivalentClass' 

restriction. Additionally, for "Qfew," beyond the steps involved 

in "Qeach," a 'UNION' operation in the SPARQL query was 

introduced to filter out entirely irrelevant services. 
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TABLE I. SOME RELEVANT SERVICES TO FIND THE BOOK NAME FROM ITS GIVEN INFORMATION 

S.No. WSName Textual Description of the Functionality 
Interface Description 

Input Output 

1. BookFinder.owls 
The services retrieves the book information 

having title as input 
books:Title books:Book 

2. BookSearchService.owls Search engine for book books:Title books:Book 

3. Publication_book_service.owls 
The service retrieve the book name with given 
publication number 

niv:Publication univ:Book 

 
(a) 

 
(b) 

Fig. 3. (a) Books.owl. (b) Univ.owl. 

TABLE II. DEMONSTRATED THE METHODS FORMULATION IN 

DESCRIPTION LOGIC 

Method 
No. 

Method 
Name 

Description Logic 
Representation 

Description 

Method 1 Qeach 
If Iconcept(S) ≡ Iconcept(Rq) ^  

Oconcept(S) ≡ Oconcept(Rq) 

Service S 

concepts are 
semantically 

equivalent to Rq 

Concepts 

Method 2 Qfew 
If Iconcept (Rq) ⊆ Iconcept (S)  ^  

Oconcept(Rq) ⊆  Oconcept(S) 

Rq concepts 
matched to 

some concepts 

of service S 

where Iconcept(S), Iconcept(Rq), Oconcept(S), and Oconcept(Rq) represents the 

inputs/outputs concepts of advertised and request services respectively 

 

Pseudocode for Method 1: Qeach 

1. Input: 
2. Given user query refer to required Qinput and Qouput where: 

    Qinput: List of required input concepts in the query  

    Qouput: List of required output concepts in the query  

3. Output: 
4.  RSL: Relevant Service List 

5. Local Resources:  
6. KGWS = Knowledge Graph of Services 

and their Ontologies 

7. For each query, Parse Qinput and Qoutput 

8. Parse the TDB knowledge graph of services 

9. Check if the predicate of the triplet is service:Service 

10. For each service, retrieve the process Input and Output tags 

from the triplet 

11. Retrieve <process:parameterType> tags of process Input 

and Output to retrieve domain ontology  

12. Apply filters for semantic matching of ―each‖ concept of 

Qinput and Qouput. 

13. Generate RSL(Qinput, Qouput, RSL- Relevant Service List) 

14. Repeat 

 

Pseudocode for Method 2: Qfew 

1. Input: 
2. Given user query refer to required Qinput and Qouput where: 

    Qinput: List of required input concepts in the query  

    Qouput: List of required output concepts in the query  

3. Output: 
4.  RSL: Relevant Service List 

5. Local Resources:  
6. KGWS = Knowledge Graph of Services 

and their Ontologies  

7. For each query, Parse Qinput and Qoutput 

8. Parse the TDB knowledge graph of services 

9. Check if the predicate of the triplet is service:Service 

10. For each service, retrieve the process Input and Output tags 

from the triplet 

11. Retrieve <process:parameterType> tags of process Input 

and Output to retrieve domain ontology   

12. Apply filters for semantic matching of ―few‖ concepts of 

Qinput and Qouput. 

13. Generate RSL(Qinput, Qouput, RSL- Relevant Service List) 

14. Repeat 

C. Phase 3: Parsing of Relevance File 

In this phase, the list of services generated in Phase 2 was 
validated against the services in the relevance file provided by 
domain experts for "OWL-TC4." 

The file features a <binaryrelevanceset> root tag 
containing <request>, <name>, and <uri> tags for each service 
request, as shown in the above structure of XML relevance 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

187 | P a g e  

www.ijacsa.thesai.org 

file. These tags were employed to assign a unique ID to each 
request, with service request names based on the requested 
service's functionality. The <uri> tag contains a unique 
address to identify the request on the web. Furthermore, each 
<request> has a <ratings> tag containing multiple <offer> tags 
specifying the <name>, <uri>, and binary relevance in the 
<relevant> tag of the service. These requests have been parsed 
and the relevant information was stored in a CSV relevance 
file using Python libraries for hierarchical structures as shown 
in pseudocode. The service list from Phase 2 was compared 
with this relevance file to determine the key parameters of the 
model, as discussed in the next section. 

