
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

181 | P a g e

www.ijacsa.thesai.org

Q-KGSWS: Querying the Hybrid Framework of

Knowledge Graph and Semantic Web Services for

Service Discovery

Pooja Thapar, Lalit Sen Sharma

Department of Computer Science and IT, University of Jammu, J&K, India

Abstract—In the era of big data, Knowledge Graphs (KGs)

have become essential tools for managing interconnected datasets

across various domains. This paper introduces a novel RDF

(Resource Description Framework) based Knowledge Graph of

Semantic Web Services (KGSWS), designed to enhance service

discovery. Leveraging the versatile SPARQL query language, the

framework facilitates precise querying operations on KGSWS,

enabling customized service matching for user queries. Through

comprehensive experimentation and analysis, notable

improvements in accuracy (69.75% and 90.01%) and rapid

response times (0.61s and 1.57s) across two semantic search levels

are demonstrated, validating the efficacy of the approach.

Furthermore, research questions regarding the interlinking of

ontologies, methods for formulating automatic queries, and

efficient retrieval of services are addressed, offering insights into

future avenues for research. This work represents a significant

advancement in the domain of semantic web services, with

potential applications across various industries reliant on

efficient service identification and integration. Future phases of

research will focus on logical inference and the integration of

machine learning-based graph embedding models, promising

even greater strides in knowledge discovery within the KGSWS

framework, thus reshaping the domain of semantic web services.

Keywords—Ontologies; knowledge graph; semantic web

services; SPARQL query language; OWLS; data integration;

service discovery

I. INTRODUCTION

In today's rapidly changing computing environment, the
fundamental paradigm of Service Oriented Architecture
(SOA) is supported by core engineering principles of
Reusability, Discoverability, and Interoperability. These
principles provide a robust framework for orchestrating
communication in distributed computing environments
characterized by services encapsulated in discrete units. SOA
leverages standardized interfaces and protocols, enabling
seamless integration and communication between
heterogeneous systems, thereby fostering a modular and
extensible architecture [1]. Web Services (WS), the
embodiment of SOA, play a pivotal role in contemporary
enterprise solutions by enabling the integration of systems
across organizational boundaries. WS, being self-described
and disseminated by organizations, facilitate interoperable,
machine-to-machine interactions and promote code reusability
across networks. The orchestration of this integration relies on
the convergence of components such as WSDL (Web Service
Description Language), UDDI (Universal Description,

Discovery and Integration), and SOAP (Simple Object Access
Protocol), including the Service Consumer, Service Registry,
and Service Provider. These components empower manual
examination of WS within the UDDI repository, enabling
users to identify services based on their specific functionalities
[2] . However, the use of XML as the standard language for
describing WS capabilities, while crucial for service
description, introduces ambiguity in keyword-based
matchmaking due to the absence of machine-understandable
semantic information. This challenge in the software
landscape necessitates the introduction of formal knowledge
representation—a shared, universally harnessed resource
within intricate software engineering systems [3] [4].

Semantic Web Services (SWS) build upon the foundation
of WS by incorporating semantic extensions through metadata
vocabularies from the Semantic Web. These extensions are
either realized through semantic annotations known as
SAWSDL (Semantic Annotations for WSDL) or by
employing domain ontologies rooted in description logic, as
seen in OWL-S. Ontologies, acting as metadata vocabularies,
provide a formal, machine-understandable representation of
concepts and their relationships within a domain, enhancing
knowledge comprehension. Among the conceptual models
defining SWS, OWL-S distinguishes itself through the
integration of domain ontologies into WS descriptions. This
integration enables logical reasoning, facilitating more precise
and automated service discovery. Rules and constraints,
defined on the concepts and properties of domain ontologies,
serve as reference points for logical inference, fortifying
specification, consistency, and conceptualization during
service discovery. It, therefore empower domain experts to
navigate knowledge contexts across domains with
unambiguous precision. However, the intricacies of
description logic formalism within domain ontologies, and the
proliferation of SWS services have presented efficiency
challenges for industries and organizations in terms of service
discovery [5-7].

This paper confronts these challenges by leveraging the
burgeoning paradigm of Knowledge Graphs (KGs). The
unique capability of KGs to incorporate semantic metadata
descriptions of entities makes them a prime candidate for
complex querying through semantic web technologies,
particularly SPARQL querying [8] [9]. This work introduces a
pioneering approach: the creation of an RDF-based
Knowledge Graph of Semantic Web Services (KGSWS) for
service discovery, empowered by SPARQL-based question

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

182 | P a g e

www.ijacsa.thesai.org

answering. At its core, this approach centers on generating
interlinked data from domain ontologies to significantly
augment service discovery accuracy. By employing advanced
KG techniques and querying methodologies, SPARQL queries
utilize the knowledge encapsulated in OWL-S service
descriptions and their linked ontologies from KGSWS to
address queries based on diverse user input/output requests. In
essence, KGSWS uncover the hidden correlations between
service descriptions and domain ontologies; and provide
insightful recommendations to refine the user experience
effectively and thereby serving as a bridge between the realm
of SWS and KGs.

The paper's structure unfolds as follows: Section II delves
into the Background elements and techniques underpinning
this research. Section III explores related work, elucidating the
context that motivated our research endeavor. Section IV
frames the research questions to be in the proposed work.
Section V meticulously details the proposed methodology,
laying out the innovative approach that unifies SWS
ontologies and KGs. Following this, Section VI unveils our
experimental results, providing a comprehensive comparative
analysis with related work. Finally, in Section VII, we
conclude and outline future avenues for this research,
illuminating the potential for further advancements in the
domain of semantic web services.

