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Abstract—The sky depicts a high visual importance in 

outdoor scenes, often appearing in video sequences and photos. 

Sky information is crucial for accurate sky detection in several 

computer vision applications, such as scene understanding, 

navigation, surveillance, and weather forecasting. The difficulty 

of detecting is clarified by variations in the sky's size, weather 

and lighting conditions, and the sky's reflection on other objects. 

This article presents a new contribution to address the challenges 

facing sky detection. A unique dataset was built that includes 

scenes of distinct lighting and atmospheric phenomena. 

Additionally, a modified U-Net architecture was proposed with 

pre-trained models as encoder VGG19, EfficientNetB4, 

InceptionV3, and DenseNet121 for sky detection to solve outdoor 

image limitations and evaluate the influence of different encoders 

when integrated with the U-Net, aiming to identify which encoder 

describes features of the sky accurately. The proposed approach 

shows encouraging results; as it presents improved performance 

over the adjusted U-Net architecture with inceptionv3 on the 

proposed dataset, achieving mean Intersection over union, dice 

similarity coefficient, recall, precision, and accuracy of 98.57 %, 

99.57 %, 99.41 %, 99.73%, and 99.40 %, respectively. At the 

same time, the best loss was achieved in U-Net with VGG19 

equivalent of 0.09. 
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segmentation; sky detection; U-Net; machine learning 

I. INTRODUCTION 

Sky has received remarkable interest over the past few 
years as a robust indicator of outdoor scenes. The scene‟s 
environmental information the sky provides is more significant 
than other scenes‟ components. Therefore, sky detection is 
considered a crucial preprocessing step in various vision 
applications, such as weather classification [1],  image or video 
editing [2], and navigation [3]. Moreover, the sky mask can be 
used to evolve the accuracy of object detection and tracking 
algorithms. Given its significance, sky detection research 
became one of the active topics in the computer vision field. 
This segmentation task is dedicated to identifying and isolating 
the sky region within a scene from other objects. However, the 
complexity of sky regions poses a significant challenge, owing 
to the vast range of pixel intensities and the notable variations 
in sky tone across different weather conditions and times of 
day. Semantic segmentation techniques represent the ideal 
solution for this task. 

Semantic segmentation is one of the leading computer 
vision tasks where the object boundaries are delineated 
precisely. Segmentation tasks usually need complex, advanced 
techniques and high-quality data. 

In addressing these challenges, semantic segmentation 
techniques have emerged as the preferred solution for accurate 
sky detection. By employing advanced algorithms capable of 
understanding the semantic meaning of image pixels. 

The research community proposed two different 
approaches to solve the problem of sky segmentation. The first 
approach was the traditional approach where researchers tend 
to use certain methods like color-based, edge-based and region-
growing. 

Another approach is the usage of Machine learning. In this 
approach, some researchers tended to use traditional machine 
learning models e.g., Support vector Machine (SVM), K-
means, and Logistic regression (LR). Others used more 
advanced techniques such as Deep learning (DL), e.g., CNN. 
More details about these methods will be discussed in the 
literature review section. 

The article is arranged as follows: Section II is literature 
review Section III details the proposed method and dataset 
followed by preprocessing; Section IV explain network 
architecture. Section V discusses the experimental results, 
Section VI is discussion and finally, the paper concludes in 
Section VII. 

II. LITERATURE REVIEW 

Two main approaches for semantic segmentation 
techniques are used in sky detection tasks: the traditional-based 
approach and the deep learning-based approach. Firstly, 
traditional methods, such as edge, colour, and region-based 
techniques, have been introduced [4]. These traditional-based 
methods mainly rely on manually engineered features, such as 
color, texture, edges, or shape information, to identify the 
objects in images. The traditional methods are simple, fast, and 
computationally effective; however, their dependency on low-
level hand-crafted features leads to low segmentation 
performance. On the other hand, deep learning-based methods 
such as U-Net [5], FCN[6], or Mask R-CNN [7] are considered 
end-to-end techniques [8]. These methods utilize the 
convolutional neural network (CNN) to extract features 
automatically. Although deep learning techniques need 
powerful hardware and extensive data, they are more robust to 
noise originating in sky regions from weather variations. 

