
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

359 | P a g e

www.ijacsa.thesai.org

A New Weighted Ensemble Model to Improve the

Performance of Software Project Failure Prediction

Mohammad A. Ibraigheeth
1
, Aws I. Abu Eid

2*
, Yazan A. Alsariera

3
, Waleed F. Awwad

4
, Majid Nawaz

5

Department of Software Engineering, Bethlehem University, Bethlehem, Palestine
1

Faculty of Computing Studies, Arab Open University, Amman, Jordan
2

Department of Computer Science-College of Information and Communications Technology,

Tafila Technical University, Tafila, Jordan
3

Department of Computer Science-Collage of Science, Northern Border University, Arar, Saudi Arabia
4, 5

Abstract—The development of a software project is

frequently influenced by various risk factors that can lead to

project failure. Predicting potential software project failures

early can aid organizations in making decisions regarding

possible solutions and improvements. This paper proposes a

software project failure prediction model based on a weighted

ensemble learning approach. The proposed model aims to

determine the failure probability as well as the expected project

outcome (Success/Failure). Various ensemble approaches, such as

simple majority voting, can be employed in predicting software

project failure. However, in majority voting algorithms, all base

models have the same weights, resulting in an equal effect on the

final prediction result, regardless of their predictive abilities. Our

proposed algorithm assigns higher weights to base models that

demonstrate a greater ability to correctly predict more

challenging data instances. The proposed model is developed

based on a dataset gathered from real previous software project

reports, comprising both successful and failed projects, to

provide evidence supporting the predictive model's capabilities

and to obtain high-confidence results. The performance of the

developed model is comprehensively assessed through various

measures, revealing its superiority in predicting software project

failures compared to both simple majority voting and individual

models. This research suggests that the proposed model can be

integrated into the software system development process,

spanning requirement analysis, planning, design, and

implementation phases, to evaluate the project's status and

identify potential risks.

Keywords—Ensemble learning; failure prediction; base

models; project outcome

I. INTRODUCTION

Assessing the probable software project failure early during
development process can mitigate the effect of the undesirable
events that could lead to project failure [10]. The paper aims to
develop new weighted ensemble predictive model which use
historical failure data gathered from several past software
projects to accurately predicting possible failures in future
software projects. The developed model can be used early in
the system software engineering process at inception and
planning phase when decisions are being made to specify the
projects to be embarked upon in the project portfolio.
Furthermore, this model can be used during any phase of
software development process to avoid project failure and
improve reliability.

Ensemble learning is selected because it has been observed
that this method achieves better results in terms of diversity
and accuracy [1]. Using ensemble methods improve prediction
results by combining abilities of different single predictors into
one prediction model [7]. As these single predictors differ in
the approach used, parameters, and dealing with training data,
combining prediction abilities of these predictors enable the
ensemble algorithms to capture different characteristics of the
training data and produce more reliable and accurate prediction
[7].

Ensemble learning is a machine learning technique where
multiple base models are combined to produce one optimal
model ([3]; [4]). The ensemble model constructs a set of base
models on training data and then combines them or selects the
best one to use [11]. The objective of this technique is to
improve the model predictive accuracy over traditional single
component models [18]. In many cases, the ensemble
predictors show higher performance than other individual
prediction models [1], [7]. According to [7], there are three
reasons why this technique can improve the prediction
accuracy:

1) The single component models learn from training data

to perform prediction of the new examples. However, it can be

hard to perform accurate prediction when the amount of

training data is small. This problem can be solved by

constructing a set of base models (combined to one ensemble

model) and find the optimal prediction result.

2) Several prediction techniques use local search

approaches such as gradient decent to find the optimal class.

Even if the available training data is enough, these searches

can stick to a local optimum. Since finding the global

optimum can be computationally expensive, ensemble

classifiers perform multiple local searches started at different

data points to find the optimal class.

3) In such situations, it can be hard to find the optimal

solution in the search space of the single classifiers. A

combination of multiple classifiers could approximate the

optimal solutions than the separated single classifiers. An

example of a two-class classification problem is shown in

Fig.1. In this example, none of the three classifiers A, B, and

C can separate the two classes (+ and −) perfectly. The

ensemble classifier as illustrated by a bold line in Fig. 1, that

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

360 | P a g e

www.ijacsa.thesai.org

combines the three single classifiers is capable of classifying

the two classes accurately.

Fig. 1. Example of the three classifiers.