II. BACKGROUND

This section lays the groundwork for understanding the
key components and concepts that underpin our research:

A. Semantic Web

Semantic Web is an advancement to the existing Web 2.0,
designed to enable machines to process information
intelligently, akin to human reasoning. This capability is
achieved through the strategic use of semantic tags, imbuing
data with what we call "Semantic Metadata." To exemplify,
consider the concept of a "Service" in our context. Semantic
Metadata goes beyond the term itself, distinguishing between
a "Web Service" as a functional software component and a
"Semantic Web Service" as a service enriched with semantic
information, by providing specific details about its
functionalities, inputs, and outputs, thereby facilitating precise
and automated discovery. Structured Linked Open Data
(LOD) is represented as a graph, interconnecting data across
servers via Universal Resource Identifiers (URIs). RDF
(Resource Description Framework) leverages URIs to denote
relationships within this graph. In this structured environment,
edges serve as the conduits for relationships between two
resources, culminating in triplets within a directed graph.
Ontologies, integral to the Semantic Web stack, enhance data
within specific domains with semantic metadata. These
ontologies furnish explicit, machine-understandable
descriptions of concepts and their relationships, thus
deepening data comprehension. OWL (Web Ontology
Language), a logic-based language, forms the foundation of
these ontology models, empowering RDF triple stores with
rigorous constraints. The presence of OWL reasons ensures
not only logical consistency but also real-time computation of
inferred knowledge, thereby propelling data automation and
interoperability. Incorporating Knowledge Graphs and the

SPARQL Query language into the Semantic Web framework
enhances our methodology for precise service discovery [10-
13].

B. Knowledge Graph (KG)

Knowledge Graphs (KGs) are intricate representations of
real-world entities as interconnected nodes, serving as central
hubs for information retrieval and complex web searches.
Their significance in encapsulating machine-understandable
contextual information within heterogeneous environments
has spurred intensive research in semantic matching. In 2012,
Google pioneered the concept with its Google Knowledge
Graph, featuring an impressive array of 570 million entities
[14]. Subsequently, KGs such as Geonames, FactForge [15],
Yago [16], Wikidata [17], and more have been carefully built,
containing a lot of Linked Open Data (LOD). Across various
domains, including retail, entertainment, healthcare, finance,
and more, KGs have revolutionized question answering and
knowledge discovery, underlining their versatility. KGs
typically adopt either the subject-property-object (s,p,o)
notation or the entity-relation-entity representation. Formally,
a KG is defined as a subset of (Ɛ × R × Ɛ) ∪ (Ɛ × Lr × L),
where:

 Ɛ refers to the set of entities.

 R signifies the set of relations between entities.

 Lr signifies the set of relations linking entities with
object of literals.

 L refers to the set of literals.

In semantic network modeling, triplets (s,p,o) denote
metadata statements resulting from the mapping of subject (s)
and object (o) to nodes or entities and their associated
properties (p) to links or relations. In this structured
framework, Ɛ must be a URI or a blank node representing the
subject, while R and Lr must be URIs, and the object entity
can be a URI, blank node, or literal. In the context of SWS
discovery, KGs herald a transformative shift from big data
discovery to intelligent data discovery. Knowledge integration
from domain ontologies plays a pivotal role in this
transformation [18].

C. SPARQL Query

SPARQL Protocol and RDF Query Language (SPARQL)
stands as the preeminent query language for Semantic Web
data, providing a means to interrogate extensive RDF-based
KGs. Unlike SQL, tailored for relational databases, SPARQL
caters to NoSQL graph databases like KGs, enabling the
integration of knowledge from diverse sources to derive new
insights. Built on the HTTP transport layer protocol, SPARQL
facilitates querying information from multiple KGs via
federated queries. It employs graph pattern matching,
represented as subject, predicate, and object (s,p,o) triple
patterns, to uncover solutions. SPARQL supports four query
types: ASK, SELECT, CONSTRUCT, and DESCRIBE, each
designed for specific querying purposes [19]. By harnessing
the capabilities of SPARQL, our methodology transcends
conventional querying techniques, providing a sophisticated
means to navigate and utilize the rich semantic information
encapsulated within the KG.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

183 | P a g e

www.ijacsa.thesai.org

III. RELATED WORK AND MOTIVATION

Over the past decade, substantial research efforts have
been dedicated to enhancing the efficiency of Semantic Web
Services (SWS) discovery algorithms. These algorithms aim
to facilitate the discovery, selection, composition,
classification, and ranking of SWS based on various
functional and non-functional parameters. Numerous
matchmaking algorithms have been devised, leveraging both
logical and non-logical functional parameters of SWS. These
algorithms enhance the selection and recommendation process
for SWS. Initial variant of OWLS-M0 [20] used only logic
based semantic similarity measure on I/O for service
discovery. However, the other variants in [20] and notable
work by [21, 22] employed hybrid matchmakers that consider
logical and non-logical parameters from OWL-S and WSMO
services. Semantic similarity metrics such as cosine similarity,
loss-of-information, and Jensen-Shannon divergence were
employed to assess the compatibility of services. One
challenge encountered in this context is the time-consuming
creation of matchmaker ontologies, particularly when
handling a substantial number of services. To address this,
[23, 24] introduced a caching-based mechanism called Service
Discovery Caching (SDC). SDC involves the construction of a
graph to cache frequently used services, thereby mitigating the
time overhead. Another line of research [25] employed First
Order Logic (FOL) to formally describe service capabilities.
The study utilized SPARQL 1.0 for querying services based
on their descriptions, particularly in cases where services
provided Preconditions and Effects (PE) descriptions.
Although promising, this method was constrained by the
limited availability of services with PE descriptions in the
dataset, limiting its generality. Efforts to reduce the problem
space of service searching led to prefiltering mechanisms [26-
28]. These mechanisms were designed to enhance existing
matchmaker engines using SPARQL queries, significantly
improving response times. Nevertheless, the challenge of
semantic matching persisted, particularly for complex
concepts and relations within domain ontologies. Working on
the same OWL-S dataset, the work in [29] have used
unsupervised learning methods like DBSCAN clustering to
cluster the services semantically closed and thereby finding
the semantically closed cluster to user requirement using
Latent Semantic Analysis (LSA). An ensemble model based
approach in [30] use decision tree and logistic regression for
service classification and recommendation of top-10 services.
However, none of these works implemented the concept of
KGs in the domain of SWS. The work cited in study [31] [32]
employed machine learning methodologies; specifically K-
Means clustering was used in [31] to generate a Service
Ontology from SWS corpus. Results demonstrated that the
generated ontology can be used for the discovery mechanism.
Later work in [32] utilized first K-Means clustering and then
K-Nearest Neighbors (KNN) for classification. This analysis
yielded a noteworthy accuracy rate of 89.28%. However, it's
essential to emphasize that this algorithm was rigorously
tested within a restricted range of domains. Another work in
[33] used part of OWL-S dataset i.e. 30000 triplets to add
domain knowledge in KG and also

for training and testing purpose of user‘s intent. However,
with advanced machine learning methods, the overall accuracy
of SWS discovery has improved. However, most of these
works [29-32] focused on a subset of domains within the
OWLS collection, and none of the works have implemented
an automatic querying method for user queries. Instead of
using the relevance file provided for OWLS-TC as per user
queries, different methods have been employed to compute
evaluation metrics.

