
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

276 | P a g e

www.ijacsa.thesai.org

Performance-Optimised Design of the RISC-V Five-

Stage Pipelined Processor NRP

Hongkui Li
1
, Chaoxia Jing

2
, Jie Liu

3
*

School of Information Engineering, Huzhou University, Huzhou, China
1, 2, 3

Abstract—The five-stage pipeline processor is a mature and

stable processor architecture suitable for many applications in

the field of computer hardware. Based on the RISC-V instruction

set architecture, the five-stage pipeline processor has advantages

in performance, functionality, and power consumption. This

paper presents an optimized RV32I five-stage pipeline processor,

NRP, and proposes two optimization methods to improve the

performance of NRP. These methods include instruction

decoding unit optimization and branch prediction optimization.

We implemented NRP using Verilog HDL and verified its

performance using Vivado and the Xilinx Artya7-35T FPGA

board. Experimental data shows that after adopting these

methods, the CoreMark score of the five-stage pipeline processor

reached 3.11 CoreMark/MHz, representing an 11.07%

performance improvement.

Keywords—Architecture; FPGA; RISC-V; RV32I; Verilog

HDL; five-stage

I. INTRODUCTION

The Instruction Set Architecture (ISA) is the foundation of
computer architecture. Existing ISAs (such as X86, ARM, etc.)
have hindered the advancement and proliferation of technology
through patent protection [1]. In 2010, the University of
California, Berkeley, first released the RISC-V Instruction Set
Architecture [2]. RISC-V is an open and free ISA.

In recent years, research on the RISC-V ISA has become a
major focus. For example, Alibaba's Xuantie-910 [4, 5],
Western Digital's SweRV [3], UC Berkeley's Rocket [6,7], IIT
Madras' SHAKTI project [8], ETH Zurich's Pulpino [9-11], the
open-source processor mriscv [12], and VexRiscv [13].

This paper presents an optimized five-stage pipeline RV32I
scalar processor, NRP (New RISC-V Processor). The main
contributions of this paper are as follows:

 To improve performance, we modified and optimized
the ID and EX stages of the processor, reducing the
negative impact of dependency conflicts on the
processor.

 We implemented these optimizations using Verilog
HDL and evaluated hardware resource utilization and
processor performance. From the evaluation results, we
found that this processor outperforms the classic five-
stage pipeline processor.

II. RELATED WORKS

Dependency conflicts are an important factor affecting the
performance of a five-stage pipeline processor. Dependency
conflicts refer to the data dependency, control dependency, and

structural dependency between instructions, which can lead to
instruction hazards in the pipeline, thereby affecting the
processor's performance.

In study [14], the authors designed and implemented a
Tournament Branch Predictor, which improved the accuracy of
branch prediction and enhanced the processor's efficiency. In
reference [15], the authors combined the instruction fetch stage
with the pre-fetch stage into a two-stage pipeline, resulting in a
17.6% improvement in processor performance. In reference
[16], the authors proposed reducing hazards through the use of
techniques such as data forwarding and branch prediction,
leading to a 7.82% increase in processor performance. In
reference [17], the authors optimized the instruction fetch unit,
ALU, and data memory, increasing the processor's operating
frequency.

The optimization strategies in references [14, 15] resulted
in significant performance improvements but increased the
complexity and hardware resources of the branch predictor.
The optimization strategies in references [16, 17] had lower
hardware overhead but led to smaller improvements in
processor performance. This paper comprehensively compares
these optimization strategies and proposes a new optimization
strategy that achieves performance improvements with
minimal hardware overhead.

III. THE DESIGN AND IMPLEMENTATION OF THE NRP

A. Processor Architectures

The NRP processor adopts a five-stage pipeline design. As
shown in Fig. 1, instructions undergo the following five stages
during execution: Instruction Fetch (IF), Instruction Decode
(ID), Execute (EX), Memory Access (MEM), and Write Back
(WB) [18]. The design of the ID and EX stages in the NRP
processor differs from that of the classic five-stage pipeline
processor. The ID stage of the NRP processor consists of both
the instruction decode unit and the decode execute unit,
whereas the classic five-stage pipeline processor only has the
instruction decode unit. The EX stage of the NRP processor
consists of the execute unit and the branch prediction auxiliary
unit, while the classic five-stage pipeline processor only has the
execute unit.