In the past few years, extensive research has been focused 
on sky and ground segmentation. Yehu Shen and Qicong Wang 
[9] proposed a technique based on gradient information to 
detect the horizon line. This method defined the border point in 
each column all over the image and then defined the region 
above these border points as the sky region. The previous 
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method didn't detect the sky regions occluded by foreground 
objects. Zhao Zhijie et al. handled this challenge [10] by using 
color and gradient features to detect multiple border points in 
each column. The horizon-based approaches lost their 
detection efficacy as the complexity of scenes increased. 
Subsequently, classification-based approaches were introduced 
where the classifiers depend on the handcrafted features to 
detect the sky. Xiuzhuang Zhou et al. [11] proposed a novel 
technique that combines the advantages of superpixels and 
context inference. This method used features like lines, texture, 
color, position, and shape to train a Support Vector Machine 
(SVM) as a local superpixel classifier. Then, the conditional 
random field (CRF) was implemented as a contextual inference 
model to refine the segmentation.  Additionally, Fl´avia de 
Mattos et al. [12] utilized eleven whiteness indexes as extracted 
features to feed (SVM) classifier. Yingchao Song et al. [13] 
proposed a novel model with two imbalanced SVM classifiers 
trained on several haze-relevant features. This model was 
trained on a hazy sky dataset with 500 annotated hazy images 
and divided the image into three areas: high confidence of 
being the sky regions with high confidence of not being the 
sky, and uncertain regions. In addition to the supervised 
traditional approach, cluster-based methods can be used in sky 
segmentation. Chao Fang et al. [14] deploy the K-mean 
clustering method to segment the sky regions based on pixels‟ 
brightness. Additionally, Yin et al. presented an innovative 
method called Sky-GVINS for achieving precise positioning in 
densely built environments and open sky areas with GNSS 
measurements [15]. This method relied on a lightweight sky 
segmentation, utilizing a global threshold technique to 
distinguish sky and non-sky regions in fish-eye sky-pointing 
imagery. The experimental dataset comprised 500 images 
representing diverse conditions, such as occlusions in the sky 
presented by buildings and trees. 

Traditional machine learning techniques based on hand-
crafted features adapted poorly to the variational complex sky 
appearance. Therefore, computer vision scientists have directed 
their attention to end-to-end deep learning techniques that 
extract features automatically using CNN to handle sky 
segmentation tasks. Yi-Hsuan Tsa [16] proposed a sky 
segmentation model based on FCN. This model was trained on 
15,000 images from the LMSun dataset and achieved 94 %-
pixel accuracy. Radu P. Mihail et al. [17] created a new dataset 
called Sky Finder and evaluated three approaches for sky 
segmentation in natural outdoor scenes. The results argued 
poor performance due to local lighting and weather conditions. 
Then, a new deep ensemble method that combined the output 
of existing methods with raw image data using rCNN was 
proposed and shown to improve performance with an MCR of 
12.96%. Zou et al.'s study presented a novel approach to sky 
segmentation, combining computer vision and deep learning 
[18]. They proposed a new computer vision-based "flow 
propagation" method for robust background motion and feature 
estimation. These features were fed into a customized deep 
CNN model ResNet-50 based for training. The networks can 
be effectively trained on videos without using external data 
annotations. The proposed method was tested on BDD100k 
datasets. This innovative blend of handcrafted and CNN 
features demonstrates a unique strategy in sky segmentation 
research. The method is designed to operate on trained data; 