In parallel with advancements in SWS discovery,
Knowledge Graphs (KGs) have emerged as a powerful tool
for representing and retrieving knowledge from large
interlinked datasets. These KGs integrate domain ontologies at
a universal level, creating extensive graphical representations
of interlinked data that support complex queries and unified
knowledge discovery. Recent work on KGs has generated
KGs in different domains whereas some works perform
querying over the existing KGs to improve the tasks like
recommendation systems, link prediction, node classification,
and knowledge discovery [34-36]. Another line of works in
[37-40] generate SPARQL queries from natural language for
existing KGs like DBpedia, Wikidata for complex querying.
Furthermore, Graph Neural Network-based learning models
have been employed to enhance KGs' performance in tasks
such as link prediction and multihop querying [41-43]. Our
motivation for this research stems from the intersection of
SWS discovery and KGs. Both domains utilize ontologies as a
foundation, making them amenable to integration. While
previous works have primarily focused on matchmaking
within SWS or querying KGs independently, there is a notable
gap in seamlessly integrating SWS discovery with Knowledge
Graphs (KGs) specific to our domain of SWS for service
discovery. This is the key motivation behind our research. We
aim to bridge these domains by creating a Knowledge Graph
of Semantic Web Services (KGSWS). This integrated
approach enables enhanced SWS discovery using KG-based
querying techniques.

IV. RESEARCH QUESTIONS

The motivation for this proposed work arose from an
extensive review of related research papers and the challenges
discussed in the field. Our objective is to establish a
centralized Knowledge Graph (KG) for Semantic Web
Services (SWS) and address the following research questions:

1) How can ontologies from different domains be

interlinked to form an extensive Knowledge Graph enriched

with semantic metadata thereby enhancing the discovery of

SWS?

2) What methods can be used to formulate the automatic

queries on the KG, aligned with varying numbers of inputs-

outputs for effective querying purposes?

3) How can we efficiently retrieve SWS from big KG that

precisely matched the user requirements for service

discovery? Additionally, how can we identify the closely

related services when an exact match is not available,

maintaining the integrity of the user's query?

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

184 | P a g e

www.ijacsa.thesai.org

V. PROPOSED APPROACH

In this section, the detailed experimentation done to design
a framework for discovery of relevant services across KGSWS
has been discussed. The framework includes the steps required
to create, visualize, and query the KGSWS as shown in Fig. 1.

The detailed insights to these steps have been discussed in

Phase 1 and Phase 2 of the framework. Phase 3 discussed the

validation process of the results.

Fig. 1. Proposed work methodology.

A. Phase 1: Preprocessing Phase to Generate Knowledge

Graph

The core step of our approach is the creation of a
Knowledge Graph designed explicitly for Semantic Web
Services (KGSWS). This phase describes the steps involved in
constructing the KGSWS from the OWL-S service
descriptions and their associated domain ontologies with an
example. Through this, semantic metadata was integrated with
KGSWS that forms the backbone of the proposed approach.

1) OWL-S service descriptions and KGSWS Construction:

OWL-S services are based on frameworks that add semantic

extensions to non-semantic web services using domain

ontologies. In OWLS approach, Service Profile describes the

capabilities of the service and refer as the upper ontology,

Service Modelling demonstrates data flow and control flow

within the services and Service Grounding specify the

procedure of interaction with these services using protocols

and message formats. OWL-S service description is mainly

provided by the upper ontology Service Profile where

different terms describe the inputs, outputs, preconditions, and

their effects (IOPE); postconditions, assumptions based on the

transition rules, if required. Once the service based on the

brief description of IOPE concepts in the Profile is selected;

Process Model related with Service Profile is used for further

interaction with these services by linking them to their domain

ontologies. For instance, consider the Profile and Process

Model in the Service Description of finding author of the book

as shown in Fig. 2(a). In the Profile of the service

<profile:serviceName>, <profile:textDescription>,

<profile:hasInput> and <profile:hasOutput> provides the

information of the book whereas the <process:

Domain

Ontologie

s

Service

Repository

Import the
libraries to

generate

Knowledge
Graph

Create Triple

Store Database
(TDB) in Turtle

Notation

Query the

KGSWS using

―Qeach‖ semantic
match

(Pseudocode)

Parse the
OWLS Service

Descriptions and

domain
Ontologies for

integration

Export Results

as Csv file1

User Request

U

Domain

ontologies

OWL-S Service

Descriptions

Services

Relevant File

Owls_tc4 xml

PHASE 1: Preprocessing Phase to Generate KGSWS

Export
Results as Csv

file2

PHASE 2: Discovery Phase PHASE 3: Parsing of Relevance

File

Parsing of

XML file

(Pseudocode)

Domain

Expert

Meth

Construct

KGSWS from

TDB database

Export Results

as Csv file

Steps to find

Relevant services

and Calculate Key
Parameters

Steps to find

Relevant
services and

Calculate Key

Parameters

Comparison and

Observations

Fetch the

Qinput,Qoutput
concepts from

USER Request

Fetch the

Qinput,Qoutput
concepts from

USER Request

Query the

KGSWS using
―Qfew‖

semantic match

(Pseudocode)

List of relevant

services
List of

relevant services

Results

Method 2 Method 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

185 | P a g e

www.ijacsa.thesai.org

parameterType> in the process model linked the I/O concepts

―Book‖ and ―Author‖ to the ontology ―books.owl‖ for the

semantic matching of the concepts. In order to construct

KGSWS from of these services, these I/O terms are referred as

entities and their associated properties and restrictions form

the relations are then mapped to literal or another entity. Since

these I/O concepts refer to some domain ontologies

description in the Process Model, these ontologies are also

linked in KGSWS by extracting an interoperable definition of

each concept from their properties and restrictions from

domain ontology. This was done by first serializing the service

descriptions concepts and their associated ontologies to Triple

Notation (Turtle Notation. ttl). Apache Jena Fuseki was used

for integration, thus all the OWL mappings, alignment axioms

that indicate equivalence or relationships between terms were

preserved. Afterwards, KGSWS graph was created using

network and rdf based libraries like rdflib, networkx in Python

which consists of 1,21,542 Triplets. Fig. 2(b) shows the

snippet of turtle representation for example shown in Fig. 2(a).