Pseudocode: To Parse XML 

DOM  

Structure of the XML 

Relevance File  
1. Import the XML libraries 

and other hierarchical 

libraries  

2. Parse the relevance file 

‗owls-tc4.xml‘ 

3. Get the root of the structure 

//To match the name and uri of 

each query request given by the 

user  

4. For each user request as 

child in xml file 

5. Retrieve the name and uri of 

the request 

 //Find the name, uri, and 

relevance value of services for 

particular request 

6. For each item offer giving 

the details of the service 

7. Retrieve the service name, 

uri and its relevance value. 

8. Append the results in data 

frame //As hierarchical 

structure 

9.  Export the results as 

―outputxml.csv‖ 

<binaryrelevanceset> //for 

the binary relevance sets  

<request ...>  

<name ... />  

<uri .../>  

<ratings>  

<offer ...> //each request 

contains multiple offers  

<name ... />  

<uri .../>  

<relevant>value</relevant> 

//here the value can be 

either 0 or 1  

</offer>  

...  

</ratings>  

</request>  

...  

</binaryrelevanceset>  

VI. RESULTS AND DISCUSSION 

In this section, a comprehensive analysis of the performed 
experiments has been discussed to assess the performance and 
efficiency of our proposed framework. The section 
commenced by describing the experimental scenario and the 
dataset used for testing. Following this, an in-depth analysis of 
the results has been done to emphasize significant 
observations and comparisons between our approach and 
baseline methods. 

A. Experimental Scenario 

In order to test the performance of our proposal, ontology 
based SWS test collection OWLS-TC v4 [44] was used to 
create KGSWS. As shown in Table III, the collection contains 
1083 services from nine domains namely Education, Medical 
Care, Food, Travel, Communication, Economy, Weapon, 
Geography, and Simulation. These services were based on 48 
domain ontologies. KGSWS consists of 1,21,542 triplets 

generated from the integration of these 1083 service 
descriptions and their corresponding 48 domain ontologies. 
Further, 38 test queries with varying number of input output 
concepts based on the domains were executed against 
KGSWS using two different SPARQL query methods. 

TABLE III. DOMAIN NAMES AND NUMBER OF SERVICES IN EACH DOMAIN 

S.No. Domain No. of Services 

1 Education 279 

2 Medical Care 73 

3 Food 34 

4 Travel 197 

5 Communication 59 

6 Economy 325 

7 Weapon 40 

8 Geography 60 

9 Simulation 16 

 Total 1083 

B. Analysis of Results 

In this subsection, we provide a comparative analysis of 
our proposed methods i.e. Method 1 (Qeach) and Method 2 
(Qfew), against baseline approaches. The key parameters that 
were used to compare the performance of these methods are 
given below in Table IV [45]. The Macro-Averaged Precision 
Recall metrics was used to give equal relevance to each test 
query and its value lies in the range [0, 1]. The relevance file 
provided for OWLS-TC (as discussed in Phase 3) was utilized 
to compute the key parameters of the methods in the proposed 
framework. 

1) Analysis of method 1 results: As discussed, Method 1 

employed each concept matching approach, aligning service 

requests with the concepts within the KGSWS. This precision-

oriented method demonstrated noteworthy results as shown in 

Fig. 4(a) and Fig. 4(b). It retrieved fewer or zero irrelevant 

services, leading to significantly higher precision in most 

cases. Also, Method 1 exhibited an average query response 

time of a mere 0.61 seconds, showcasing its efficiency. 

However, this method faced challenges in test cases 8, 17 and 

22, where it failed to locate any relevant service matching 

each concept, leading to a precision value of zero and due to 

equal importance of each query it dropped the overall 

precision value even if in most of the cases the values reaches 

1 as shown in Fig. 4(a).  Furthermore, the proposed model did 

not include logical inferred ―subclass‖ concepts during the 

matchmaking of each concept. Due to this, all the relevant 

services having input-output concepts as direct subclass 

concepts of requested concepts in the query were not retrieved 

dropping the macro-averaged recall value to 49.14%. But, the 

overall accuracy of the model is 69.75% better than one of the 

existing work [20]. 
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TABLE IV. KEY PARAMETERS USED FOR THE PERFORMANCE EVALUATION OF THE MODEL 

Precision 

Precision in case of SWS is defined as the number of relevant services out of the total number of services retrieved by the 

framework. Mathematical equation to calculate the Precision value is given as follows: 

 
where, Srelevant gives the number of relevant services retrieved, and Sirrelevant gives the number of irrelevant services retrieved 

Recall 

Recall is computed by taking the fraction of relevant services retrieved out of the total relevant services given in the relevance 

file by domain expert. Mathematical equation to calculate the Recall value is given as follows: 

 
where, Srelevant gives the number of relevant services retrieved, and SrelevantNR gives the number of relevant services not retrieved 
by the framework 

Macro-Average Precision 

Macro Average Precision is used to compute the arithmetic mean of the precision of each test query in case of multiclass 

classification. 

 
where, q represents the number of test queries and Precisionq gives the precision value of qth query 

Macro-Average Recall 

Macro-Average Recall is used for multiclass classification and is computed by taking arithmetic mean of each test query 

recall value. 

 
where, q represents the test query and takes values up to N, and Recallq gives the recall value of qth query 

Accuracy 
Accuracy provides the overall performance of the model by computing the ratio of correct predictions out of total predictions 
done by the model. 