B. Instruction Execution Process

This paper categorizes all instructions in RV32I into special
instructions and regular instructions. Branch jump instructions
and instructions similar to branch jump instructions in terms of
computational operations are defined as special instructions.
The computational operations of special instructions, originally
executed in the EX stage, are now completed in the ID stage.

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

277 | P a g e

www.ijacsa.thesai.org

Special instructions include ADD, ADDI, SUB, SLT, SLTU,
SLTI, SLTIU, BEQ, BNE, BLT, BGE, BLTU, BGEU, JAL,
JALR, LB, LH, LW, LBU, LHU, LWU, SB, SH, SW. The ID
and EX stages of the NRP processor differ from those of the

classic five-stage pipeline processor, resulting in differences in
the execution process of instructions in the ID and EX stages.
Fig. 2 illustrates the main execution process of instructions in
the ID and EX stages.

Fig. 1. A block diagram of the five-stage pipelined processor NRP.

The ID stage of the NRP processor consists of the
instruction decode unit and the decode execute unit, with each
functional unit's decoder responsible for decoding a portion of
the instructions. In the ID stage, the execution logic of special
instructions involves first decoding the instructions by the
decode execute unit and then completing the computational
operations required by the instruction opcode within this
module. The instruction decode unit is responsible for
decoding regular instructions and forwarding the instruction
decode information and source operands to the next stage. If an
unsolvable data dependency conflict occurs during the
execution of a special instruction in the ID stage, the
instruction is flagged and then resolved through data
forwarding in the EX stage.

The EX stage of the NRP processor consists of the execute
unit and the branch prediction auxiliary unit. The execute unit
performs operations based on the type of instruction, including
regular instructions and flagged special instructions. The
branch prediction auxiliary unit is responsible for handling
unflagged special instructions and generating branch prediction
auxiliary information.

Fig. 2. The execution process of instructions in the ID and EX stages.

IV. THE OPTIMIZATION DESIGN IN NRP

Correlation conflicts are a significant factor affecting the
performance of a five-stage pipelined processor. These
conflicts can lead to pipeline stalls, reducing the processor's
performance. The optimization idea proposed in this paper
aims to minimize the negative impact of correlation conflicts
on processor performance. In this section, we describe the
design and implementation of optimization strategies for the
NRP processor.

A. Optimization Design of the Decoding Stage

The control dependency conflict in a five-stage pipelined
processor refers to the situation where the conditional result of
a branch instruction is not yet determined, potentially allowing
subsequent instructions to enter the pipeline. If the branch
prediction fails, the pipeline needs to be flushed and restarted,
causing a stall and impacting processor performance.

The optimization design in the ID stage of the NRP
processor aims to reduce the pipeline stall time caused by
control dependency conflicts. In a classic RISC-V five-stage
pipelined processor, when a branch prediction fails, a stall of
two clock cycles is required for pipeline flushing. This paper
introduces an additional decode and execute unit in the ID
stage of the NRP processor, reducing the stall to just one clock
cycle in the event of a branch prediction failure.

The optimization design in the ID stage allows branch
instructions to know the branch prediction result and determine
if there will be a control dependency conflict. The execution
process of special instructions in decode and execute unit is
illustrated in Fig. 3. Firstly, the decoder decodes the instruction
to obtain instruction information. Then, based on the
instruction opcode, it generates a 2-bit enable signal to activate
the corresponding arithmetic unit. The arithmetic unit performs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

278 | P a g e

www.ijacsa.thesai.org

operations on the source operands and communicates using
shared data. Finally, the instruction operation result and related
information are passed to the EX stage, and the branch
prediction result is transmitted to the branch predictor. In the
event of a branch prediction failure, the correct PC is passed to
the IF stage, and the pipeline pause signal is transmitted to the
Ctrl module.