Although these reasons show that the ensemble classifiers
could perform better than single classifiers, ensemble learning
needs enough diversity to obtain accurate results [13]. This
means that the classifiers should produce different errors in
order to be able to learn from each other. When the classifiers
make nearly the same errors, they will behave like a single
classifier.

In this paper, a new weighted ensemble prediction model is
proposed to predict the software project failure. This model
combines ensemble-learning prediction with the predictor
selection approach. The proposed algorithm incorporates six
base models, namely, neural networks (NNs), logistic
regression (LR), support vector machine (SVM), naïve Bayes
(NB), adaptive neurofuzzy inference system (ANFIS), and
decision trees (DT). These methods are selected because they
show adequate prediction performance according to the study
conducted by Ibraigheeth and Eid [9]. We suggest that the
different prediction abilities of these six methods enable the
proposed algorithm to capture different characteristics of the
training data and produce more reliable and accurate
prediction.

The proposed algorithm assigns a unique “ranking number”
to each base model according to its ability to predict the most
difficult-to-predict data. A higher performance model on the
difficult-to-predict data will be assigned higher ranking
numbers. A normalize weighted vector is constructed based on
these ranking numbers, and the final probability of failure
result is obtained based on the weight assigned for each base
model.

In the proposed method, when the base models are
constructed, a unique “ranking number” is assigned to each one
according to its performance result over the data subset with
lower average performance result, which was the most difficult
subset to predict. The algorithm constructs a performance
vector for each base model over all data subsets. In addition,
the approach constructs a vector that represents the average
performance results over each data subset for all base models.
Furthermore, a ranking vector for base models is constructed as
well as a normalized weight vector, which represents the
weights of the base models.

II. RELATED WORKS

Over the past years, many ensemble approaches have been
proposed. According to [5], ensemble methods can be
categorized into two types: homogeneous and heterogeneous
ensembles. In the homogeneous ensemble, the same learning
algorithm using different training subsets trains a set of
individual models. The final decision is taken by combining
the outputs of these models. Examples of such ensemble
methods in the literature include bagging [15], AdaBoost [37],
and Random Forest [16]. In the heterogeneous ensemble,
different learning algorithms using the same training set
generate different models. The heterogeneous ensemble
learning emphasizes more on meta-data combination
techniques ([17]; [26-30]) to achieve a higher performance
than an individual model. Wang and Zhong [33] applied the
information granularity approach to develop an ensemble
system combining multiple classifiers. First, the weighted
distances between granularity prototypes and the base
classifiers outputs are observed. Then, the shortest distance
prototype is selected to predict the class label. Wu [35]
proposed a new weighted ensemble method that considers the
performance information for the base models in previous
literature to obtain their optimal weights. Blaser and
Fryzlewicz [22] developed a new ensemble system that
generates the base models after generating matrices to rotate
the features space. Moreover, different learning methods were
applied for many ensemble systems, such as supervised
learning [39], incremental learning ([2], [14], [36]) and
multilabel classifiers ([12], [21]). Several researches focused
on enhancing the performance of the existing ensemble
approaches. Several methods were applied for this purpose,
e.g., clustering approach [24], dynamic classifiers selection
[23], and hybrid methods used in a random subspace to assign
weights for the base classifiers [40]. Hybrid ensemble, which
combines sample and feature space-based learning was
proposed in [38]. Several techniques have been proposed to
enhance AdaBoost performance, for example, by applying
linear programming to maximize the margin between different
classes and training instances [20].

Even though there are many researches concentrate on
addressing software project failures [8], [31], [32], [41], most
of these researches don’t perform project failure prediction.
Ewusi-Mensah [8] was aimed to identify the impact of
different failure factors on the SDLC stages. The empirically
based study defines the reasons behind these factors and how
they can prevented. Takagi et al. [31] performed a
questionnaire based approach in order to determine core risk
factors. A logistic regression model is used to characterize the
confused projects, and to predict if the software project is risky
or not risky. However, the developed model does not predict
failures. Verner et al. [32] investigated number of failed
projects to determine the factors behind project failing. This
research aimed only to identify failure factors, and it did not
predict the project failures. Rayes et al. [25] also propose an
effective project resources allocation to maximize the
probability of the project success. The authors suggest a
strategy for effective resources allocation to get high success
rate with minimum cost. The developed model was to identify
and control the risks that affect the project success. However,
the failure prediction is not observed also in this research.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