Average Query Response Time 
Average Query Response Time (Avg. Qrt) is computed by taking the average of total response time taken to execute all the 

test queries. 
 

 Logical Inferencing over KGSWS 

The incorporation and interconnection of ontologies within 
KGSWS not only enhance the outcomes, as discussed in the 
previous section, but also pave the way for easier reasoning, 
composition, and classification in the future. Reasoning over 
KGSWS involves incorporating logically inferred concepts 
through the "subclass" symmetric relation. For example, when 
searching for services that provide the price of a given book, 
services that yield "MaxPrice" or "RecommendedPrice" as 
output, with "book" as input, are also deemed relevant. This 
relevance stems from their subclass relationship with the 
"Price" concept. However, the proposal did not account for the 
addition of logically inferred subclass concepts from the given 
concepts, leading to a decrease in the overall accuracy of 
Method 1. 

2) Analysis of Method 2 results: Method 2, characterized 

by looser restrictions on the semantic match of I/O concepts, 

yielded contrasting results as shown in Fig 4(c) and Fig 4(d). 

This enhancement allowed the automatic retrieval of services 

sharing subclass relationships with some concepts of user 

concepts thereby capturing more closely related services. This 

flexibility leads to improved recall values, as Method 2 can 

identify a broader range of relevant services. This method 

proved beneficial in the worst cases of Method 1, where it 

retrieved some relevant services and achieved non-zero 

precision. However, this came at the trade-off of retrieving 

some irrelevant services, resulting in a decrease in average 

precision. This highlights the potential of Method 2 for more 

comprehensive service discovery, albeit at the expense of 

precision. Table V demonstrates the macro-averaged results, 

accuracy and average Qrt of the two methods. 

3) Comparison with existing frameworks: Comparing our 

experimental results with some published results of other 

existing works on the same dataset (see Table VI), it was 

observed that our proposed method demonstrated superior 

performance in terms of average response time and accuracy. 

Notably, the two-step approach in [28] involving prefiltration 

and subsequent matchmaking incurred a higher average query 

response time compared to our approach. This is a significant 

achievement, considering that our search was conducted over 

the integrated KGSWS, underlining the efficiency and 

swiftness of our approach. Moreover, the matchmakers of [20] 

exhibited longer response times, primarily attributable to the 

addition of concepts to a new matchmaker ontology for each 

request. In contrast, our approach, which seamlessly integrates 

the advantages of in depth querying over Knowledge Graph, 

overcame this bottleneck, leading to a more streamlined and 

efficient service discovery process. An important observation 

in our results was that while some subsequent studies [29-32] 

explored machine learning-based classification techniques, 

none had harnessed the potential of the Knowledge Graph 

within this domain. 

Srelevant 
 

Srelevant + Sirrelevant 

 

Srelevant 
 

Srelevant + SrelevantNR 
 

∑ 
N 

q=1 
Precision

q 

N 

∑ 
N 

q=1 
Recallq 

N 
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(a)                                                                                                                                  (b) 

 
  (c)                                                                                                                            (d) 

Fig. 4. (a) Macro-averaged precision recall of method 1. (b) Query wise accuracy of method 1 and the dotted redline shows the macro-averaged accuracy of the 

model. (c) Macro-averaged precision recall of method 2. (d) Query wise accuracy of method 2 and the dotted redline shows the macro-averaged accuracy of the 
model. 