therefore, it does not work on different datasets. Wang et al. 
introduced a real-time sky segmentation method formulated for 
mobile augmented reality based on a deep semantic network 
called FSNet [19]. The authors designed the method for 
efficient segmentation under varied weather conditions, 
validated through extensive testing on a substantially large 
dataset. For refining the segmented regions, sky-aware 
constraints were included, which considered factors such as 
color, the sky's position, and temporal coherence across 
neighbouring frames. Extensive qualitative and quantitative 
analysis testing demonstrated that the proposed method 
surpasses other leading methods in real-time performance. The 
result's accuracy was gauged using the mean intersection over 
union (mIOU) metric, achieving 90.17%. However, the method 
showed limitations and did not perform efficiently for 
heterogeneous skies, such as during sunsets. Recently, U-Net 
has been one of the most commonly developed deep learning 
algorithms, especially for biomedical segmentation tasks. Due 
to its efficiency, U-Net architecture was widely implemented in 
all segmentation applications, including sky segmentation. 
Liba and colleagues introduced a precise method for sky 
optimization aimed at enhancing the sky's appearance in 
images, including sky segmentation [20]. They constructed a 
dataset of sky masks utilizing partially annotated images that 
were painted and refined using a modified weighted guided 
filter. Moreover, they trained a U-net neural network to 
conduct sky segmentation on RGB images by predicting the 
sky probability for each pixel. The Morph-Net method was 
employed to optimize performance and minimize network size. 
In their work, Kuang et al. proposed an innovative framework 
for segmenting sky and ground in the visual navigation of 
planetary rovers [21]. The study introduced a U-shaped neural 
network entitled NI-U-Net and incorporated a conservative 
annotation method to minimize human interference. 
Augmented results were exhibited through a pre-training 
process across complex scenarios using the Skyfinder dataset, a 
well-acknowledged benchmark. The framework was evaluated 
based on seven metrics, achieving high results. 

Although deep learning-based segmentation models such as 
U-Net have achieved high performance, the requirement of 
huge high-quality labelled data and large costly computation 
power for model training limit their implementation in 
practical systems. Training CNN-based models from scratch is 
an impractical time-consuming technique as it takes a long 
time for the model to converge. The transfer learning approach 
was introduced as an ideal solution to overcome these 
challenges where the model uses prior information in a new 
task. The pre-trained weights learned from tasks that are not 
completely relevant to new tasks are more useful than 
randomly initialized weights. 

In this work, the main objective is to remarkably enhance 
the sky segmentation task in adverse weather and lighting 
conditions by a modified U-Net architecture with pre-trained 
models as encoder VGG19, EfficientNetB4, InceptionV3, and 
DenseNet121 for sky detection to solve outdoor image 
limitations and evaluate the influence of different encoders 
when integrated with the U-Net, aiming to identify which 
encoder describes features of the sky accurately. The reason 
behind choosing the U-Net architecture is that it outperformed 
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other architectures used in most of the research works. The 
integration between UNet architecture and transfer learning 
allows us to handle sky segmentation tasks effectively with 
high segmenting performance while saving computation 
power. 

III. PROPOSED METHODOLOGY 

The goal in this proposed approach is to simplify image 
segmentation and develop efficient, robust algorithms for sky 
segmentation. The methodology showed in Fig. 1. forms the 
basis of our approach, ensuring that the outcomes are 
trustworthy and valid. The widely used U-Net architecture was 
modified by adapting different backbones as an encoder path, 
which improved the depth of the network and produced better 
results. The model was tested using collected dataset and found 
that our approach outperformed existing methods in terms of 
capabilities. The overall approach is given in Fig. 1. 

 
Fig. 1. Proposed methodology. 

A. DataSet Acquisition 

Data was systematically collected to capture different 
aspects of the sky. This data was collected at various times and 
in diverse weather conditions. To ensure comprehensive 
collection, stationary outdoor cameras were strategically placed 
in 11 specific urban locations in the Kingdom of Saudi Arabia. 
These regions were chosen based on their varied urban 
landscapes, allowing for expansive sky views to be captured. 

The dataset incorporates different periods of the day 
(morning, midday, and evening) as well as various weather 
conditions (sunny, cloudy, partly cloudy). This comprehensive 
dataset allows for a wider range of image variations. In this 
research work, special care was taken to ensure that the photos 
collected were high quality and free from any unwanted 
elements or issues such as artifacts, noise, repeated images, or 
spots on the lens. The resulting dataset consists of RGB images 
that brightly represent the dynamic nature of the sky in these 
areas. In total, the dataset consists of 1691 diverse images 
captured.  It's important to note that all images in the dataset 
contain both sky and non-sky areas. Sample images from each 
location are presented in Fig. 2. 