Decode and execute unit consists of a special instruction
decoder, an adder, and a comparator. In the implementation
process, we virtually divide the full instruction decoder into a
special instruction decoder and a regular instruction decoder.
When the instruction decoder decodes a special instruction,
decode and execute unit is activated. When the instruction
decoder decodes a regular instruction, the decode and execute
unit does not activate. The primary hardware costs in our
optimization design in the ID stage are the adder and the
comparator.

Fig. 3. Decode and execute unit.

B. Branch Predictor Optimization

The branch predictor used in this paper is based on
SonicBoom's NLP (Next-Line Predictor), consisting of BHT
(Branch History Table), BTB (Branch Target Buffer), and RAS
(Return Address Stack). We have optimized the BHT.

Traditional BHT records the state of each branch
instruction based on its historical execution results. When a
branch instruction is executed for the first time, it defaults to
not taken due to the lack of historical execution results. The
design proposed in this paper allows obtaining the opcode and
the target address of the instruction before its first execution,
causing the branch instruction to default to taken upon its first
execution. JAL and JALR, as direct jump instructions, always
cause a jump upon each execution, which cannot be
accommodated by the traditional BHT design.

The workflow of the BHT designed in this paper is as
follows: When a branch instruction is first recorded in the
BHT, the value of the corresponding two-bit saturating counter
table (2BC) is set to 2. If the branch instruction indeed jumps
during execution and the jump target address is correct, the
value of the two-bit saturating counter table is incremented by
1. If the branch instruction does not jump during execution,
then the value of the two-bit saturating counter table is
decremented by 1. If the value of the two-bit saturating counter
table for the branch instruction is greater than or equal to 2, it is
predicted that the instruction will jump.

The branch prediction auxiliary module is crucial for
implementing the BHT optimization design, as it allows
obtaining the opcode and the target address of the instruction
before its execution. The NRP processor classifies instructions
into regular and special instructions. Special instructions are
decoded and executed in the ID stage, so when a special
instruction reaches the EX stage, an idle clock cycle is
generated. The branch prediction auxiliary module utilizes this
idle clock cycle to perform simple decoding of the instruction
and generate data for updating the branch predictor.

The branch prediction auxiliary module consists of a
branch instruction decoder and an adder, and its specific
workflow is illustrated in Fig. 4. Firstly, the branch instruction
decoder in the branch prediction auxiliary module decodes the
instruction currently in the cache. If the instruction is a branch
instruction, its instruction type and immediate value are
obtained after decoding. Then, the PC value and the immediate
value of the instruction are sent to the ALU for addition to
obtain the jump target address. Finally, the PC value,
instruction type, and jump target address of the instruction are
sent to the branch predictor.

The primary hardware costs in the branch prediction
optimization design are a branch instruction decoder and an
adder, with the branch instruction decoder supporting only the
decoding of branch instructions.

Fig. 4. The branch prediction auxiliary module.

C. Optimization of Dependency Conflict

The Fig. 5 illustrates how a classic five-stage pipelined
processor uses data forwarding, pipeline stalling, and branch
prediction to resolve various dependency conflicts and their
resulting impacts.

In Fig. 5, we can observe the following scenarios. Firstly,
the classic five-stage pipelined processor utilizes data
forwarding to forward data from the EX stage and MEM stage
to the ID stage to resolve non-load instruction-induced data
dependency conflicts, and a combination of pipeline stalling
and data forwarding is used to resolve load instruction-induced
data dependency conflicts. Secondly, the classic five-stage
pipelined processor executes branch instructions in the EX
stage, and in the event of a branch prediction failure, it requires
flushing the pipeline for two clock cycles. Lastly, the
unoptimized branch predictor defaults to not taking a branch on
the first prediction of a branch instruction, so when the
processor executes an immediate jump instruction for the first
time, a branch prediction failure and pipeline flush are
inevitable.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

279 | P a g e

www.ijacsa.thesai.org

Fig. 5. Methods for handling dependency conflicts before optimization.