361 | P a g e

www.ijacsa.thesai.org

Wang et al. [34] developed a predictive model based on
Bayesian Network in order to predict the software projects
outcome through prediction and controlling the variance in
estimated project schedule. This research aimed to maximize
the opportunity to complete the project on time through project
re-planning, resource re-allocation, and schedule variance
factors identification. Therefore, no software failure prediction
is performed in this research. Lehtinen et al. [19] performed
analysis in corporation with four software organizations to
recognize the reasons behind failures and the relations among
them. Their research developed diagrams that describe causal
relationships among failure causes, and they recommended
performing specific analysis for each cause, and managing
these causes outside the development area to prevent the
software project failure. However, a limitation of this research
is the limited number of failure analyzed cases.

Most of previously developed methods were applied on
certain case studies. Consequently, those methods might not be
applicable for other software projects. Furthermore, many of
these methods were implemented to assess the failure through
specific phase of software development process. In this
context, one of main contributions of our research is
developing a new prediction model that can be applied on any
software project during any phase of software development
process.

III. METHODOLOGY

In the initial phase of this study, careful consideration is
given to the selection of model inputs, also known as
predictors, and the acquisition of a suitable dataset. This
process involves identifying key factors that may influence the
outcome of software projects, such as project size, complexity,
development methodologies, and team composition.
Subsequently, the dataset is divided into two distinct sets: the
training set and the testing set. The training data serves as the
foundation for model development, where algorithms are
trained and fine-tuned to learn patterns and relationships within
the data. Meanwhile, the testing data is reserved for evaluating
the performance of the trained models, providing an
independent measure of their predictive accuracy and
generalization capabilities. Upon successful development and
validation, the deployed model becomes a valuable asset in the
software project development lifecycle. By leveraging
historical project data and learned patterns, the model can
effectively forecast the future outcomes of ongoing or
upcoming projects. This predictive capability empowers
project stakeholders with valuable insights, enabling informed
decision-making and proactive risk management throughout
the software development process.

For building the model, the list of failure factors identified
by Ibraigheeth and Fadzli [10] is selected to be the model
input. This list of identified factors is presented in Table I. The
dataset constructed in their research is also selected to fit and
verify the developed models. This dataset was gathered from
236 (n = 236) failed and successful software projects and used
in our research to fit and verify the developed models.

TABLE I. LIST OF FAILURE FACTORS

ID Failure Factor

X1 Unrealistic project objectives

X2 Team technical problems

X3 Lack of users involvement

X4 Requirements instability

X5 Problematic technology

X6 Problems in project management

X1 Unrealistic project objectives

Table II presents the sample of collected data, which
identifies the six failure factors results in 10 software projects.
This table illustrates the actual projects outcome (0: Success
and 1: Failed).

TABLE II. DATA SAMPLE OF ACTUAL OUTCOME FOR 10 SOFTWARE

PROJECTS

Project ID
Failure factors Actual

outcome X1 X2 X3 X4 X5 X6

P121 0 1 0 0 1 1 0

P130 0 0 0 1 1 1 1

P131 0 1 1 0 1 1 1

P132 0 0 1 0 0 1 0

P133 0 0 1 1 1 1 1

P134 0 1 1 1 0 1 1

P143 0 0 0 1 0 0 0

P153 0 0 1 1 0 0 0

P161 0 0 0 0 1 1 0

P175 0 1 0 1 0 1 1

IV. DEVELOPING THE MODEL

In this section, the ensemble-weighted algorithm, which
combines six base prediction models, is developed.

The algorithm begins with randomly splitting the training
dataset into n subsets, and then each base model is trained over
all subsets. The average prediction performance for all base
models over each subset is measured. Then, we identify the
subset on which the base models achieved the worst average
performance. The lowest performance rate indicates that this
subset was the most difficult to predict. A unique “ranking
number” is assigned to each base model according to its
performance result over this subset.

The approach constructs four types of vectors:

1) A performance vector for each base model over all data

subsets,

2) A vector represents the average performance results

over each data subset for all base models,

3) A ranking vector represents the ranks of base models,

and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

362 | P a g e

www.ijacsa.thesai.org

4) A normalized weight vector represents the base models

weights.

The proposed algorithm is described as follows:

a) Select the optimal predictor subset.

b) Randomly split the training dataset into n subsets.

c) Fit base models using all training data subsets.

d) Set the vector for each base model that represents the

average performance for this model over each data subset. For

i = 1 to k, calculate Pi,

 (1)

where, AC is the accuracy, F is the F-measure, k is the
kappa coefficient, and AUC is the area under the receiver
operating characteristic curve.

e) A vector that represents the average of performance

results (of all base models) is set over each data subset.

