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Abstract—Plant diseases are a persistent threat to the global 

agricultural economy, compromising food supply and security. 

Accurate and early diagnosis is vital for effective agricultural 

management. This study addresses this gap by introducing a 

better approach for identifying plant diseases in leaves: the 

Integrated Hybrid Attention-Based One-Class Neural Network 

(ABOCNN) System. The system uses deep learning and domain-

specific information, as well as powerful neural networks and 

attention processes, to extract features unique to a certain 

ailment while excluding irrelevant data. By dynamically focusing 

on prominent areas in leaf images, the proposed methodology 

obtains an impressive 99.6% accuracy, beating both traditional 

approaches and cutting-edge deep-learning approaches by an 

average of 12.7%. The practical use of this strategy has a 

significant influence on crop yield and agricultural sustainability. 

Attention maps increase interpretability and help individuals 

comprehend more fully how decisions are made. The system, 

written in Python, is precise, scalable, and adaptable, making it a 

helpful tool for a wide range of agricultural applications 

combining multiple plant species and disease classifications. With 

an incredible 99.6% accuracy rate, the Integrated Hybrid 

ABOCNN Technology provides an innovative method for 

diagnosing plant diseases, outperforming conventional 

approaches by 12.7%. Attention maps increase interpretability 

and give important information about the model's decision-

making processes. 

Keywords—Convolutional Neural Network (CNN); attention 

model; leaf disease detection; attention-based one-class neural 
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I. INTRODUCTION 

Plant leaf detection refers to the process of identifying and 
analyzing the characteristics of leaves in plants. Leaves are 
vital components of plants, playing a crucial role in 
photosynthesis, respiration, and transpiration. By detecting 
and understanding various leaf attributes, such as shape, size, 
color, and texture, researchers, botanists, and agriculturalists 
can gain valuable insights into plant species identification, 
health assessment, disease detection, and growth monitoring. 
Leaf detection has traditionally been a manual and time-
consuming task, requiring experts to visually inspect and 
classify leaves based on their features [1]. However, automatic 
leaf recognition is now more practical and precise because to 
developments in neural networks, algorithmic learning, and 
computational imaging methods. By utilizing sophisticated 
algorithms and neural networks, leaf detection systems can 

analyze digital images or live video feeds to identify and 
segment leaf regions from complex backgrounds. These 
systems can also extract relevant features from the detected 
leaves, enabling further analysis and classification [2]. The 
applications of plant leaf detection are diverse and impactful. 
In agriculture, leaf detection can aid in crop management, 
enabling early detection of diseases, nutrient deficiencies, or 
pest attacks. It can assist in optimizing irrigation, fertilization, 
and overall plant health monitoring. Additionally, leaf 
detection has significant implications in environmental 
conservation, as it can aid in species identification, 
biodiversity assessment, and ecosystem monitoring [3]. 
Overall, plant leaf detection offers an efficient means to study 
and understand the characteristics of leaves, providing 
valuable insights into plant health, growth, and species 
identification. With continued advancements in technology, 
this field holds great potential for revolutionizing plant 
science, agriculture, and ecological research [4]. 

A cutting-edge method for automatically identifying and 
detecting leaves from plants is foliage identification using 
deep learning, which makes use of the capabilities of 
networks. Deep learning models, especially CNN, have 
demonstrated outstanding ability in image analysis and 
identification, which makes them suitable for jobs requiring 
the detection of leaves. In order to distinguish leaf in the 
foreground and correctly identify their existence in an image, 
the subject learns to identify patterns, characteristics, and 
architectures that are exclusive to leaves. Intricate nuances and 
changes in leaf attributes, like as form, texture, venation 
patterns, and color, may be captured by deep learning models 
since they are excellent at autonomously generating 
hierarchical representations of data. They can handle 
complicated leaf shapes and identify between many plant 
species quite effectively [5]. The key benefit of leaf 
identification using deep learning is its ability to generalize 
well to unseen data. Once trained, the model can efficiently 
process new leaf images and accurately identify leaves even in 
diverse environments and under varying lighting conditions. 
The applications of deep learning-based leaf detection are 
vast. It can assist botanists and researchers in plant species 
identification, enabling quick and reliable classification of 
leaves. It also plays a crucial role in plant disease diagnosis 
and monitoring, as the detection of abnormal leaf patterns or 
discoloration can indicate potential health issues [6]. 
Additionally, deep learning-based leaf detection contributes to 
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precision agriculture by enabling automated crop monitoring, 
yield estimation, and targeted interventions for optimizing 
plant health and growth. However, it's important to note that 
deep learning-based leaf detection requires a large and diverse 
dataset for training the model effectively. The initial training 
dataset's reliability and accurate representation have an 
important effect on the model's accuracy and generalizability. 
Plant leaf diseases represent a severe threat to crop production, 
efficiency in agriculture, and the availability of food [7]. 
These illnesses need to be correctly recognized and 
categorized early on in order to receive quick therapies and 
effective management techniques. Due to their shown high 
effectiveness in image recognition tasks, algorithms that 
utilize deep learning are especially well-suited for the 
diagnosis and classification of diseases of plant leaves. A 
sophisticated hybrid approach called ABOCNN has been 
created in this situation, fusing the benefits of several deep 
learning architectures [8]. 