The Fig. 6 illustrates how the NRP processor uses data
forwarding, pipeline stalling, and branch prediction to resolve
various dependency conflicts and their resulting impacts.

In Fig. 6, we can observe the following scenarios. Firstly,
in the NRP processor, the use of data forwarding is more
extensive, including between ID and EX, ID and MEM, and

EX and MEM. Secondly, the NRP processor executes branch
instructions in the ID stage to obtain the branch prediction
result, so in the event of a branch prediction failure, it requires
flushing the pipeline for one clock cycle. Lastly, the NRP
processor employs an optimized branch predictor, so when
executing an immediate jump instruction for the first time, it
correctly takes the jump, avoiding pipeline flushing.

Fig. 6. Methods for handling dependency conflicts after optimization.

V. EXPERIMENT AND ANALYSIS

A. Functional Test

The COMPLIANCE TEST officially released by RISC-V
can test whether the design of a RISC-V core complies with the

RISC-V standard [19]. In this paper, joint simulation tests were
conducted using Vivado and modsim, and the test results
indicate that the NRP complies with the standard of RISC-V
core design. Fig. 7 and Fig. 8 show the simulation test results
for the ADD instruction and the JAL instruction, respectively.

Fig. 7. Validation of add instructions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

280 | P a g e

www.ijacsa.thesai.org

Fig. 8. Validation of JAL instructions.

B. Performance Test

CoreMark is a straightforward yet sophisticated benchmark
designed specifically to evaluate the performance of a
processor core. In this paper, the CoreMark program and the
NRP processor core were ported to Xilinx's ARTYA7-35T
development board using Vivado, and the clock function and
serial print function were rewritten. The main frequency of the
NRP processor core was set to 50MHz for testing, and the
results were transmitted to a PC for display via a serial tool.
Fig. 9 presents the serial print results, showing that the NRP
processor achieved a final CoreMark score of 3.11
CoreMark/MHz.

Fig. 9. CoreMark scores [20].

C. Experimental Analysis

We implemented various versions of the NRP processor in
Verilog HDL and evaluated their performance on Xilinx's
ARTYA7-35T development board. Based on the optimization
level of the NRP processor, we categorized it into three
versions. The version without any optimization design is
defined as NRP-Original, the version with optimization design
only in the decode stage is defined as NRP-OptID, and the
version with simultaneous optimization design in the decode
stage and branch predictor is defined as NRP-Final.

Fig. 10 displays the CoreMark scores for each version of
the NRP processor. After optimizing the design of the ID stage
and the branch predictor, the performance of the NRP
processor improved by 11.07%.

Fig. 10. Performance test results of different versions of NRP.

Fig. 11 presents the CoreMark test results for other open-
source processors, showing that the performance of the NRP
processor is significantly better than that of other processors
[21]-[27].

Fig. 11. Performance comparison of different open-source processors.

VI. CONCLUSION

We have proposed a five-stage pipelined processor based
on RISC-V architecture. In this processor, we have employed
instruction decoding unit optimization and branch prediction
optimization as effective methods to improve operating
frequency. We implemented the proposed processor in Verilog
using Vivado and conducted tests and evaluations on the
processor's performance and hardware resource consumption.
The CoreMark test results for the NRP processor after adopting
optimization strategies show a score of 3.11 CoreMark/MHz,
representing an 11.07% improvement over the non-optimized
design.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

281 | P a g e

www.ijacsa.thesai.org

This research improves the performance of the five-stage
pipeline processor based on RISC-V, which can improve the
application range of the five-stage pipeline processor and
promote the development of the community ecology of RISC-
V instruction set architecture. In the future work, we will
extend the design of this paper to the five-stage pipeline design
of out-of-order execution, and reduce the impact of correlation
conflicts on processor performance in out-of-order execution.