(a)

(b)

Fig. 2. (a) Example of service description structure [42]. (b) Shows the

snippet of turtle notation for above service description example used to

construct KGSWS.

B. Phase 2: Discovery Phase

The main objective of this phase was to perform queries over

KGSWS created in phase 1 of the proposed framework.

1) Querying and Searching from KGSWS: KGSWS,

generated in Phase 1, comprises millions of entities and their

attributes represented as nodes and edges. To query such

specialized KGs, specialized knowledge of the querying

language and a deep understanding of the underlying structure

are required. Addressing the challenge of searching for

relevant services based on the I/O concepts mentioned in the

user request, we automated the generation of SPARQL queries

based on the OWL-S service description model. These queries

are then executed across the KGSWS to search and retrieve

relevant services. The proposal used SPARQL 1.1 query due

to its efficient results in pre filtering of domain wise services

[28] and recommendation by W3C for querying over graphical

databases. However, the work lacked its own matchmaker and

has not integrated different domain ontologies to create big

KG due to which services based on equivalent concepts were

not retrieved. For instance, to find the name of books giving

title or other information as input retrieve the service no.1 and

2 with output concept ―Book‖ from ―books.owl‖ domain

ontology as valid services as shown in Table I. In the given

query, the service no. 3 having interface description

―Publication-number‖ as input and ―Book‖ as output concept

from ―univ.owl‖ is also valid due to equivalence relation of

―books:Book ≡ univ:Book‖ where books and univ are

namespaces for ―books.owl‖ and ―univ.owl‖ ontologies

respectively.

As show in Fig. 3(a) of ―books.owl‖ ontology, the ―Book‖
concept was used to describe information of different types of
books and in Fig. 3(b) of ―univ.owl‖, the same highlighted
concept was added as a subclass of ―Publication‖ concept. To
query the KGSWS, two methods were implemented with a
view to include different degree of semantic matching.

2) Semantic matching: To evaluate the performance of

different degree of semantic match of concepts during

discovery of services from their knowledge graph, two

methods namely Method 1 and Method 2 were used to

generate query wise relevant list. These two matchmaking

algorithms focus solely on the input and output parameters of

the service and employ two levels of semantic concept

matching, namely ‗Qeach‘ and ‗Qfew‘ as outlined in Table II.

This is followed by the pseudocodes for both discovery

methods. The Phase 1 of constructing KGSWS is followed by

the process of parsing I/O concepts based on user requests.

Subsequently, a SPARQL query, guided by steps 9-12, was

executed to retrieve a list of relevant services using Select,

Where, Filter, Bind, Regular expressions options in the query.

For the determination of services using "Qeach," each concept

in the user request was considered, and services aligned with

equivalent concepts in other ontologies within the same

domain were retrieved through the 'owl:equivalentClass'

restriction. Additionally, for "Qfew," beyond the steps involved

in "Qeach," a 'UNION' operation in the SPARQL query was

introduced to filter out entirely irrelevant services.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

186 | P a g e

www.ijacsa.thesai.org

TABLE I. SOME RELEVANT SERVICES TO FIND THE BOOK NAME FROM ITS GIVEN INFORMATION

S.No. WSName Textual Description of the Functionality
Interface Description

Input Output

1. BookFinder.owls
The services retrieves the book information

having title as input
books:Title books:Book

2. BookSearchService.owls Search engine for book books:Title books:Book

3. Publication_book_service.owls
The service retrieve the book name with given
publication number

niv:Publication univ:Book

(a)

(b)

Fig. 3. (a) Books.owl. (b) Univ.owl.

TABLE II. DEMONSTRATED THE METHODS FORMULATION IN

DESCRIPTION LOGIC

Method
No.

Method
Name

Description Logic
Representation

Description

Method 1 Qeach
If Iconcept(S) ≡ Iconcept(Rq) ^

Oconcept(S) ≡ Oconcept(Rq)

Service S

concepts are
semantically

equivalent to Rq

Concepts

Method 2 Qfew
If Iconcept (Rq) ⊆ Iconcept (S) ^

Oconcept(Rq) ⊆ Oconcept(S)

Rq concepts
matched to

some concepts

of service S

where Iconcept(S), Iconcept(Rq), Oconcept(S), and Oconcept(Rq) represents the

inputs/outputs concepts of advertised and request services respectively

Pseudocode for Method 1: Qeach

1. Input:
2. Given user query refer to required Qinput and Qouput where:

 Qinput: List of required input concepts in the query

 Qouput: List of required output concepts in the query

3. Output:
4. RSL: Relevant Service List

5. Local Resources:
6. KGWS = Knowledge Graph of Services

and their Ontologies

7. For each query, Parse Qinput and Qoutput

8. Parse the TDB knowledge graph of services

9. Check if the predicate of the triplet is service:Service

10. For each service, retrieve the process Input and Output tags

from the triplet

11. Retrieve <process:parameterType> tags of process Input

and Output to retrieve domain ontology

12. Apply filters for semantic matching of ―each‖ concept of

Qinput and Qouput.

13. Generate RSL(Qinput, Qouput, RSL- Relevant Service List)

14. Repeat

Pseudocode for Method 2: Qfew

1. Input:
2. Given user query refer to required Qinput and Qouput where:

 Qinput: List of required input concepts in the query

 Qouput: List of required output concepts in the query

3. Output:
4. RSL: Relevant Service List

5. Local Resources:
6. KGWS = Knowledge Graph of Services

and their Ontologies

7. For each query, Parse Qinput and Qoutput

8. Parse the TDB knowledge graph of services

9. Check if the predicate of the triplet is service:Service

10. For each service, retrieve the process Input and Output tags

from the triplet

11. Retrieve <process:parameterType> tags of process Input

and Output to retrieve domain ontology

12. Apply filters for semantic matching of ―few‖ concepts of

Qinput and Qouput.

13. Generate RSL(Qinput, Qouput, RSL- Relevant Service List)

14. Repeat

C. Phase 3: Parsing of Relevance File

In this phase, the list of services generated in Phase 2 was
validated against the services in the relevance file provided by
domain experts for "OWL-TC4."