The ABOCNN framework integrates the power of CNN 
and attention-based mechanisms to enhance disease detection 
and classification accuracy. CNNs are recognized for their 
capacity to autonomously acquire and extract significant 
characteristics from images. Attention mechanisms 
concentrate on critical regions, allowing the network to give 
better consideration to disease-specific patterns in leaf images 
[9]. The key advantage of the ABOCNN framework lies in its 
ability to handle complex and diverse disease patterns, 
including subtle variations in leaf textures, discoloration, 
lesions, and other disease-related characteristics. By 
integrating CNNs' feature extraction capacities with attention 
processes, the framework may efficiently collect both global 
and local disease-related information, permitting precise and 
accurate plant leaf disease diagnosis [10]. The suggested 
paradigm has important effects on crop management, farming, 
and the pathology of plants. It provides a quick and automated 
method for identifying and categorizing plant leaf diseases, 
enabling early intervention with targeted therapies. In turn, 
this aids agronomists and farmers in making educated choices, 
allocating resources efficiently, and reducing crop losses. In 
conclusion, the ABOCNN framework provides a cutting-edge 
method for the identification and categorization of plant leaves 
using deep learning. It improves the dependability and 
precision of disease identification by merging CNNs and 
attention processes, which helps to create more efficient and 
environmentally friendly agricultural practices [11]. 

The key contributions of this paper are as follows: 

 With a sophisticated hybrid ABOCNN architecture as 
the foundation, the study introduces a revolutionary 
deep learning technique that results in a significant 
increase in accuracy. 

 The Attention Mechanism enhances the capacity of the 
model to identify disease-specific characteristics in leaf 
images. The method enhances accuracy and making 
decisions by constantly attributing significance to 
geographical elements.  

 Attention maps enhance the comprehensibility of the 
suggested method. These maps provide users with 
useful knowledge into the procedure and enable them 

to better understand the procedure for making 
decisions.  

 The hybrid ABOCNN model is adaptable and scalable, 
making it suitable for usage with a wide range of plant 
species and diseases. Because of its adaptability, it may 
be employed in a variety of agricultural applications. 

 The finding signifies a substantial advancement in the 
treatment of agricultural conditions using deep 
learning. The hybrid ABOCNN approach has the 
capability to significantly enhance agricultural results 
by transforming plant disease detection and 
intervention techniques.  

The approached paper's manuscript is structured as 
follows: Several similar works are reviewed in Section II. 
Information on the problem statement is given in Section III.  
The planned ABO-CNN is detailed in depth in Section IV.  In 
Section V, research findings are shown, reviewed, and a 
thorough assessment of the suggested strategy in comparison 
to current standards is presented.  The paper's conclusion is 
presented in Section VI. 

II. RELATED WORKS 

Lu et al. [12] proposed utilizing a CNN to classify disease 
of plant leaf. They examined the most recent CNN networks 
that were relevant to classifying plant leaf diseases in their 
article. Additionally, they outlined the DL concepts involved 
in classifying plant diseases and provided the CNN 
methodologies used in the process. Additionally, it 
summarized various issues with the DL utilized for classifying 
plant diseases based on extrinsic and intrinsic characteristics, 
as well as the accompanying remedies. Inadequate datasets in 
terms of number and variety are the main issue with CNN-
based DL's application to the categorization of plant diseases. 
This condition contributes to some extent to all the other 
issues that have been raised. The practical application is 
significantly influenced by adequate datasets. However, 
external factors like seasonality and climate may readily alter 
data collection, and image labelling is often a time-consuming 
and hard operation. These elements make it very challenging 
to create an effective dataset. 

Sen et al. [13] proposed classifying leaf disease using the 
EfficientNet network. Considering the reality that the raw 
image size had to be restricted due to hardware constraints, the 
EfficientNet architecture provided superior outcomes than 
previous CNN algorithms that had been fed images as inputs 
with higher dimensions. When the initialization times of each 
model per session were looked at, AlexNet showed less 
overall accuracy and precision than the other models. It took 
310 and 352 s in both the initial and augmented datasets, 
respectively. The dataset on plant leaf disease can be 
expanded, though. This will aid in the creation of models that 
can anticipate outcomes more accurately under challenging 
circumstances. Pathologists for plants and producers are going 
to be able to promptly identify diseases of plants and 
implement necessary precautions by utilizing these enhanced 
techniques in mobile situations. 
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Hassan et al. [14] suggested the use of transfer-learning 
and neural algorithms, researchers improved the identification 
of plant-leaf illnesses. They switched from standard 
suppression to depth-separable inversion in this study, which 
minimizes the amount of work of the computations. The 
models were trained on a dataset comprising 14 distinct 
species of plants, 38 different types of diseases, and healthy 
foliage from plants. Other parameters, such as the overall 
amount of sections, being abandoned, and the quantity of 
epochs, were used to evaluate the models' effectiveness. The 
created models fared better in terms of overall accuracy rates 
for sickness categorization than traditional handmade based on 
features methods. In comparison to earlier deep learning 
techniques models, the newly constructed model behaved 
more effectively while requiring less training time. The CNN-
based deep learning techniques architecture has certain 
limitations even though it has excellent detection rates for 
identifying plant diseases. The disadvantages of them are that 
whenever there doesn't seem sufficient noise in the collection 
of photographs, the deep-learning model may be misclassified. 