REFERENCES

[1] Liu, C, et al. “A Review of Research on RISC-V Instruction Set
Architecture. ” Journal of Software, vol. 32,no.12,pp.3992-
4024,2021,10.13328/j.cnki.jos.006490.

[2] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanović,
“The RISC-V instruction set manual volume II: Privileged architecture
version 1.9.1,” EECS Department, University of California, Berkeley,
UCB/EECS-2016-
161,2016.[Online].Available:http://www2.eecs.berkeley.edu/Pubs/Tech
Rpts/2016/EECS-2016-161.html Accessed on: Mar. 20, 2023

[3] T. Marena, “RISC-V: high performance embedded SweRVTM core
microarchitecture, performance and CHIPS Alliance, ” 2019.
[Online].Available: https://riscv.org/wp-content/uploads/2019/04/RISC-
V_SweRV_Roadshow-.pdf

[4] C. Chen et al., "Xuantie-910: A Commercial Multi-Core 12-Stage
Pipeline Out-of-Order 64-bit High Performance RISC-V Processor with
Vector Extension : Industrial Product," 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), Valencia,
Spain, 2020, pp. 52-64, doi : 10.1109/ISCA45697.2020.00016.

[5] Z. Zhou et al., "Cache Design Effect on Microarchitecture Security: A
Contrast between Xuantie-910 and BOOM," 2022 IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), Wuhan, China, 2022, pp. 1199-1204, doi:
10.1109/TrustCom56396.2022.00166.

[6] B. Zimmer et al., "A RISC-V Vector Processor With Simultaneous-
Switching Switched-Capacitor DC–DC Converters in 28 nm FDSOI," in
IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 930-942, April
2016, doi: 10.1109/JSSC.2016.2519386.

[7] Y. Lee et al., "A 45nm 1.3GHz 16.7 double-precision GFLOPS/WRISC-
V processor with vector accelerators," ESSCIRC 2014 - 40th European
Solid State Circuits Conference (ESSCIRC), Venice Lido, Italy, 2014,
pp. 199-202, doi: 10.1109/ ESSCIRC.2014.6942056.

[8] N. Gala, A. Menon, R. Bodduna, G. S. Madhusudan and V. Kamakoti,
"SHAKTI Processors: An Open-Source Hardware Initiative," 2016 29th
International Conference on VLSI Design and 2016 15th International
Conference on Embedded Systems (VLSID), Kolkata, India, 2016, pp.
7-8, doi: 10.1109/VLSID.2016.130.

[9] M. Gautschi, M. Schaffner, F. K. Gürkaynak and L. Benini, "An
Extended Shared Logarithmic Unit for Nonlinear Function Kernel
Acceleration in a 65-nm CMOS Multicore Cluster," in IEEE Journal of
Solid-State Circuits, vol. 52, no. 1, pp. 98-112, Jan.
2017.[Online].Available : http://ieeexplore.ieee.org/document/7756672/

[10] F. Conti et al., “An IoT endpoint system-on-chip for secure andenergy-
efficient near-sensor analytics, ” IEEE Trans. Circuits Syst. I,
Reg.Papers, vol. 64, no. 9, pp. 2481 – 2494, Sep. 2017. [Online].
Available: http://ieeexplore.ieee.org/document/7927716/

[11] M. Gautschi et al., “Near-threshold RISC-V core with DSP extensions
for scalable IoT endpoint devices, ” IEEE Trans. Very Large

ScaleIntegr. (VLSI) Syst., vol. 25, no. 10, pp. 2700–2713, Oct. 2017.
[Online].Available: http://ieeexplore.ieee.org/document/7864441/

[12] Available, “MRISCV,” GitHub, Mar. 23, 2023. [Online].Available
:https://github.com/onchipuis/mriscv Accessed on: Mar. 20, 2023

[13] VEXRISCV. [Online]. Available: https://github.com/SpinalHDL/
VexRiscv

[14] A. Choudhury, S. V. Siddamal and J. Mallidue, "An optimized RISC-V
processor with five stage pipelining using Tournament Branch Predictor
for efficient performance," 2022 International Conference on Distributed
Computing, VLSI, Electrical Circuits and Robotics (DISCOVER),
Shivamogga, India, 2022, pp. 57-60, doi: 10.1109/DISCOVER55800.
2022.9974891.

