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Abstract—The five-stage pipeline processor is a mature and 

stable processor architecture suitable for many applications in 

the field of computer hardware. Based on the RISC-V instruction 

set architecture, the five-stage pipeline processor has advantages 

in performance, functionality, and power consumption. This 

paper presents an optimized RV32I five-stage pipeline processor, 

NRP, and proposes two optimization methods to improve the 

performance of NRP. These methods include instruction 

decoding unit optimization and branch prediction optimization. 

We implemented NRP using Verilog HDL and verified its 

performance using Vivado and the Xilinx Artya7-35T FPGA 

board. Experimental data shows that after adopting these 

methods, the CoreMark score of the five-stage pipeline processor 

reached 3.11 CoreMark/MHz, representing an 11.07% 

performance improvement. 
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I. INTRODUCTION  

The Instruction Set Architecture (ISA) is the foundation of 
computer architecture. Existing ISAs (such as X86, ARM, etc.) 
have hindered the advancement and proliferation of technology 
through patent protection [1]. In 2010, the University of 
California, Berkeley, first released the RISC-V Instruction Set 
Architecture [2]. RISC-V is an open and free ISA. 

In recent years, research on the RISC-V ISA has become a 
major focus. For example, Alibaba's Xuantie-910 [4, 5], 
Western Digital's SweRV [3], UC Berkeley's Rocket [6,7], IIT 
Madras' SHAKTI project [8], ETH Zurich's Pulpino [9-11], the 
open-source processor mriscv [12], and VexRiscv [13]. 

This paper presents an optimized five-stage pipeline RV32I 
scalar processor, NRP (New RISC-V Processor). The main 
contributions of this paper are as follows:  

 To improve performance, we modified and optimized 
the ID and EX stages of the processor, reducing the 
negative impact of dependency conflicts on the 
processor.  

 We implemented these optimizations using Verilog 
HDL and evaluated hardware resource utilization and 
processor performance. From the evaluation results, we 
found that this processor outperforms the classic five-
stage pipeline processor. 

II. RELATED WORKS 

Dependency conflicts are an important factor affecting the 
performance of a five-stage pipeline processor. Dependency 
conflicts refer to the data dependency, control dependency, and 

structural dependency between instructions, which can lead to 
instruction hazards in the pipeline, thereby affecting the 
processor's performance. 

In study [14], the authors designed and implemented a 
Tournament Branch Predictor, which improved the accuracy of 
branch prediction and enhanced the processor's efficiency. In 
reference [15], the authors combined the instruction fetch stage 
with the pre-fetch stage into a two-stage pipeline, resulting in a 
17.6% improvement in processor performance. In reference 
[16], the authors proposed reducing hazards through the use of 
techniques such as data forwarding and branch prediction, 
leading to a 7.82% increase in processor performance. In 
reference [17], the authors optimized the instruction fetch unit, 
ALU, and data memory, increasing the processor's operating 
frequency. 

The optimization strategies in references [14, 15] resulted 
in significant performance improvements but increased the 
complexity and hardware resources of the branch predictor. 
The optimization strategies in references [16, 17] had lower 
hardware overhead but led to smaller improvements in 
processor performance. This paper comprehensively compares 
these optimization strategies and proposes a new optimization 
strategy that achieves performance improvements with 
minimal hardware overhead. 

III. THE DESIGN AND IMPLEMENTATION OF THE NRP 

A. Processor Architectures 

The NRP processor adopts a five-stage pipeline design. As 
shown in Fig. 1, instructions undergo the following five stages 
during execution: Instruction Fetch (IF), Instruction Decode 
(ID), Execute (EX), Memory Access (MEM), and Write Back 
(WB) [18]. The design of the ID and EX stages in the NRP 
processor differs from that of the classic five-stage pipeline 
processor. The ID stage of the NRP processor consists of both 
the instruction decode unit and the decode execute unit, 
whereas the classic five-stage pipeline processor only has the 
instruction decode unit. The EX stage of the NRP processor 
consists of the execute unit and the branch prediction auxiliary 
unit, while the classic five-stage pipeline processor only has the 
execute unit. 