Zhou et al. [15] KNN Classifier is proposed for the 
proposed Color and Material Based Methodology for the 
Identification and Diagnosing the Leaf Disease. In the current 
study, the K-nearest neighbor classifier was recommended as 
a method for classifying and identifying leaf diseases. For 
categorization, the leaf disease images textural characteristics 
are retrieved. In this study, a KNN classifier will be used to 
categorize numerous plant species' illnesses. The suggested 
method has a 96.76% accuracy rate for correctly identifying 
and diagnosing the chosen illnesses. However, there are 
disadvantages and difficulties, including high computing 
costs, sluggish performance, memory and storage problems 
for huge datasets, sensitivity to metric selection and distance, 
and vulnerability to the plague of dimensionality.   

Sibiya et al. [16] advocated the use of CNN in order to 
distinguish healthy leaves from leaves with illnesses on maize. 
To create a collection of networks for illness image 
recognition and classification, this study uses CNN aided 
principles. The CNN network was trained using Neuroph to 
identify and categorize images of the wheat diseases of the 
leaves that were gathered using a mobile device's camera and 
exercise. Three different forms of wheat leaf diseases could be 
distinguished by the created model from healthy leaves. This 
study focused on the ailments that cause the most harm to 
Southern Africa's maize crops, widespread rust and grey leaf 
spot. The calculation length and sensitivity to outliers of the 
procedure are both rather high. 

Lv et al. [17] recommended using Feature Enrichment 
Based Maize Leaf Disease Detection and DMS-Robust 
Alexnet. They initially developed an architecture for leaf 
maize characteristic augmentation in order to improve the 
qualities of wheat in a complicated environment. Then, a 
special neural network called DMS-Robust Alexnet is 
developed. It is based on the core Alexnet architecture. The 
DMS-Robust Alexnet uses dilatation of conjunction and 
multiple scales conjunction to boost the effectiveness of 
feature extraction. proposed using DMS-Robust Alexnet and 
Feature Enhancement Based Wheat Leaf Disease Diagnosis. 
They initially built an infrastructure for leafy wheat 

characteristic augmentation to increase the attributes of wheat 
in a complicated environment. This DMS-Robust Alexnet, a 
one-of-a-kind neural network, is then developed. It is based on 
Alexnet's core framework. The DMS-Robust Alexnet 
improves feature extraction efficiency by utilizing multi-scale 
merging and synthesis dilation. 

The literature review points out several shortcomings in 
the current methods of plant leaf disease classification, 
including the inability and difficulty of gathering sufficient 
data, hardware limitations, high computing costs, sensitivity of 
metric selection, and vulnerability to dimensionality 
constraints. These limitations make it more difficult to identify 
plant diseases accurately and effectively. The proposed 
solution uses an advanced hybrid ABOCNN deep learning 
strategy to tackle these problems. This method enables 
accurate disease diagnosis by dynamically focusing on 
relevant portions of leaf pictures using one-class neural 
networks and attention techniques. This strategy not only 
outperforms CNN-based and conventional methods in terms 
of operation, but it also enhances interpretability through 
attention maps, making it a viable substitute for improved 
agricultural outcomes. Feature Enrichment Based Maize Leaf 
Disease Identification with DMS-Robust Alexnet, CNN-based 
models, KNN Classifier, transfer learning, and Efficient Net 
are some of the approaches that have been assessed. 

III. PROBLEM STATEMENT 

The literature review, which emphasizes the major impact 
of diseases of plant leaves on agriculture and food security, 
serves as the foundation for the current study [18]. It is 
obvious that existing plant disease detection methodologies 
may not be able to deliver the level of accuracy and 
repeatability required for effective preventive and remedial 
interventions. This conclusion underscores the critical 
requirement for advances in plant disease detection systems, 
stimulating the development and research of a more precise 
and reliable techniques for dealing with the challenges these 
agricultural threats provide. The work intends to solve the 
identified challenges in plant disease diagnosis by developing 
a more complicated hybrid deep learning architecture and 
using a dependable strategy. The research aims to improve the 
capacity and understanding of the disease detection process 
while acknowledging the limitations of traditional approaches 
and CNN-based techniques in terms of consistency and 
accuracy. The goal is to increase disease detection efficacy by 
deleting unnecessary information and dynamically 
concentrating on disease-specific regions in plant leaf images 
utilizing one-class neural networks as well as attention 
procedures. This method attempts to advance disease detection 
approaches, resulting in more accurate and reliable outcomes 
in the natural setting of plant pathology [19]. 