∑

 (2)

where, is the average performance value for all base

models over subset j. The subset with lowest AvP is the most
difficult subset to predict.

f) A ranking vector that represents the ranks of base

models according to their performance over the most difficult-

to-predict data subset is set. Each base model gets a ranking

number from 1 to k (k is the number of base models). The

higher performance model (over the most difficult data subset)

gets a higher ranking number.

g) Set a vector that represents the base model weights.

The weight of model m can be estimated by:

∑

 (3)

where, k is the number of base models, and R is the base
model rank (from 1 to k) over the most difficult dataset.

In the proposed algorithm, the weight assigned to each base
model mm is determined by Eq. (3). This equation calculates
the weight wmwm based on the rank and performance of the
model mm relative to other base models in the ensemble.
Here's a detailed explanation:

i) Base Model Rank : The rank of a base model mm

represents its performance relative to other models in the

ensemble on the most challenging dataset instances. Models

that exhibit better predictive capabilities or accuracy are

assigned lower ranks, indicating higher effectiveness in

handling difficult data instances.

ii) Base Model Performance : The performance of each

base model m is measured by its predictive ability or accuracy.

Higher performance models, which accurately predict the

outcomes of software project instances, are assigned higher

values for .

iii) Normalization Factor ∑

 : This term represents

the sum of the ranks multiplied by the corresponding

performance measures for all base models in the ensemble. It

acts as a normalization factor to ensure that the weights

sum up to 1, thereby maintaining the integrity of the weighted

ensemble.

h) The final predicted value Pr (probability of failure) is

obtained according to each base model weight:

 ∑

 , (4)

where, Di is the predicted value of base model i.

Eq. (4) calculates the final predicted value of the
probability of failure () based on the weighted contributions
of each base model in the ensemble. Here's a detailed
explanation:

i) Base model weight : Each base model ii in the

ensemble is assigned a weight wiwi determined by its

effectiveness in predicting software project failures. The

weight reflects the relative importance or influence of the

corresponding model in the ensemble. Models with higher

weights contribute more significantly to the final prediction.

ii) Predicted value : represents the predicted value of

failure probability by the base model ii. Each base model

generates its own prediction based on its internal algorithms

and training data. These predicted values represent the

likelihood of failure for individual software project instances.

iii) Weighted summation: The final predicted value of

failure probability () is obtained by summing the weighted

contributions of all base models in the ensemble. Each

predicted value is multiplied by its corresponding weight

wiwi, and these weighted values are summed up for all k base

models in the ensemble.

By aggregating the predictions from multiple base models
according to their respective weights, Eq. (4) produces a
composite prediction of failure probability that leverages the
strengths of individual models while mitigating the impact of
potential weaknesses. This weighted ensemble approach
enhances the overall accuracy and reliability of the prediction,
providing a more robust assessment of the likelihood of failure
for software project instances.

To illustrate the algorithm, a simple example of ensemble
with three base models and three data subsets is considered.
We define P = (P1| P2 |P3) and let P1 = (0.77, 0.66, 0.84), P2 =
(0.78, 0.90, 0.81) and P3 = (0.97, 0.60, 0.78), where Pi
represents the performance vector of base model i over the
three data subset. We obtain AvP = (0.84, 0.72, 0.81), which
indicates the average performance of the three base models
over the three data subset. According to AvP values, the
second data subset was the most difficult subset to predict as it
gets the lowest average performance score (0.72). Therefore,
we rank the base models according to their performance results
over the most difficult subset to predict. The second base
model will get the higher rank number = 3 as it achieved a
higher performance (0.90) result over the most difficult subset.
The rank number = 2 is given to first base model, and rank
number = 1 is given to the third base model. The normalized
weight vector W=(0.286,0.584,0.13) is obtained by:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

363 | P a g e

www.ijacsa.thesai.org

)))

)))
,

)))
)

)

The highest weight is given for the second base model as it
obtained a higher rank according to its performance in
predicting the most difficult data subset to predict.

Finally, the prediction value for each data instant is
obtained based on the above base model weights. Suppose that
the three base models generate probabilities of failure: 0.66,
0.35, and 0.74; therefore, the final failure probability Pr
generated by the model based on the estimated weight is 0.49.