B. Instruction Execution Process 

This paper categorizes all instructions in RV32I into special 
instructions and regular instructions. Branch jump instructions 
and instructions similar to branch jump instructions in terms of 
computational operations are defined as special instructions. 
The computational operations of special instructions, originally 
executed in the EX stage, are now completed in the ID stage. 
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Special instructions include ADD, ADDI, SUB, SLT, SLTU, 
SLTI, SLTIU, BEQ, BNE, BLT, BGE, BLTU, BGEU, JAL, 
JALR, LB, LH, LW, LBU, LHU, LWU, SB, SH, SW. The ID 
and EX stages of the NRP processor differ from those of the 

classic five-stage pipeline processor, resulting in differences in 
the execution process of instructions in the ID and EX stages. 
Fig. 2 illustrates the main execution process of instructions in 
the ID and EX stages. 

 

Fig. 1. A block diagram of the five-stage pipelined processor NRP.

The ID stage of the NRP processor consists of the 
instruction decode unit and the decode execute unit, with each 
functional unit's decoder responsible for decoding a portion of 
the instructions. In the ID stage, the execution logic of special 
instructions involves first decoding the instructions by the 
decode execute unit and then completing the computational 
operations required by the instruction opcode within this 
module. The instruction decode unit is responsible for 
decoding regular instructions and forwarding the instruction 
decode information and source operands to the next stage. If an 
unsolvable data dependency conflict occurs during the 
execution of a special instruction in the ID stage, the 
instruction is flagged and then resolved through data 
forwarding in the EX stage. 

The EX stage of the NRP processor consists of the execute 
unit and the branch prediction auxiliary unit. The execute unit 
performs operations based on the type of instruction, including 
regular instructions and flagged special instructions. The 
branch prediction auxiliary unit is responsible for handling 
unflagged special instructions and generating branch prediction 
auxiliary information. 

 

Fig. 2. The execution process of instructions in the ID and EX stages. 

IV. THE OPTIMIZATION DESIGN IN NRP 

Correlation conflicts are a significant factor affecting the 
performance of a five-stage pipelined processor. These 
conflicts can lead to pipeline stalls, reducing the processor's 
performance. The optimization idea proposed in this paper 
aims to minimize the negative impact of correlation conflicts 
on processor performance. In this section, we describe the 
design and implementation of optimization strategies for the 
NRP processor. 

A. Optimization Design of the Decoding Stage 

The control dependency conflict in a five-stage pipelined 
processor refers to the situation where the conditional result of 
a branch instruction is not yet determined, potentially allowing 
subsequent instructions to enter the pipeline. If the branch 
prediction fails, the pipeline needs to be flushed and restarted, 
causing a stall and impacting processor performance. 

The optimization design in the ID stage of the NRP 
processor aims to reduce the pipeline stall time caused by 
control dependency conflicts. In a classic RISC-V five-stage 
pipelined processor, when a branch prediction fails, a stall of 
two clock cycles is required for pipeline flushing. This paper 
introduces an additional decode and execute unit in the ID 
stage of the NRP processor, reducing the stall to just one clock 
cycle in the event of a branch prediction failure. 

The optimization design in the ID stage allows branch 
instructions to know the branch prediction result and determine 
if there will be a control dependency conflict. The execution 
process of special instructions in decode and execute unit is 
illustrated in Fig. 3. Firstly, the decoder decodes the instruction 
to obtain instruction information. Then, based on the 
instruction opcode, it generates a 2-bit enable signal to activate 
the corresponding arithmetic unit. The arithmetic unit performs 
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operations on the source operands and communicates using 
shared data. Finally, the instruction operation result and related 
information are passed to the EX stage, and the branch 
prediction result is transmitted to the branch predictor. In the 
event of a branch prediction failure, the correct PC is passed to 
the IF stage, and the pipeline pause signal is transmitted to the 
Ctrl module. 