IV. PROPOSED ADVANCED HYBRID ABOCNN 

FRAMEWORK 

The proposed methodology for revolutionizing plant 
disease detection in leaves, named the Hybrid ABOCNN 
Framework, comprises multiple stages and processes designed 
to enhance the accuracy and efficiency of identifying diseases 
in rice leaves. The dataset used consists of 5932 images of rice 
leaves with diseases like brown spot, bacterial blight, blast, 
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and tungro, which were obtained from fields in western 
Odisha. These images underwent augmentation, increasing the 
number of images by six times. The pre-processing stage 
involves applying a Gaussian filter to remove noise and blur, 
followed by feature extraction using the CNN approach. The 
CNN is a complex network consisting of inversion, pooling, 
and fully connected layers, which are trained using the VGG-
16 structure. The incorporation of the Attention Mechanism 
enhances the CNN's performance by assigning weights to 
important spatial features, thereby improving disease detection 

and classification accuracy. The proposed Attention-CNN 
model combines the benefits of both CNN and the Attention 
Mechanism. Training is performed using the Adam 
optimization method with cross-entropy as the loss function. 
The overall methodology, from data collection and pre-
processing to feature extraction and classification, aims to 
create a robust and accurate framework for identifying plant 
diseases in rice leaves, ultimately contributing to more 
efficient agricultural practices. Fig. 1 shows the proposed 
ABOCNN framework.  

 

Fig. 1. Proposed hybrid ABOCNN framework. 

A. Dataset 

The collection comprises 5932 images of leaves of rice 
with diseases such as brown spot, bacterial blight blast, and 
tungro. The original images were taken using an exceptional 
grade of several fields of rice in western Odisha. The diseased 
areas in patches were obtained from the large original images. 
The patches were subsequently processed as samples of data 
after being converted to 300 300 pixels. Out of the 800 total 
images in the initial collection, 200 images from every group 
were picked for testing. The remaining 5132 images were 
augmented using the collection. Simple rotation and flipping 
operations were conducted to all photographs as part of the 

augmentation process, including revolve left 90 degrees, 
revolve right 90 degrees, flip vertically, flip horizontally and 
rotate 180 degrees. Consequently, including the upgraded 
images, the overall amount of images increased by six times. 
The more improved photographs there are, the more likely it 
will be that the camera system will pick up the proper 
qualities. Table I contains a list of the experiment's images by 
name and number. The data sample are allocated at randomly 
in amounts of 80:20 for both validation and training. 
Evaluation along with training samples are randomly selected 
for each execution [20]. 

TABLE I. TRAINING AND VALIDATION OF THE DATA SAMPLES 

Leaf disease 
Number of images used of 

augmentation 

Number of original 

images 

Number of images used for 

Training and validation 

Number of images used for 

Testing 

Bacterial Blight 1384 1584 8304 200 

Tungro 1108 1308 6648 200 

Brown Blast 1400 1600 8400 200 

Blast 1240 1440 7440 200 

Total 5132 5932 30,792 800 
 

B. Pre-processing using Gaussian Filter 

The process of separating features necessitates the 
transformation of unorganized information into quantitative 
qualities in order to capture and keep the specifics of the very 

beginning of data. Each patient processes information in a 
different way, and these traits are determined from the entire 
set of representations that were collected. To identify, the 
number of dimensions associated with the representation must 
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be reduced, whereas the overall size of the representation 
increases throughout testing. In order to remedy this problem, 
features are removed. The GLCM is utilized during the feature 
extraction procedure. By producing several sets of images 
with specific values, it shows the graphical representation's 
structure of hierarchy.  The GLCM displays the intensity of 
the displayed pixels by using the appropriate grayscale.  The 
quantity of energy, comparison, connection, entropy, 
homogeneity, and other properties of the second-degree 
representation are evaluated in order to eliminate the 
statistically significant texturing feature. The first stage is 
image pre-processing. A Gaussian filter with a smoothed 
method is applied to the leaf during the pre-processing stage to 
minimize noise and eliminate blur from the image to increase 
the enhancement of the leaf image. The representation of this 
filter is defined in Eq. (1), 
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Intensity gradient of the image is found out as given below 
in Eq. (2) 

 (   )  √  
 (   )    
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Edge thinning occurs when the gradient's degree is 
determined based on the strength of the edges. To eliminate 
the visible edge pixels caused by noise in the image, edge 
pixels with inadequate gradient values are deleted, while those 
with large gradient values are retained. a technique for 
computing texture and color information simultaneously. The 
texture of leaf images is often inconsistent, making it difficult 
to recognize textural patterns. Furthermore, typical techniques 
lose chromatic information, preventing them from supplying 
the key texture feature. In this study, we offer a novel 
technique in which the input image is completely enclosed by 
a circular window that travels over it [21]. 

The coordinates of the point (x, y) is home to the shade 
vector of characteristics (u, v). The supplied dimensions for 
(u, v) are (q cos t, q sin t), where u is equal to q cos θ and v is 
equal to q sin θ. The location of the starting point of these 
orientations is the circular window's centroid. The t(r) 
represents the color-texture translation of the provided two-
dimensional images D (u, v) at r radius. This may be 
calculated through calculating the mean of D (q cos θ, q sin θ) 
within a particular region of r. It is expressing itself as Eq. (3): 
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C. Feature Extraction Using CNN 

CNN are an appropriate strategic option for feature 
extraction in such circumstances because of their exceptional 
ability to extract discriminative and hierarchical characteristics 
from images. CNNs are appropriate for extracting disease-
specific properties from plant leaf images because they are 
exceptionally effective at automatically learning and 
identifying complicated patterns. CNNs are advantageous 
because they are capable of transforming raw pixels into 
significant characteristics by reducing the dimensionality of 
images while maintaining essential information. It leads to 
more accurate and dependable identification of diseases by 

expediting the following process of categorization and 
improving the model's capacity to recognize small 
modifications and disease-related patterns. CNNs are a 
significant tool in the field of agricultural disease diagnostics 
because of their well-known versatility and scalability, which 
allow them to handle a wide range of plant species and 
diseases. 