[15] A. Tiwari, P. Guha, G. Trivedi, N. Gupta, N. Jayaraj and J. Pidanic,
"IndiRA: Design and Implementation of a Pipelined RISC-V Processor,"
2023 33rd International Conference Radioelektronika
(RADIOELEKTRONIKA), Pardubice, Czech Republic, 2023, pp. 1-6,
doi: 10.1109/RADIOELEKTRONIKA57919.2023.10109058.

[16] I. Thanga Dharsni, K. S. Pande and M. K. Panda, "Optimized Hazard
Free Pipelined Architecture Block for RV32I RISC-V Processor," 2022
3rd International Conference on Smart Electronics and Communication
(ICOSEC), Trichy, India, 2022, pp. 739-746, doi:
10.1109/ICOSEC54921.2022.9952122.

[17] Hiromu Miyazaki, Takuto Kanamori, Ashraful Islam and Kenji. Kise,
"RVCoreP: An optimized RISC-V soft processor of five-stage
pipelining", Special Section on Parallel Distributed and Reconfigurable
Computing and Networking, 2020.

[18] S. S. Khairullah, "Realization of a 16-bit MIPS RISC pipeline
processor," 2022 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA), Ankara,
Turkey, 2022, pp. 1-6, doi: 10.1109/HORA55278.2022.9799944.

[19] LowRISC, “ RISC-V Compliance Task Group, ” GitHub.
https://github.com/lowRISC/riscv-compliance, Accessed on: May 30,
2023.

[20] Coremark Scores,[Online].Available:https://www.eem bc.org/coremark/
scores.php,Accessed on: Mar. 25, 2023

[21] Nuclei System Technology, “Hummingbirdv2 E203 Core and SoC,”
GitHub, [Online]. Available:https://github. com/riscv-mcu/e203_
hbirdv2,Accessed on: Mar. 25, 2023

[22] lowRISC, “ Ibex RISC-V Core, ” GitHub, [Online]. Available:
https://github.com/lowRISC/ibex, Accessed on: Mar. 25, 2023.

[23] N. Dao, A. Attwood, B. Healy and D. Koch, "FlexBex: A RISC-V with
a Reconfigurable Instruction Extension," 2020 International Conference
on Field-Programmable Technology (ICFPT), Maui, HI, USA, 2020, pp.
190-195, doi: 10.1109/ICFPT51103.2020.00034.

[24] liangkangnan, “tinyriscv,” GitHub, [Online]. Available:https://github.
com/liangkangnan/tinyriscv, Accessed on: Mar. 25, 2023.

[25] M. Gautschi et al., “Tailoring instruction-set extensions for an ultra-
low power tightly-coupled cluster of OpenRISCcores, ” in Proc.
IFIP/IEEE Int. Conf. Very Large Scale Integr. (VLSI-SoC), Oct. 2015,
pp. 25–30.

[26] T-Head_Communications, “ XuanTieE902, ” GitHub, [Online].
Available:https://github.com/T-head-semi /opene 902, Accessed on:
Mar. 25, 2023

[27] M. Gautschi et al., “Near-threshold RISC-V core with DSP extensions
for scalable IoT endpoint devices, ” IEEE Trans. Very Large
ScaleIntegr. (VLSI) Syst., vol. 25, no. 10, pp.2700 – 2713,Oct.
2017.[Online]. Available:http://ieeexplore.ieee.org/document/7864441/.

https://riscv.org/wp-content/
http://ieeexplore.ieee.org/document/7756672/
http://ieeexplore.ieee.org/document/7927716/
http://ieeexplore.ieee.org/document/7864441/
https://github.com/lowRISC/riscv-compliance
https://github.com/lowRISC/ibex
http://ieeexplore.ieee.org/document/7864441/