B. Ground Truth 

To enhance the accuracy of the dataset even further, a 
specialized computer vision annotation tool called CVAT was 
utilized. Manual annotations were made for each image 
through this tool by creating binary mask segmentations. These 
masks specifically separate regions into two categories: sky 
and non-sky. The definition of "sky" includes sky and other 
elements commonly found in skies, like clouds, sun, or moon. 
Conversely, "non-sky" consists of all other areas that do not 
fall under this sky category. These masks are ground truth. 

 
Fig. 2. Sample images from different locations. 

 

Fig. 3. Some of the data samples with ground truth. 
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Ground truth masks are an essential element for any 
machine learning application. They provide an essential 
reference or benchmark for algorithm training in image 
processing tasks, hence the term 'ground truth' [22], as they 
provide a standard against which the outcomes of the 
algorithms can be measured. Ground truth masks were 
generated for each image. These are binary masks, where 0 
represents the sky region, and 1 represents the non-sky regions. 
Fig. 3 provides samples from dataset and their corresponding 
ground truth masks. 

C. Data Preprocessing 

Data pre-processing was carried out to increase 
computational performance and have efficient processing. 
First, the images were resized to 256×256 pixels. Additionally, 
the data normalization was also carried out by normalizing 
each pixel value of the data. By dividing each pixel value by 
255, all data values fall within a range from 0 to 1. This 
normalization process is beneficial as it improves both the 
speed and accuracy of convergence during further calculations. 
Furthermore, masks (which indicate specific areas) were 
converted into binary format for more accessible analysis and 
understanding. To ensure accurate and reliable results, the 
images in the dataset were carefully divided into two separate 
datasets: the training dataset and the validation dataset. The 
training dataset accounts for 80% of collected data, while the 
remaining 20% is allocated to the validation dataset, allowing 
the algorithm to familiarize itself with various patterns and 
features within the images. 

To address the issue of insufficient data and overcome 
hardware constraints, a solution was implemented using the 
„ImageDataGenerator‟ class from the Keras framework, 
augmented images were generated on the fly during each epoch 
of training. This ensured that the model received diverse new 
variations in each iteration, effectively enhancing its ability to 
learn and generalize patterns. This strategy helps mitigate 
overfitting issues that often arise when working with small 
datasets. The augmentation techniques for this research include 
random rotation, horizontal and vertical shifts, shear 
transformation, and zoom. Fig. 4 presents a selection of 
samples that demonstrate the effects of these augmentation 
techniques on images in dataset. 

 

Fig. 4. Samples for augmentation techniques. 

IV. NETWORK ARCHITECTURE 

The illustration in Fig. 5 demonstrates the working of the 
proposed architecture for an RGB input image with dimensions 
256×256×3. The segmented output map with dimensions 

256×256×1 using the U-Net [5] network is received at the 
output. It is observed that there is no reduction in size between 
the input and output. 

Four different deep learning-based networks are proposed 
as alternatives to the contracting path for the U-Net. These 
encoders are VGG19 [23], EfficientNetb4 [24], InceptionV3 
[25], and DenseNet121 [26] to extract deep features, both 
height and width progressively decreasing while channel 
numbers increase. This channel augmentation enables 
capturing higher-level features as information flows through 
this pathway. The model undergoes a final convolution 
operation at the bottleneck, resulting in a feature map of size 
16×16×1024. The expansive path then reconstructs an image of 
the exact dimensions as the original input from this feature 
map. Up-sampling layers are employed to increase spatial 
resolution while reducing channel count. The decoder layers 
utilize skip connections from the contracting path to locate and 
enhance features in the image. Ultimately, each pixel in the 
output image represents a label corresponding to the class in 
the input image. In this case, the output is a segmentation map, 
distinguishing between foreground and background regions for 
each pixel. The foreground represents the sky region, and the 
background represents the non-sky regions. 