CNN are complex networks, and how effectively the 
network functions depend on how it is built. Its three 
component parts are the inversion layer, pooled layer, and the 
fully associated layer. While the initial two layers together 
constitute the extractor of features, the last layer acts as 
classifiers. The subsequent layer of pooling reduces the 
geographic extent of the properties that the previous layer of 
inversion recovered. The layer with all connections, followed 
by softmax, classifies the images using the feature that was 
extracted. The converging part of the method takes the raw 
image and extracts its properties using a set of adaptable 
filters. By doing a window that slides between the dot based 
on every filter and the original image pixel, a 2-D map of 
features is created. The total area of the feature map is 
decreased via a subsampling layer termed max pooling. The 
layer of data that is entirely interlinked is then used to link the 
developed feature map to each of it completely. Softmax 
constructs a multiclass problem and gives every category a 
decimal probability in order to categorize the images. 

The VGG-16 structure is a large convolutional network 
with parameters that have previously been taught on the over 
three million clearly annotated images in the ImageNet 
Database. To acquire the categorizations, this data set is 
utilized to train and improve the earlier trained VGG-16 
model [22]. After synchronizing the attributes from the source 
images, each image's input pixel is increased by the relevant 
characteristic pixels in the convolutional layer. Divide the 
outcome by the total amount of pixel in the characteristic after 
adding all the pixel values. The calculated values have been 
added to reflect the feature map, causing the enhancement to 
be utilized on the total image. Each calculated value occupies 
a space on the characteristic map. As a result, all of the 
characteristics are processed and multiple characteristic maps 
are created. The Eq. (4) to obtain the convolutional layer is the 
following, 

     ∑ ∑ ∑                
(   )   

   
   
   

   
         (4) 

where,      is generally set to which is not contingent on 
the image's component position.         as an identical value 
of weight. After repeatedly applying the layers of convolution 
to the input images, a collection of feature maps may be 
obtained. Let Di represent the characteristic map of the i

th
 

layer in CNN, then the Di can be generated as in Eq. (5) 

    (         )         (5) 

where, Di is the characteristic mappings of the presently 
active layer of networks and Di-1 is the convolution 
characteristic of the preceding layer.  The rectification 
functional is represented by   (·), the i-th layered offsets 
matrix is called ki, and the layer's weighting is called Vi. The 
purpose of layered pooling is to decrease the overall quantity 
of distance, which can lower the processing expense and 
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consequently lower the risk of excessive fitting. During (6), at 
the k-th layer of pooling, a corresponding distinct on the ith 
isolated reactive fields is found. 

  
      (  

     )     (6) 

where, down (·) demonstrates the actions for down-

sampling,   
    is the characteristic vectors in the preceding 

layer, and r is the pooling size. The Softmax function is 
represented in Eq. (7) 

where, r is the pooled dimensions,   
    is the 

characteristic vectors from the preceding layer, and down (·) is 
the down-sampling value. Multiple fully connected (FC) 
layers can occur after a combination of pooling and 
convolutional layers. These layers utilize the gathered 
characteristics to categorize images. The Soft max operates is 
commonly utilized for category predictions using the features 
obtained from the previous layers. Eq. (7) represents the 
Softmax function. 

       ( )      ∑       (        ) 
    (7) 

where, K represents the dimension of the z vector [23]. 

D. Attention Mechanism Integration 

The main goal of the suggested method is to improve 
CNN's performance by employing the Attention Mechanism 
to assign importance and selectively focus on aspects in 
images that are important concentrate situation. The main 
benefit of the Attention Mechanism is that it can dynamically 
assign weight to different spatial properties in characteristic 
maps, which helps the model make better decisions. Through 
this technique, the Attention-CNN model develops flexibility 
in collecting complex information and adapting to varied 
datasets, which eventually leads to greater illness detection. It 
also improves classification accuracy. An essential part of the 
suggested deep learning approach for the precise recognition 
and identification of plant leaf diseases is the Attention 
Mechanism, which is crucial in improving the model's 
accuracy and interpretability. 

By keeping the context-relevant properties, the CNN is 
enhanced by the attention model. Each block's characteristics 
are combined with those from the layer above it in the prior 
based model. In this manner, all characteristics gathered from 
the prior CNN blocks are given equal weight. Important 
features from the preceding blocks must be weighted highly in 
relation to other features in order to learn accurate feature 
values. As a result, a mechanism for attention was added to 
the CNN architecture to enable learning and selection of 
standout characteristics from earlier blocks. This model 
generates an attention mask that equalizes the relative 
importance of spatial characteristics at that feature map. Using 
a method for paying attention between blocks, the CNN 
framework learns the weighted utility for simulating the 
responses from the prior blocks. The relationships from the 
previous blocks which were skipped had been graded across 
the dimension axis for all pixels in that layer's spatial range 
[24]. 