Decode and execute unit consists of a special instruction 
decoder, an adder, and a comparator. In the implementation 
process, we virtually divide the full instruction decoder into a 
special instruction decoder and a regular instruction decoder. 
When the instruction decoder decodes a special instruction, 
decode and execute unit is activated. When the instruction 
decoder decodes a regular instruction, the decode and execute 
unit does not activate. The primary hardware costs in our 
optimization design in the ID stage are the adder and the 
comparator. 

 

Fig. 3. Decode and execute unit. 

B. Branch Predictor Optimization 

The branch predictor used in this paper is based on 
SonicBoom's NLP (Next-Line Predictor), consisting of BHT 
(Branch History Table), BTB (Branch Target Buffer), and RAS 
(Return Address Stack). We have optimized the BHT. 

Traditional BHT records the state of each branch 
instruction based on its historical execution results. When a 
branch instruction is executed for the first time, it defaults to 
not taken due to the lack of historical execution results. The 
design proposed in this paper allows obtaining the opcode and 
the target address of the instruction before its first execution, 
causing the branch instruction to default to taken upon its first 
execution. JAL and JALR, as direct jump instructions, always 
cause a jump upon each execution, which cannot be 
accommodated by the traditional BHT design. 

The workflow of the BHT designed in this paper is as 
follows: When a branch instruction is first recorded in the 
BHT, the value of the corresponding two-bit saturating counter 
table (2BC) is set to 2. If the branch instruction indeed jumps 
during execution and the jump target address is correct, the 
value of the two-bit saturating counter table is incremented by 
1. If the branch instruction does not jump during execution, 
then the value of the two-bit saturating counter table is 
decremented by 1. If the value of the two-bit saturating counter 
table for the branch instruction is greater than or equal to 2, it is 
predicted that the instruction will jump. 

The branch prediction auxiliary module is crucial for 
implementing the BHT optimization design, as it allows 
obtaining the opcode and the target address of the instruction 
before its execution. The NRP processor classifies instructions 
into regular and special instructions. Special instructions are 
decoded and executed in the ID stage, so when a special 
instruction reaches the EX stage, an idle clock cycle is 
generated. The branch prediction auxiliary module utilizes this 
idle clock cycle to perform simple decoding of the instruction 
and generate data for updating the branch predictor. 

The branch prediction auxiliary module consists of a 
branch instruction decoder and an adder, and its specific 
workflow is illustrated in Fig. 4. Firstly, the branch instruction 
decoder in the branch prediction auxiliary module decodes the 
instruction currently in the cache. If the instruction is a branch 
instruction, its instruction type and immediate value are 
obtained after decoding. Then, the PC value and the immediate 
value of the instruction are sent to the ALU for addition to 
obtain the jump target address. Finally, the PC value, 
instruction type, and jump target address of the instruction are 
sent to the branch predictor. 

The primary hardware costs in the branch prediction 
optimization design are a branch instruction decoder and an 
adder, with the branch instruction decoder supporting only the 
decoding of branch instructions. 

 

Fig. 4. The branch prediction auxiliary module. 

C. Optimization of Dependency Conflict 

The Fig. 5 illustrates how a classic five-stage pipelined 
processor uses data forwarding, pipeline stalling, and branch 
prediction to resolve various dependency conflicts and their 
resulting impacts. 

In Fig. 5, we can observe the following scenarios. Firstly, 
the classic five-stage pipelined processor utilizes data 
forwarding to forward data from the EX stage and MEM stage 
to the ID stage to resolve non-load instruction-induced data 
dependency conflicts, and a combination of pipeline stalling 
and data forwarding is used to resolve load instruction-induced 
data dependency conflicts. Secondly, the classic five-stage 
pipelined processor executes branch instructions in the EX 
stage, and in the event of a branch prediction failure, it requires 
flushing the pipeline for two clock cycles. Lastly, the 
unoptimized branch predictor defaults to not taking a branch on 
the first prediction of a branch instruction, so when the 
processor executes an immediate jump instruction for the first 
time, a branch prediction failure and pipeline flush are 
inevitable. 
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Fig. 5. Methods for handling dependency conflicts before optimization. 