The crucial hyperparameters necessary for the convergence 
of the proposed models were identified. This includes batch 
size was set to 32 for all models, 100 epochs, AdamW 
optimizer selection, and learning rates set to 0.00001. The loss 
function applies the binary cross-entropy. 

The framework for statistically evaluating the efficacy of 
the models for sky segmentation is one of the key points of 
emphasis in the research. A suite of metrics is selected to 
quantify the performance of the models. The work leverages 
mean Intersection over Union (mIoU), Dice Similarity 
Coefficient (DSC), precision, recall, and accuracy, as critical 
metrics for this study. 

 
Fig. 5. Demonstratration of the working of the proposed architecture. 

V. RESULTS 

The operating system of this work is Windows 11, the deep 
learning environment is Keras and TensorFlow, and the 
programming language is Python. The hardware configuration 
is an Intel Core i7-2.80 GHz CPU and 16.0 GB RAM. 

In this research study, the proposed novel deep learning 
algorithm for sky segmentation was evaluated by utilizing 
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various encoders within the U-Net architecture and subjecting 
it to critical analysis. 

After several experiments, models that consist of the 
encoder employing VGG19, EfficientNetB4, InceptionV3, and 
DenseNet121 were compared, InceptionV3 U-Net showed the 
best performence, obtaining remarkable mIOU and DSC scores 
as high as 98.57% and 99.57% respectively. mIOU stands for 
mean Intersection over Union while DSC stands for Dice 
Similarity Coefficient which tells us how great the proposed 
model can perfectly draw the Sky region in the images. Such 
high scores are indicative of the model's robust performance in 
capturing the intricate details of the sky, laying the foundation 
for applications such as obstacle detection and path planning 
for autonomous vehicles. 

Table I depicts the model‟s performance concisely, 
measuring the Recall, precision, accuracy, and F1 score. 
Embodied in the table is not only the performance of the 
Inceptionv3 U-Net but also its other architectures, the VGG19 
U-Net, the DenseNet121 U-Net, and the Efficientnetb4 U-Net.  
Though the VGG19 U-Net, the DenseNet121 U-Net, and the 
Efficientnetb4 U-Net all offer comparable results, their scores 
are slightly less in comparison to the Inceptionv3 U-Net. The 
high performance that is demonstrated by all models serves as 
a testament to the ability of different encoders to amplify the 
U-Net architecture where sky segmentation is concerned. 

TABLE I. PERFORMANCE EVALUATION FOR SKY SEGMENTATION 

MODELS 

Evaluation 

Models 

VGG19 

U-Net 

Densenet121 

U-Net 

Efficientnetb4 

U-Net 

Inceptionv3 

U-Net 

mIoU 98.46 % 98.48 % 98.45 % 98.57 % 

DSC 99.53 % 99.54 % 99.53 % 99.57 % 

Recall 99.36 % 99.73 % 99.33 % 99.41 % 

Precision 99.71 % 99.35 % 99.72 % 99.73 % 

Accuracy 99.35 % 99.36 % 99.34 % 99.40 % 

Loss 0.09 0.11 0.14 0.11 

A further illustration of training and testing curves is shown 
in Fig. 6 and Fig. 7. In Fig. 6, the upper row corresponds to the 
InceptionV3 U-Net model, revealing its superior performance 
compared to the lower row representing the DenseNet121 U-
Net model. Similarly, Fig. 7 presents the learning trajectories 
of the VGG19 U-Net and EfficientNetB4 U-Net models, 
offering nuanced perspectives on their adaptability and 
convergence. The models have performed consistently well 
over both the training and validation sets, hence no signs of 
overfitting. In addition to the numerical metrics, it can be seen 
that the loss value during training is consistently low, again 
reaffirming the robustness of training procedures. Moreover, it 
can be concluded the models with high accuracy scores can do 
pixel classification in the sky region very well, which indicates 
the models are good enough even in discerning subtle details. 