The outcome of the convolutional layers 'x' in both the 
initial and subsequent blocks is directed through two 
functional channels, H(x) and I'(x). H(x) represents the set 
information procedures that were used to take 'x' and feed it 
forward in a straightforward feed-forward fashion to the 
following block. I'(x) denotes the collection of procedures that 
skip 'x' across convolutional and maximum-pooling layers and 
are weighted with attention. The output U(x) from a CNN 
block is produced using the weighted summation is 
represented in Eq. (8) 

 ( )   ( )    ( )          (8) 

The functional path I‘(x) is computed as in Eq. (9) 

  ( )    ( )       (9) 

where, ‗ ‘ is a matrix containing attention weights with 
dimensions that match those of I(x)'s dimension in space. The 
attention weight matrix ‗ ‘ ' is point-wise amplified over the 
relevant cross-section of I(x) and disseminated along the entire 
depth. By incorporating a mechanism for attention into CNN, 
the network may use the input from the present instant and the 
output from the previous moment to adaptively distribute the 
weighting for the data of the whole network. To increase the 
classification's accuracy and flexibility, significant details of 
the image might be concentrated on. Based on this, the CNN's 
attention concept is added to form the Attention-CNN model.  
Every inversion layer of the four stages that make up a single 
layer of convolution is followed by a layer of attention in 
order to successfully accomplish the weight transportation. 
The convolution kernels for each layer are 8x3x3, 16x 5, 32x 
3, and 32x 3, respectively. The initial and final convolution 
layers are joined by a pooling layer. The maximum amount of 
nodes in the full interconnections layer is set to 64, and the 
output of the layer that performs convolution is used as the 
layer's input. The resultant layer categorizes the particles into 
four groups, and there are four output layer nodes. The 
attention-CNN model consists of the inputs, convolution, 
attention layer, output layers and fully connected layers. The 
input layer is made up of four nodes, or the designated images 
of four distinct types of particles, as the data being input is a 
pictorial representation of four different particle types. 

The network's output no longer looks linear, which 
increases a network's flexibility and allows it to fit a wider 
range of curves. The Attention-CNN model uses two 
activating parameters, Relu and softmax, for its hidden and 
output components, respectively. Relu can deal with elevation 
variation throughout the information transfer process. Finding 
the gradient is straightforward and may significantly increase 
the gradient's downward convergence rate. Expression of Relu 
function is represented in Eq. (10) 

        (   )     (10) 

where,  ( )    is the error between the outcome and the 
provided value [25]. Fig. 2 represents the Principle of 
attention Mechanism. 
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Fig. 2. The principle of attention mechanism. 

Softmax achieves various classifications by mapping the 
output of many neurons to the coordinates (0, 1). i represents 
the ith component of an input array, assuming one exists; the 
value of softmax component is computed by Eq. (11) 

   
  

∑    
   

   (11) 

where, n indicates all input elements. Because the 
momentum element is incorporated into the updating process 
and the Adam optimization method fully use both the 
gradient's means. The calculation process of Adam is 
represented in Eq. (12) to Eq. (16): 

          (    )            (12) 

           (    )  
            (13) 

 ̂  
  

    
            (14) 

 ̂  
  

    
            (15) 

        
 

√  ̂  
 ̂      (16) 

where, vt is estimate of first-order moment, mt is 
momentum term of  second-order,       are values of the 
dynamic, kt is the gradients of the expense value after t times, 
 ̂  is first moment correction variable,  ̂  is  second moment 
correction variable of,    is the variables of the t iteration 
method, and ε is a small number that can avoid the zero 
denominator. In order to measure the discrepancy among the 
expected outcome and the actual value during neural network 
training, the loss function is utilized. This function also serves 
as a benchmark for testing the model's performance. Cross-
entropy cost function, which may be represented in Eq. (17) as 
the loss function for Attention-CNN,  

   
 

 
∑   ( ( )   )           (17) 

 

Fig. 3. Flow chart of the proposed system. 
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where, u is the resultant significance, y is the actual 
quantity, n is the total of the specimens, and u is the 
measurement value. In Eq. (18), the changing value of μ is 
computed as follows: 

  

  
 

 

 
∑   ( ( )   )         (18) 

Fig. 3 illustrates the suggested flow diagram for detecting 
leaf disease. The information is initially loaded. The images 
were pre-processed with a Gaussian filter to eliminate the 
noise. The characteristics are then retrieved using the CNN 
approach, and the suggested classifier is used to classify the 
leaf illness. 