The Fig. 6 illustrates how the NRP processor uses data 
forwarding, pipeline stalling, and branch prediction to resolve 
various dependency conflicts and their resulting impacts. 

In Fig. 6, we can observe the following scenarios. Firstly, 
in the NRP processor, the use of data forwarding is more 
extensive, including between ID and EX, ID and MEM, and 

EX and MEM. Secondly, the NRP processor executes branch 
instructions in the ID stage to obtain the branch prediction 
result, so in the event of a branch prediction failure, it requires 
flushing the pipeline for one clock cycle. Lastly, the NRP 
processor employs an optimized branch predictor, so when 
executing an immediate jump instruction for the first time, it 
correctly takes the jump, avoiding pipeline flushing. 

 

Fig. 6. Methods for handling dependency conflicts after optimization. 

V. EXPERIMENT AND ANALYSIS 

A. Functional Test 

The COMPLIANCE TEST officially released by RISC-V 
can test whether the design of a RISC-V core complies with the 

RISC-V standard [19]. In this paper, joint simulation tests were 
conducted using Vivado and modsim, and the test results 
indicate that the NRP complies with the standard of RISC-V 
core design. Fig. 7 and Fig. 8 show the simulation test results 
for the ADD instruction and the JAL instruction, respectively. 

 

Fig. 7. Validation of add instructions. 
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Fig. 8. Validation of JAL instructions.

B. Performance Test 

CoreMark is a straightforward yet sophisticated benchmark 
designed specifically to evaluate the performance of a 
processor core. In this paper, the CoreMark program and the 
NRP processor core were ported to Xilinx's ARTYA7-35T 
development board using Vivado, and the clock function and 
serial print function were rewritten. The main frequency of the 
NRP processor core was set to 50MHz for testing, and the 
results were transmitted to a PC for display via a serial tool. 
Fig. 9 presents the serial print results, showing that the NRP 
processor achieved a final CoreMark score of 3.11 
CoreMark/MHz. 

 

Fig. 9. CoreMark scores [20]. 

C. Experimental Analysis 

We implemented various versions of the NRP processor in 
Verilog HDL and evaluated their performance on Xilinx's 
ARTYA7-35T development board. Based on the optimization 
level of the NRP processor, we categorized it into three 
versions. The version without any optimization design is 
defined as NRP-Original, the version with optimization design 
only in the decode stage is defined as NRP-OptID, and the 
version with simultaneous optimization design in the decode 
stage and branch predictor is defined as NRP-Final. 

Fig. 10 displays the CoreMark scores for each version of 
the NRP processor. After optimizing the design of the ID stage 
and the branch predictor, the performance of the NRP 
processor improved by 11.07%. 

 
Fig. 10. Performance test results of different versions of NRP. 

Fig. 11 presents the CoreMark test results for other open-
source processors, showing that the performance of the NRP 
processor is significantly better than that of other processors 
[21]-[27]. 

 

Fig. 11. Performance comparison of different open-source processors. 

VI. CONCLUSION 

We have proposed a five-stage pipelined processor based 
on RISC-V architecture. In this processor, we have employed 
instruction decoding unit optimization and branch prediction 
optimization as effective methods to improve operating 
frequency. We implemented the proposed processor in Verilog 
using Vivado and conducted tests and evaluations on the 
processor's performance and hardware resource consumption. 
The CoreMark test results for the NRP processor after adopting 
optimization strategies show a score of 3.11 CoreMark/MHz, 
representing an 11.07% improvement over the non-optimized 
design. 
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This research improves the performance of the five-stage 
pipeline processor based on RISC-V, which can improve the 
application range of the five-stage pipeline processor and 
promote the development of the community ecology of RISC-
V instruction set architecture. In the future work, we will 
extend the design of this paper to the five-stage pipeline design 
of out-of-order execution, and reduce the impact of correlation 
conflicts on processor performance in out-of-order execution. 
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