The attainment of high learning due to the decrease in loss 
curves indicates the learning models‟ saturation. Conversely, 
the rise in accuracy and IOU curves shows that the model is 
still learning, which means that the learning phase is not over. 
Both curves are proposed to be well-balanced so as to enable 
the learning process to be terminated. 

 
Fig. 6. The performance curves of the inceptionv3 U-Net and Densenet121 

U-Net. 

 
Fig. 7. The performance curves of the Efficientnetb4 UNet and VGG19 

Unet. 

 

Fig. 8. Samples of prediction of the models. 

The qualitative assessment of model predictions is 
presented next in Fig. 8. This includes visual samples of the 
models‟ predictions on various scenes in different weather 
conditions and times of the day. The examples show that the 
models perform well in challenging setups such as back 
illumination or low light. This preliminary qualification holds 
true across the U-Net architecture and for the different 
backbone encoders, where it is evident that all models very 
accurately detect sky and ground pixels in various scenes. 
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VI. DISCUSSION 

The proposed models are able to perform with a relatively 
high degree of accuracy. In particularly hard scenarios, such as 
night scenes, the results are outstanding. They have done quite 
well in the task of distinguishing sky- and non-sky regions. 
And have done much better than other systems to avoid 
misclassifications such as white buildings as clouds, with a 
significantly greater precision. 

However, the models' limitations become apparent in more 
complex scenarios, such as scenes with intricate structures like 
trees or poles on buildings. In these instances, the models 
struggle to accurately detect sky areas, revealing areas that 
might benefit from further refinement. This acknowledgement 
of limitations is crucial for guiding future iterations of the 
models. 

This project opens avenues for future research, outlining 
potential directions to enhance the model's capabilities and 
address identified limitations. As a future work, various 
complex sites will be incorporated to train models robustly in 
the future by increasing dataset used in this project. 
Additionally, assessing how the model performs on different 
datasets to assess its adaptability to different scenarios and 
datasets. Moreover, this study will be expanded by focusing on 
a specific challenge, e.g., in weather phenomena, such as dust 
or rain and how to detect the sky. 

VII. CONCLUSION 

The finalization of this work throws light on the significant 
achievements that have been made in the field of Semantic Sky 
Segmentation. Initially, the main aim was to search for the 
most suitable encoder that could capture all the details of the 
sky, ideally during the segmentation process, to get very 
accurate results. The whole project was carried out in a series 
of different stages where alterations  were made to the U-Net 
Architectures that employed several other encoders such as 
VGG19, EfficientNetB4, InceptionV3, and  DenseNet121. The 
end-to-end binary segmentation model was a key stage in the 
proposed approach. The project's foundation rested on various 
steps, from comprehensive data preparation to the advanced 
image processing steps. The choice of the Keras framework 
facilitated a simplified model construction process, allowing 
for essential data augmentation to increase the dataset and 
enhance the model's overall performance. 

 Model evaluation was accomplished with the help of 
metrics like mIOU, Accuracy, Precision, Recall, DSC, Loss, 
etc. The results were as follows:  the mean Intersection over 
Union, Dice similarity coefficient, recall, precision, and 
accuracy scores of 98.57%, 99.57%, 99.41%, 99.73%, and 
99.40%, respectively. Additionally, it's noteworthy that the U-
Net with VGG19 equivalent achieved the best loss of 0.09, 
underscoring its effectiveness in minimizing error. 

This comprehensive approach of the evaluation process 
helps to understand the various aspects of the models. The 
InceptionV3 UNet model was identified as the most robust 
performer among the models tested over this dataset. Thus, the 
extended view of performance metrics for the different models 
validated the precision of the model's segmentation. 

The success of this project lies not only in the numbers but 
the proof lies in models‟ improved perception of complex 
scenes and their ability to work more effectively with 
applications. These have done well with an ability to tell sky 
pixels away from the ground. 

In conclusion, the outcomes of these experiments not only 
contribute to the growing body of knowledge in computer 
vision but also pave the way for practical applications where 
precise sky segmentation holds significant importance. 
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