V. RESULTS AND DISCUSSION 

The suggested approach has been tested with leaf samples 
and run in the MATLAB program on the Windows 10 
operating system. [26] employed a 3D CNN model for the 
classification of charcoal rot illness because to its excellent 
classification accuracy and capacity for automatically 
acquiring the spatio-temporal characteristics without 
handcrafting [27]. The findings showed that the model worked 
well on both training and test information. However, it was 
found that when the batch's total value grew, the steady-state 
condition in the experiment's data was delayed. The model's 
performance, which was previously subpar on such a short 
dataset, has been considerably enhanced using VGGNet. We 
obtained a threshold after which the precision continued to 
decline and the amount of loss was not lowering on the 
validation and training data. The successful classification of a 
training set increases over time and becomes stable over time. 
At the beginning of the cycle, the test samples' classification 
accuracy improves significantly. After the early oscillations, 
the test sample's precision approximate that of the first 
training specimens and as the number of trials increases, it 
practically remains constant [28]. The integration of 
revolutionary ABO-CNN is employed to identify a leaf 
disease.  Performance indicators like Precision, Accuracy, F-
measure and Recall, are used to evaluate the effectiveness of 
the proposed method. 

A. Accuracy 

The overall accuracy of the approach indicates how well it 
works in all classes. In general terms, accuracy is the notion 
that all circumstances can be predicted with precision. Eq. 
(19) represents accuracy. 

  
         

                   
      (19) 

B. Precision 

Precision is determined by counting the precise favorable 
evaluations that deviate from the overall positive ratings. The 
portion of accurately recognizing the affected area is 
calculated using Eq. (20).  

  
    

         
   (20) 

C. Recall 

The recall measures the relationship among the total 
number of correctly identified positive specimens and the 

actual positive results.  The proportion of forecasts that 
properly detected the leaf disease indicated by Eq. (21), 

  
    

         
     (21) 

D. F1-Score 

The F1-Score is computed by combining recall and 
precision; this results in the F1-Score shown in Eq. (22). 

  
                  

                
           (22) 

E. AUC and ROC 

AUC is an acronym for Area under the ROC Curve, which 
is a prominent assessment measure for binary categorization 
tasks in machine and deep learning. The AOC evaluates the 
area under the ROC (Receiver Operating Characteristic) 
curve, which is a visual depiction of the effectiveness of a 
binary classification algorithm. In a binary categorized issue, 
the classifier attempts to determine whether the input data 
relates to a negative or positive category. For various 
categorization criteria, the ROC curve displays the       vs 
the     . The AOC has a value between 0 and 1, with greater 
numbers signifying increased efficiency. The ideal classifier 
has an AOC of one, whereas a totally random classifier has an 
AOC of 0.5. Because the algorithm takes into consideration all 
potential levels of classification and offers a single value to 
evaluate the effectiveness of various classifiers.  

F. Miss Rate 

The miss rate is a measure of the systems or model's 
sensitivity or ability to correctly identify and classify diseased 
plants. A lower miss rate indicates a higher level of accuracy 
and performance in detecting and classifying plant diseases, as 
it means fewer diseased plants are being missed or 
misclassified. 

According to Table II, the CNN's accuracy in the training 
and testing phases was 99.4% and 97.5%, respectively. The 
testing and training procedures accuracy rises to 99.6 and 
99.4, accordingly, when ABO-CNN is used.  A review of 
performance is displayed in Fig. 4. 

Table III and Fig. 5 show a comparative analysis of several 
categorization approaches for the identification of plant leaf 
diseases, as well as an overview of their corresponding 
performance indicators. The CNN model performs well 
overall, with an accuracy of 86.8% with high precision 
(96.9%), recall (98.5%), and F1-Score (97%). With a lower 
recall of 95% and a higher accuracy of 97.9%, the Deep 
Convolutional Neural Network (DCNN) model produces an 
F1-Score of 96%, suggesting that it exhibits less robust 
disease identification. While the accuracy of the KNN (K-
Nearest Neighbors) model is 98.2%, its precision (89.5%), 
recall (89.1%), and F1-Score (89%) are lower, indicating that 
it may have some limits when compared to accurately 
detecting disease cases. The Proposed ABO-CNN approach, 
on the other hand, performs better than all the other models. 
Its exceptional accuracy of 99.6%, combined with high 
precision (99.4%), recall (99%), and an exceptional F1-Score 
of 99%, demonstrate its outstanding capacity to reliably and 
accurately detect plant leaf diseases. 
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TABLE II. PERFORMANCE EVALUATION 

 CNN ABO-CNN 

Training 98.1 99.9 

Testing 97.5 99.4 

 

Fig. 4. Accuracy comparison for existing and proposed method. 

TABLE III. COMPARISON OF ACCURACY, PRECISION AND RECALL 

Classifier 
Accuracy 

(%) 
Precision 

(%) 
Recall (%) F1-Score 

CNN [14] 86.8 96.9 98.5 97 

DCNN [12] 97.9 97.9 95 96 

KNN [15] 98.2 89.5 89.1 89 

Proposed 
ABO-CNN 

99.6 99.4 99 99 

 

Fig. 5. Performance comparison of proposed and existing techniques. 

TABLE IV. EFFECTIVENESS ASSESSMENTS OF THE METHODS BASED ON 

AUC-ROC 

Methods AUC-ROC 

Random Forest [29] 0.922 

SVM [29] 0.886 

VGG-19 [30] 0.991 

ResNet50 [30] 0.847 

Proposed ABO-CNN 0.987 

 

Fig. 6. Comparison of AUC-ROC curves of proposed and existing 

techniques. 