The file features a <binaryrelevanceset> root tag
containing <request>, <name>, and <uri> tags for each service
request, as shown in the above structure of XML relevance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

187 | P a g e

www.ijacsa.thesai.org

file. These tags were employed to assign a unique ID to each
request, with service request names based on the requested
service's functionality. The <uri> tag contains a unique
address to identify the request on the web. Furthermore, each
<request> has a <ratings> tag containing multiple <offer> tags
specifying the <name>, <uri>, and binary relevance in the
<relevant> tag of the service. These requests have been parsed
and the relevant information was stored in a CSV relevance
file using Python libraries for hierarchical structures as shown
in pseudocode. The service list from Phase 2 was compared
with this relevance file to determine the key parameters of the
model, as discussed in the next section.

Pseudocode: To Parse XML

DOM

Structure of the XML

Relevance File
1. Import the XML libraries

and other hierarchical

libraries

2. Parse the relevance file

‗owls-tc4.xml‘

3. Get the root of the structure

//To match the name and uri of

each query request given by the

user

4. For each user request as

child in xml file

5. Retrieve the name and uri of

the request

 //Find the name, uri, and

relevance value of services for

particular request

6. For each item offer giving

the details of the service

7. Retrieve the service name,

uri and its relevance value.

8. Append the results in data

frame //As hierarchical

structure

9. Export the results as

―outputxml.csv‖

<binaryrelevanceset> //for

the binary relevance sets

<request ...>

<name ... />

<uri .../>

<ratings>

<offer ...> //each request

contains multiple offers

<name ... />

<uri .../>

<relevant>value</relevant>

//here the value can be

either 0 or 1

</offer>

...

</ratings>

</request>

...

</binaryrelevanceset>

VI. RESULTS AND DISCUSSION

In this section, a comprehensive analysis of the performed
experiments has been discussed to assess the performance and
efficiency of our proposed framework. The section
commenced by describing the experimental scenario and the
dataset used for testing. Following this, an in-depth analysis of
the results has been done to emphasize significant
observations and comparisons between our approach and
baseline methods.

A. Experimental Scenario

In order to test the performance of our proposal, ontology
based SWS test collection OWLS-TC v4 [44] was used to
create KGSWS. As shown in Table III, the collection contains
1083 services from nine domains namely Education, Medical
Care, Food, Travel, Communication, Economy, Weapon,
Geography, and Simulation. These services were based on 48
domain ontologies. KGSWS consists of 1,21,542 triplets

generated from the integration of these 1083 service
descriptions and their corresponding 48 domain ontologies.
Further, 38 test queries with varying number of input output
concepts based on the domains were executed against
KGSWS using two different SPARQL query methods.

TABLE III. DOMAIN NAMES AND NUMBER OF SERVICES IN EACH DOMAIN

S.No. Domain No. of Services

1 Education 279

2 Medical Care 73

3 Food 34

4 Travel 197

5 Communication 59

6 Economy 325

7 Weapon 40

8 Geography 60

9 Simulation 16

 Total 1083

B. Analysis of Results

In this subsection, we provide a comparative analysis of
our proposed methods i.e. Method 1 (Qeach) and Method 2
(Qfew), against baseline approaches. The key parameters that
were used to compare the performance of these methods are
given below in Table IV [45]. The Macro-Averaged Precision
Recall metrics was used to give equal relevance to each test
query and its value lies in the range [0, 1]. The relevance file
provided for OWLS-TC (as discussed in Phase 3) was utilized
to compute the key parameters of the methods in the proposed
framework.

1) Analysis of method 1 results: As discussed, Method 1

employed each concept matching approach, aligning service

requests with the concepts within the KGSWS. This precision-

oriented method demonstrated noteworthy results as shown in

Fig. 4(a) and Fig. 4(b). It retrieved fewer or zero irrelevant

services, leading to significantly higher precision in most

cases. Also, Method 1 exhibited an average query response

time of a mere 0.61 seconds, showcasing its efficiency.

However, this method faced challenges in test cases 8, 17 and

22, where it failed to locate any relevant service matching

each concept, leading to a precision value of zero and due to

equal importance of each query it dropped the overall

precision value even if in most of the cases the values reaches

1 as shown in Fig. 4(a). Furthermore, the proposed model did

not include logical inferred ―subclass‖ concepts during the

matchmaking of each concept. Due to this, all the relevant

services having input-output concepts as direct subclass

concepts of requested concepts in the query were not retrieved

dropping the macro-averaged recall value to 49.14%. But, the

overall accuracy of the model is 69.75% better than one of the

existing work [20].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

188 | P a g e

www.ijacsa.thesai.org

TABLE IV. KEY PARAMETERS USED FOR THE PERFORMANCE EVALUATION OF THE MODEL

Precision

Precision in case of SWS is defined as the number of relevant services out of the total number of services retrieved by the

framework. Mathematical equation to calculate the Precision value is given as follows:

where, Srelevant gives the number of relevant services retrieved, and Sirrelevant gives the number of irrelevant services retrieved

Recall

Recall is computed by taking the fraction of relevant services retrieved out of the total relevant services given in the relevance

file by domain expert. Mathematical equation to calculate the Recall value is given as follows:

where, Srelevant gives the number of relevant services retrieved, and SrelevantNR gives the number of relevant services not retrieved
by the framework

Macro-Average Precision

Macro Average Precision is used to compute the arithmetic mean of the precision of each test query in case of multiclass

classification.

where, q represents the number of test queries and Precisionq gives the precision value of qth query

Macro-Average Recall

Macro-Average Recall is used for multiclass classification and is computed by taking arithmetic mean of each test query

recall value.

where, q represents the test query and takes values up to N, and Recallq gives the recall value of qth query

Accuracy
Accuracy provides the overall performance of the model by computing the ratio of correct predictions out of total predictions
done by the model.

Average Query Response Time
Average Query Response Time (Avg. Qrt) is computed by taking the average of total response time taken to execute all the

test queries.

 Logical Inferencing over KGSWS

The incorporation and interconnection of ontologies within
KGSWS not only enhance the outcomes, as discussed in the
previous section, but also pave the way for easier reasoning,
composition, and classification in the future. Reasoning over
KGSWS involves incorporating logically inferred concepts
through the "subclass" symmetric relation. For example, when
searching for services that provide the price of a given book,
services that yield "MaxPrice" or "RecommendedPrice" as
output, with "book" as input, are also deemed relevant. This
relevance stems from their subclass relationship with the
"Price" concept. However, the proposal did not account for the
addition of logically inferred subclass concepts from the given
concepts, leading to a decrease in the overall accuracy of
Method 1.