TABLE V. KEY PARAMETERS RESULTS GIVEN BY TWO METHODS ―QEACH‖ 

AND ―QFEW‖ 

Key Parameters Method 1 Method 2 

Macro-Averaged Precision 0.9036 0.9388 

Macro-Averaged Recall 0.4914 0.8614 

Accuracy 0.6975 0.9001 

Average Query Response Time (in 

s) 
0.61 s 1.57s 

C. Discussion 

The proposed work, used the advanced potential of KGs 
for semantic enrichment and querying, overcomes the 
limitations of previous approaches by introducing an 
integrated composite schema known as KGSWS for querying. 
This schema allows Method 1 and Method 2 to incorporate 
more relevant services within the same domain using different 
levels of filtering and regular expressions during the discovery 
process. The integration of domain ontologies and service 
descriptions in KGSWS enables the alignment of 
heterogeneous concepts within the same domain with user-

requested concepts, thereby increasing the accuracy of both 
Method 1 and Method 2. However, as the work does not 
include logical reasoning over KGSWS, the performance 
metrics of Method 1 experienced a decline to 69.75% due to 
the matching of each concept of the user-requested query. 
Additionally, while Method 2 benefits from the inclusion of 
more equivalent concepts within the same domain, allowing 
for the automatic inclusion of more relevant services with 
loose concept matching using filters and regular expressions, 
this also entails the inadvertent inclusion of some irrelevant 
services. Compared to previous approaches, our proposed 
framework offers a comprehensive querying solution rather 
than relying on pre-filtering through querying on exiting 
matchmakers [28], which can lead to increased response 
times. Furthermore, unlike existing methods [20] that create 
matchmaking ontologies for discovery, our approach does not 
require such intermediary steps. For validation purposes, our 
work utilized the relevance file provided for the OWLS 
dataset in Phase 3 instead of employing alternative methods 
[29-33] to find relevant services, thereby enhancing the 
reliability of the framework. Additionally, we considered the 
complete OWLS-TC dataset rather than using its subset to 
generate KGSWS and further for service discovery. The 

Performance Comparisons in Terms of 

Relevant Services Returned 
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framework also allows for the automatic generation of queries 
based on user-requested concepts, offering a generic and 
streamlined approach to querying. 

TABLE VI. COMPARISON OF ACCURACY AND QUERY RESPONSE TIME OF 

EXISTING FRAMEWORKS WITH THE PROPOSED FRAMEWORK 

 
Accuracy 

(%) 
Average Qrt  (in sec.) 

Method 1 69.75 0.61 s 

Method 2 90.01 1.57s 

OWLS-M0 [20] 49.55 57.33s 

OWLS-MX3 (M3) [20] 82.96 58.46s 

SPARQLent [28] 72.02 55.00s 

HELSWSR [30] 85.60 - 

-[29] 83.09 - 

- [32] 89.28 - 

VII. CONCLUSION AND FUTURE SCOPE 

In this paper, we have presented a framework for the 
automatic discovery of SWS through the use of SPARQL 
querying over KG.  By introducing the KGSWS framework, a 
paradigm shift has been made by offering more precise and 
machine understandable context during automatic 
matchmaking of services. The integration of domain 
ontologies in KGSWS introduces a new level of semantic 
richness that effectively resolved the ambiguity associated 
with keyword-based matchmaking of WS. In conclusion, our 
work contributes to the field of SWS discovery by efficiently 
retrieving the relevant services aligned with the concepts in 
user request. Our approach also addresses several research 
questions discussed at the outset of this work. 

A. Addressing Research Questions 

1) How can ontologies from different domains be 

interlinked to form an extensive Knowledge Graph enriched 

with semantic metadata thereby enhancing the discovery of 

SWS? 

Our framework successfully accomplished this by 
constructing the KGSWS from OWL-S service descriptions 
and their associated domain ontologies that forms a 
centralized repository of semantic metadata to enhance the 
discovery process of services. 

2) What methods can be used to formulate the automatic 

queries on the KG, aligned with varying numbers of inputs-

outputs for effective querying purposes? 

Our experiments demonstrated the effectiveness of our 
approach in generating and executing general-purpose queries 
over KGSWS. The capabilities of two semantic matching 
methods namely "Qeach" and "Qfew," have been evaluated in 
answering user queries based on varying input/output 
parameters. 

3) How can we efficiently retrieve SWS from big KG that 

precisely matched the user requirements for service 

discovery? Additionally, how can we identify the closely 

related services when an exact match is not available, 

maintaining the integrity of the user's query? 

The semantic matching methods provide a practical 
solution to this challenge. The "Qeach" method excels in 
retrieving precisely matched services whereas the "Qfew" 
method retrieved closely related services when exactly 
matched services are not available. 

B. Future Scope 

While our proposed work has achieved promising results, 
several avenues for improvements and future research exist: 

1) Logical inference: In future work, the inclusion of 

logical inferencing techniques in Qeach semantic matching can 

enhance the macro-averaged recall and thereby accuracy of 

our framework. 

2) Scalability and machine learning based models: As the 

number of SWS and their associated ontologies continues to 

grow, scalability remains a critical concern. The incorporation 

of machine learning based graph embedding models can 

efficiently handle large KGs and also enable more accurate 

service recommendations. 
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