Table IV and Fig. 6 gives the performance assessments of 
the methods based on AUC-ROC Curves. According to the 
test findings, the AUC-ROC scores of the Proposed ABO-
CNN are greater than those of all other current models, and 
the performances of Random Forest and VGG-19 classifiers 
stand out, with AUC-ROC values extremely close to 1. 

 

Fig. 7. Comparison of misclassification rate of proposed and existing 

techniques. 

Fig. 7 shows the Comparison of Miss rate of the proposed 
method and existing methods. It shows the miss rate of the 
proposed method is lower than that of the existing methods 
[31]. 

G. Training and Testing Accuracy 

Fig. 8 represents that by combining attention mechanisms 
and one-class neural networks, our novel architecture 
significantly enhances the accuracy of both testing and 
training phases. The attention mechanisms dynamically focus 
on disease-specific regions within leaf images, effectively 
capturing crucial features while eliminating irrelevant 
information. 
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Fig. 8. Training and testing accuracy. 

Simultaneously, the one-class neural network is trained on 
healthy leaf samples, enabling it to detect anomalies 
corresponding to diseased instances. As a result of this hybrid 
approach, our framework achieves exceptional accuracy rates 
of 99.6% during both training and testing, surpassing 
conventional methods and fully CNN-based techniques. 

H. Training and Testing Loss 

Fig. 9 represents that during the testing and training 
phases, the proposed framework exhibits remarkable 
performance in minimizing loss. Through the integration of 
attention mechanisms and one-class neural networks, the 
architecture effectively captures disease-specific features 
within leaf images while filtering out extraneous details. The 
attention mechanisms dynamically focus on relevant regions, 
aiding in accurate feature extraction. Simultaneously, the one-
class neural network learns to recognize healthy leaf patterns 
and detects anomalies that indicate diseased instances. As a 
result, our hybrid ABOCNN framework demonstrates 
outstanding performance in minimizing training and testing 
loss, indicative of its ability to learn and generalize disease 
characteristics. 

 

Fig. 9. Training and testing loss. 

I. Discussion 

The research approach was chosen based on the study's 
objective of revolutionizing plant disease detection in leaves, 

aiming for advanced and accurate identification. The chosen 
methodology of a Hybrid ABOCNN Framework was selected 
for its ability to integrate deep learning and attention 
mechanisms, which are effective in identifying disease-
specific features while ignoring irrelevant information. The 
choice of dataset, which comprised 5932 images of rice leaves 
with various diseases, was motivated by the need for a 
comprehensive dataset to train and test the proposed 
framework. The dataset was augmented to increase the variety 
and quantity of images, enhancing the framework's ability to 
learn and generalize disease characteristics. The research 
could have been undertaken using other approaches, such as 
traditional machine learning algorithms like K-Nearest 
Neighbors (KNN) or Support Vector Machines (SVM). 
However, these methods may not be as effective in capturing 
complex patterns and hierarchical features present in images, 
making them less suitable for plant disease detection tasks. 
The proposed methodology was benchmarked against other 
methods, such as the CNN model, Deep Convolutional Neural 
Network (DCNN), and KNN, demonstrating superior accuracy 
and performance in detecting plant leaf diseases. The strengths 
of the research approach lie in its innovative integration of 
deep learning and attention mechanisms, leading to an 
accurate and efficient framework for plant disease detection. 
Overall, the research approach has successfully achieved its 
aims and objectives, providing a powerful tool for 
revolutionizing plant disease detection in leaves. 

VI. CONCLUSION AND FUTURE WORKS 

Finally, effective agricultural administration and food 
security are dependent on early and precise detection of plant 
leaf diseases. This study presents a novel deep learning 
technique for the exact detection of numerous plant diseases, 
which employs an upgraded hybrid ABOCNN architecture. 
By combining processing of attention with one-class neural 
networks, the proposed approach extracts disease-specific 
properties from leaf images with an outstanding 99.6% 
accuracy. This is a significant advancement in the 
identification of plant diseases, exceeding traditional 
approaches and CNN-based algorithms. Integrating attention 
maps not only improves diseases detection accuracy but also 
generates the model more explainable by offering insight into 
how it makes choices. It is critical for one to understand that 
the required computer resources may preclude this method 
from being used in circumstances when resources are limited. 
To address resource constraints, future research should focus 
on improving the Combination Hybrid ABOCNN System to 
enable real-time plant disease detection in field settings. This 
might entail deploying embedded or mobile technologies.  
Furthermore, expanding the dataset to include a broader range 
of plant species and illnesses will improve the model's 
performance and adaptability to various agricultural 
circumstances. These advancements have the possibility to 
significantly improve agricultural outcomes by developing 
more robust and adaptable systems for disease detection. The 
concerns regarding the small dataset and the potential for 
overfitting are duly noted. To address these issues, a larger 
dataset could be employed for more comprehensive training 
and testing, thereby providing a more robust performance 
evaluation. Additional experiments could be conducted with 
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varying dataset sizes to assess the impact on accuracy and 
generalization capabilities. Moreover, techniques like cross-
validation could be employed to ensure that the model's 
performance is consistent across different subsets of the data. 
These steps would provide a more thorough analysis of the 
proposed methodology and help ensure that the achieved high 
accuracy is not merely a result of overfitting. 
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