2) Analysis of Method 2 results: Method 2, characterized

by looser restrictions on the semantic match of I/O concepts,

yielded contrasting results as shown in Fig 4(c) and Fig 4(d).

This enhancement allowed the automatic retrieval of services

sharing subclass relationships with some concepts of user

concepts thereby capturing more closely related services. This

flexibility leads to improved recall values, as Method 2 can

identify a broader range of relevant services. This method

proved beneficial in the worst cases of Method 1, where it

retrieved some relevant services and achieved non-zero

precision. However, this came at the trade-off of retrieving

some irrelevant services, resulting in a decrease in average

precision. This highlights the potential of Method 2 for more

comprehensive service discovery, albeit at the expense of

precision. Table V demonstrates the macro-averaged results,

accuracy and average Qrt of the two methods.

3) Comparison with existing frameworks: Comparing our

experimental results with some published results of other

existing works on the same dataset (see Table VI), it was

observed that our proposed method demonstrated superior

performance in terms of average response time and accuracy.

Notably, the two-step approach in [28] involving prefiltration

and subsequent matchmaking incurred a higher average query

response time compared to our approach. This is a significant

achievement, considering that our search was conducted over

the integrated KGSWS, underlining the efficiency and

swiftness of our approach. Moreover, the matchmakers of [20]

exhibited longer response times, primarily attributable to the

addition of concepts to a new matchmaker ontology for each

request. In contrast, our approach, which seamlessly integrates

the advantages of in depth querying over Knowledge Graph,

overcame this bottleneck, leading to a more streamlined and

efficient service discovery process. An important observation

in our results was that while some subsequent studies [29-32]

explored machine learning-based classification techniques,

none had harnessed the potential of the Knowledge Graph

within this domain.

Srelevant

Srelevant + Sirrelevant

Srelevant

Srelevant + SrelevantNR

∑
N

q=1
Precision

q

N

∑
N

q=1
Recallq

N

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

189 | P a g e

www.ijacsa.thesai.org

(a) (b)

 (c) (d)

Fig. 4. (a) Macro-averaged precision recall of method 1. (b) Query wise accuracy of method 1 and the dotted redline shows the macro-averaged accuracy of the

model. (c) Macro-averaged precision recall of method 2. (d) Query wise accuracy of method 2 and the dotted redline shows the macro-averaged accuracy of the
model.

TABLE V. KEY PARAMETERS RESULTS GIVEN BY TWO METHODS ―QEACH‖

AND ―QFEW‖

Key Parameters Method 1 Method 2

Macro-Averaged Precision 0.9036 0.9388

Macro-Averaged Recall 0.4914 0.8614

Accuracy 0.6975 0.9001

Average Query Response Time (in

s)
0.61 s 1.57s

C. Discussion

The proposed work, used the advanced potential of KGs
for semantic enrichment and querying, overcomes the
limitations of previous approaches by introducing an
integrated composite schema known as KGSWS for querying.
This schema allows Method 1 and Method 2 to incorporate
more relevant services within the same domain using different
levels of filtering and regular expressions during the discovery
process. The integration of domain ontologies and service
descriptions in KGSWS enables the alignment of
heterogeneous concepts within the same domain with user-

requested concepts, thereby increasing the accuracy of both
Method 1 and Method 2. However, as the work does not
include logical reasoning over KGSWS, the performance
metrics of Method 1 experienced a decline to 69.75% due to
the matching of each concept of the user-requested query.
Additionally, while Method 2 benefits from the inclusion of
more equivalent concepts within the same domain, allowing
for the automatic inclusion of more relevant services with
loose concept matching using filters and regular expressions,
this also entails the inadvertent inclusion of some irrelevant
services. Compared to previous approaches, our proposed
framework offers a comprehensive querying solution rather
than relying on pre-filtering through querying on exiting
matchmakers [28], which can lead to increased response
times. Furthermore, unlike existing methods [20] that create
matchmaking ontologies for discovery, our approach does not
require such intermediary steps. For validation purposes, our
work utilized the relevance file provided for the OWLS
dataset in Phase 3 instead of employing alternative methods
[29-33] to find relevant services, thereby enhancing the
reliability of the framework. Additionally, we considered the
complete OWLS-TC dataset rather than using its subset to
generate KGSWS and further for service discovery. The

Performance Comparisons in Terms of

Relevant Services Returned

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

190 | P a g e

www.ijacsa.thesai.org

framework also allows for the automatic generation of queries
based on user-requested concepts, offering a generic and
streamlined approach to querying.

TABLE VI. COMPARISON OF ACCURACY AND QUERY RESPONSE TIME OF

EXISTING FRAMEWORKS WITH THE PROPOSED FRAMEWORK

Accuracy

(%)
Average Qrt (in sec.)

Method 1 69.75 0.61 s

Method 2 90.01 1.57s

OWLS-M0 [20] 49.55 57.33s

OWLS-MX3 (M3) [20] 82.96 58.46s

SPARQLent [28] 72.02 55.00s

HELSWSR [30] 85.60 -

-[29] 83.09 -

- [32] 89.28 -

VII. CONCLUSION AND FUTURE SCOPE

In this paper, we have presented a framework for the
automatic discovery of SWS through the use of SPARQL
querying over KG. By introducing the KGSWS framework, a
paradigm shift has been made by offering more precise and
machine understandable context during automatic
matchmaking of services. The integration of domain
ontologies in KGSWS introduces a new level of semantic
richness that effectively resolved the ambiguity associated
with keyword-based matchmaking of WS. In conclusion, our
work contributes to the field of SWS discovery by efficiently
retrieving the relevant services aligned with the concepts in
user request. Our approach also addresses several research
questions discussed at the outset of this work.

A. Addressing Research Questions

1) How can ontologies from different domains be

interlinked to form an extensive Knowledge Graph enriched

with semantic metadata thereby enhancing the discovery of

SWS?

Our framework successfully accomplished this by
constructing the KGSWS from OWL-S service descriptions
and their associated domain ontologies that forms a
centralized repository of semantic metadata to enhance the
discovery process of services.

2) What methods can be used to formulate the automatic

queries on the KG, aligned with varying numbers of inputs-

outputs for effective querying purposes?

Our experiments demonstrated the effectiveness of our
approach in generating and executing general-purpose queries
over KGSWS. The capabilities of two semantic matching
methods namely "Qeach" and "Qfew," have been evaluated in
answering user queries based on varying input/output
parameters.

3) How can we efficiently retrieve SWS from big KG that

precisely matched the user requirements for service

discovery? Additionally, how can we identify the closely

related services when an exact match is not available,

maintaining the integrity of the user's query?

The semantic matching methods provide a practical
solution to this challenge. The "Qeach" method excels in
retrieving precisely matched services whereas the "Qfew"
method retrieved closely related services when exactly
matched services are not available.

B. Future Scope

While our proposed work has achieved promising results,
several avenues for improvements and future research exist:

1) Logical inference: In future work, the inclusion of

logical inferencing techniques in Qeach semantic matching can

enhance the macro-averaged recall and thereby accuracy of

our framework.

2) Scalability and machine learning based models: As the

number of SWS and their associated ontologies continues to

grow, scalability remains a critical concern. The incorporation

of machine learning based graph embedding models can

efficiently handle large KGs and also enable more accurate

service recommendations.

VIII. DECLARATIONS

Author contribution P.T and L.S conceived the idea. P.T
executed the experiments and wrote the article. L.S did edition
and corrections.

Data Availability Not applicable

Code Availability Not applicable

Conflict of Interest the authors declare no competing
interests

REFERENCES

[1] N. B. Kurniawan, Y. Bandung, and P. Yustianto, ‗Services computing
systems engineering framework: a proposition and evaluation through
soa principles and analysis model‘, IEEE Syst. J., vol. 14, no. 3, pp.
3105–3116, 2019.

[2] J. B. Merin and W. A. Banu, ‗Social based Web Service Discovery for
Multiple Domains and Recommendation‘, Webology, vol. 19, no. 1, pp.
6396–6407, 2022.

[3] X. Zhang, J. Liu, M. Shi, and B. Cao, ‗Word embedding-based Web
service representations for classification and clustering‘, in 2021 IEEE
International Conference on Services Computing (SCC), IEEE, 2021,
pp. 34–43.

[4] G. Lampropoulos, E. Keramopoulos, and K. Diamantaras, ‗Enhancing
the functionality of augmented reality using deep learning, semantic web
and knowledge graphs: A review‘, Vis. Informatics, vol. 4, no. 1, pp.
32–42, Mar. 2020, doi: 10.1016/J.VISINF.2020.01.001.

[5] A. Bennaceur and B. Nuseibeh, ‗The Many Facets of Mediation: A
Requirements-Driven Approach for Trading Off Mediation Solutions‘,
Manag. Trade-offs Adapt. Softw. Archit., pp. 299–322, Jan. 2017, doi:
10.1016/B978-0-12-802855-1.00012-5.

[6] H. Guermah, T. Fissaa, H. Hafiddi, and M. Nassar, ‗Exploiting Semantic
Web Services in the Development of Context-Aware Systems‘, Procedia
Comput. Sci., vol. 127, pp. 398–407, Jan. 2018, doi:
10.1016/J.PROCS.2018.01.137.

[7] M. Hu and Y. Liu, ‘E‐maintenance platform design for public
infrastructure maintenance based on IFC ontology and Semantic Web
services’, Concurr. Comput. Pract. Exp., vol. 32, no. 6, p. e5204, 2020.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

191 | P a g e

www.ijacsa.thesai.org

[8] R. Hammami, H. Bellaaj, and A. H. Kacem, ‗Semantic web services
discovery: A survey and research challenges‘, Int. J. Semant. Web Inf.
Syst., vol. 14, no. 4, pp. 57–72, 2018, doi: 10.4018/IJSWIS.2018100103.

[9] C. Peng, F. Xia, M. Naseriparsa, and F. Osborne, Knowledge Graphs:
Opportunities and Challenges, no. March. Springer Netherlands, 2023.
doi: 10.1007/s10462-023-10465-9.

[10] T. Berners-Lee, J. Hendler, and O. Lassila, ‗The Semantic Web: A new
form of Web content that is meaningful to computers will unleash a
revolution of new possibilities‘, in Linking the World‘s Information:
Essays on Tim Berners-Lee‘s Invention of the World Wide Web, 2023,
pp. 91–103.

[11] A. Patel and S. Jain, ‗Present and future of semantic web technologies: a
research statement‘, Int. J. Comput. Appl., vol. 43, no. 5, pp. 413–422,
2021, doi: 10.1080/1206212X.2019.1570666.

[12] A. Kuzzaman, Metadata format and Standards, Nov. 6, 2018. Accessed
on: May 20, 2022. [Online]. Available:
http://www.lisbdnet.com/introduction-to-metadata/.

[13] D. Brickley and R. V. Guha, RDF Schema 1.1, W3C, Feb. 25, 2014.
Accessed on: July 24, 2022. [Online]. Available:
http://www.w3.org/TR/rdf-schema/.

[14] L. Ehrlinger and W. Wöß, ‗Towards a definition of knowledge graphs.‘,
Semant. (Posters, Demos, SuCCESS), vol. 48, no. 1–4, p. 2, 2016.

[15] C. Gutierrez and J. F. Sequeda, ‗Knowledge graphs‘, Commun. ACM,
vol. 64, no. 3, pp. 96–104, 2021, doi: 10.1145/3418294.

[16] T. Pellissier Tanon, G. Weikum, and F. Suchanek, ‗Yago 4: A reason-
able knowledge base‘, in The Semantic Web: 17th International
Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June 4,
2020, Proceedings 17, Springer, 2020, pp. 583–596.

[17] D. Vrandečić, L. Pintscher, and M. Krötzsch, ‗Wikidata: The Making
Of‘, in Companion Proceedings of the ACM Web Conference 2023,
2023, pp. 615–624.

[18] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, ‗A survey on
knowledge graphs: Representation, acquisition, and applications‘, IEEE
Trans. neural networks Learn. Syst., vol. 33, no. 2, pp. 494–514, 2021.

[19] C. B. Aranda, O. Corby, S. Das, L. Feigenbaum, P. Gearon, B. Glimm
et al., SPARQL 1.1 Overview, W3C, Mar. 21, 2013. Accessed on: Jan.
20, 2021. [Online]. Available: https://www.w3.org/TR/sparql11-
overview/.

[20] M. Klusch, B. Fries and K. Sycara, ‗OWLS-MX: a hybrid Semantic
Web service match-maker for OWL-S services‘, Web Semantics, vol. 7,
no. 2, pp. 121–133, 2009.

[21] R. Amorim, D. B. Claro, D. Lopes, P. Albers and A. Andrade,
‗Improving web service dis-covery by a functional and structural
approach‘, in Proceedings of the IEEE 9th International Conference on
Web Services (ICWS‘11), pp. 411–418, IEEE, Washington, DC, USA,
July 2011.

[22] M. Klusch and F. Kaufer, ‗WSMO-MX: a hybrid SemanticWeb service
matchmaker‘, Web Intelligence and Agent Systems, vol. 7, no. 1, pp.
23–42, 2009.

[23] M. Stollberg, M. Hepp and J. Hoffman, ‗A caching mechanism for
semantic web service discovery‘, in The Semantic Web, pp. 480-493,
Springer, Berlin, Heidelberg, 2007.

[24] M. Stollberg, J. Hoffmann and D. Fensel, ‗A caching technique for
optimizing automated service discovery‘, International Journal of
Semantic Computing (World Scientific), vol. 5, no. 1, pp. 1–31, 2011.

[25] M. L. Sbodio, D. Martin and C. Moulin, ‗Discovering Semantic Web
services using SPARQL and intelligent agents‘, Journal of Web
Semantics, vol. 8, no. 4, pp. 310-328, 2010.

[26] T. Khdour, ‗Towards semantically filtering web services repository‘, in
International Conference on Digital Information and Communication
Technology and Its Applications, vol. 167, pp. 322-336. Springer,
Berlin, Heidelberg, 2011.

[27] K. Mohebbi, S. Ibrahim and M. Zamani, ‗A pre-matching filter to
improve the query response time of semantic web service discovery‘,

Journal of Next Generation Information Technology, vol. 4, no. 6, pp. 9-
18, 2013.

[28] J. M. Garc´ıa, D. Ruiz and A. Ruiz-Cort´es, ‗Improving semantic web
services discovery using SPARQL-based repository filtering‘, Web
Semantics: Science, Services and Agents on the World Wide Web, vol.
17, pp. 12–24, 2012.

[29] N. El Allali, M. Fariss, H. Asaidi, and M. Bellouki, ‗Towards Semantic
Web Services Density Clustering Technique‘, in International
Conference on Digital Technologies and Applications, Springer, 2021,
pp. 543–553.

[30] S. Sagayaraj and M. Santhoshkumar, ‗Heterogeneous ensemble learning
method for personalized semantic web service recommendation‘, Int. J.
Inf. Technol., vol. 12, no. 3, pp. 983–994, 2020, doi: 10.1007/s41870-
020-00479-9.

[31] M. Kaouan, D. Bouchiha, S. M. Benslimane, and S. Boukli-Hacene,
‗Towards Service Ontology for Web Services Storage and Discovery‘,
in 2020 4th International Symposium on Informatics and its
Applications (ISIA), IEEE, 2020, pp. 1–6.

[32] B. S. Balaji, S. Balakrishnan, K. Venkatachalam, and V. Jeyakrishnan,
‗Automated query classification based web service similarity technique
using machine learning‘, J. Ambient Intell. Humaniz. Comput., vol. 12,
no. 6, pp. 6169–6180, 2021, doi: 10.1007/s12652-020-02186-6.

[33] L. Guodong, Q. Zhang, Y. Ding, and W. Zhe, ‗Research on service
discovery methods based on knowledge graph‘, IEEE Access, vol. 8, pp.
138934–138943, 2020.

[34] T. Yu et al., ‗Knowledge graph for TCM health preservation: Design,
construction, and applications‘, Artif. Intell. Med., vol. 77, pp. 48–52,
2017, doi: 10.1016/j.artmed.2017.04.001.

[35] A. B. Kamran, B. Abro, and A. Basharat, ‗SemanticHadith: An
ontology-driven knowledge graph for the hadith corpus‘, J. Web
Semant., vol. 78, p. 100797, Oct. 2023, doi:
10.1016/J.WEBSEM.2023.100797.

[36] A. Rivas, D. Collarana, M. Torrente, and M.-E. Vidal, ‗A neuro-
symbolic system over knowledge graphs for link prediction‘, Semant.
Web, no. Preprint, pp. 1–25, 2022.

[37] S. Ravishankar et al., ‗A Two-Stage Approach towards Generalization in
Knowledge Base Question Answering‘, Find. Assoc. Comput. Linguist.
EMNLP 2022, pp. 5600–5609, 2022.

[38] G. Rossiello et al., ‗Generative Relation Linking for Question
Answering over Knowledge Bases‘, Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12922
LNCS, pp. 321–337, 2021, doi: 10.1007/978-3-030-88361-4_19.

[39] G. Maheshwari, P. Trivedi, D. Lukovnikov, N. Chakraborty, A. Fischer,
and J. Lehmann, ‗Learning to Rank Query Graphs for Complex
Question Answering over Knowledge Graphs‘, Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 11778 LNCS, pp. 487–504, 2019, doi: 10.1007/978-3-030-30793-
6_28.

[40] S. Purkayastha, S. Dana, D. Garg, D. Khandelwal, and G. P. S. Bhargav,
‗Knowledge Graph Question Answering via SPARQL Silhouette
Generation‘, 2021, [Online]. Available: http://arxiv.org/abs/2109.09475.

[41] Abu-Salih, Bilal, ‗Domain-specific knowledge graphs: A survey‘,
Journal of Network and Computer Applications, vol. 185, 103076,
2021.

[42] Gutierrez, Claudio, and Juan F. Sequeda, ‗Knowledge graphs‘,
Communications of the ACM 64, no. 3, pp. 96-104, 2021.

[43] Chen, Xiaojun, Shengbin Jia, and Yang Xiang, ‗A review: Knowledge
reasoning over knowledge graph‘, Expert Systems with Applications
141, 112948, 2020.

[44] OWLS-TC version 4.0, Semantic Web Central, Sep. 21 2010, Accessed
on: Aug 19, 2020. [Online]. Available:
http://projects.semwebcentral.org/projects/owls-tc/.

[45] M. Sokolova and G. Lapalme, ‗A systematic analysis of performance
measures for classification tasks‘, Inf. Process. Manag., vol. 45, no. 4,
pp. 427–437, Jul. 2009, doi: 10.1016/J.IPM.2009.03.002.