Pr=(0.286 × 0.66)+(0.584 × 0.35)+(0.13 × 0.74)= 0.49

The failure probability result is used to classify the
expected project outcome (failed/success). The default
probability value 0.5 is selected to be the classification
threshold, with failure expected for any result higher than 0.5.
Future research can be conducted to determine the optimal
threshold for determining project failure.

V. EXPERIMENTAL RESULTS

For comparison purpose, in addition to building the
proposed model, the experiments included running the model
using four methods. Initially, the model is implemented using
three of the existing individual prediction techniques: LR,
SVM, and ANFIS. These methods were chosen because they
showed a high efficiency in failure prediction compared with
other methods in a study conducted by Ibraigheeth and Eid [6].
These three models were combined to create a simple majority
voting model. To run the simple majority voting model, the
training dataset is used to build the three base models (LR,
SVM, and ANFIS), and then the final prediction decision for
any test instance is generated by majority voting. The new
weighted ensemble model is implemented and tested in terms
of its ability to predict software project failures. The
experiments included calculating eight performance measures:
sensitivity or recall, specificity, precision, negative predictive
value, accuracy, F-measure, kappa coefficient, and AUC value.

Several statistical tests were applied on the proposed model
to evaluate its performance. Confusion matrix that includes
information about actual and predicted model outputs is shown
in Fig. 2. For the project failure prediction problem, the
confusion matrix is used to evaluate the model performance.
The column of the confusion matrix represents the actual result
(class), while the row represents the predicted result. TP (True
Positive) and TN (True Negative) denote how many instances
are classified correctly, while FP (False Positive) and FN
(False Negative) denote how many instants are classified
incorrectly.

Predicted output

+ −

Actual Output
+ T P = 1 2 F N = 1

− F P = 1 T N = 1 0

Fig. 2. Confusion matrix.

TABLE III. PERFORMANCE MEASURES

Measure Value

Sensitivity (Recall) 0.923

Specificity 0.909

Precision 0.923

Negative predictive value 0.909

Accuracy 0.916

F-measure 0.923

Kappa 0.914

AUC 0.96

Average 0.92

Several performance evaluation metrics can be generated
from the confusion matrix. Table III shows performance
measures of the proposed model over testing dataset.

A comparative evaluation for the proposed weighted
ensemble prediction model is performed. In this paper, the
ensemble model was run to predict the software project failure.
Table IV shows a summary of the performance measure for the
proposed ensemble model versus the simple majority voting
model as well as the other three individual models: LR, SVM,
and ANFIS.

Table IV shows that the proposed weighted ensemble
model has the highest values for most of performance
measures; it has an average performance of 92% compared
with 89% for the proposed majority voting model, 81% for LR
model, 82% for SVM model, and 83% for ANFIS.
Experiments also prove that the simple majority-voting model
performs better than individual models.

TABLE IV. PROPOSED WEIGHTED ENSEMBLE PREDICTIVE MODEL

PERFORMANCE MEASURES

Measure

Proposed

weighted

ensemble

model

Simple

majority

voting

model

LR SVM ANFIS

Sensitivity

(Recall)
0.9 2 0. 9 2 0. 8 5 0.7 7 0. 8 1

Specificity 0.9 0 0. 8 4 0. 7 7 0. 9 1 0. 9 6

Negative

predictive
value

0.9 2 0. 8 7 0. 8 9 0. 9 0 0. 9 6

Accuracy 0.9 0 0. 9 0 0. 7 1 0. 8 3 0. 8 2

Precision 0.9 1 0. 8 9 0. 8 3 0. 8 4 0. 8 8

F-measure 0.9 2 0. 9 0 0. 8 7 0. 8 3 0. 8 8

Kappa 0.9 1 0. 8 6 0. 7 9 0. 6 9 0. 7 7

AUC 0.9 6 0. 9 4 0. 9 4 0. 8 4 0. 6 2

Average 0.9 2 0. 8 9 0. 8 1 0. 8 2 0. 8 3

Table V illustrates a sample of the data of 10 software
projects and their corresponding actual outcome, the proposed
weighted ensemble model predicted outcome. The table
illustrates that all projects except P16 were labeled correctly.
Projects P11, P13, P17, P19, and P20 were correctly labeled as
failed projects with actual outcome = 1, and Projects P12, P14,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

364 | P a g e

www.ijacsa.thesai.org

P15, and P18 were correctly labeled as success projects with
actual outcome =0. Project P16 was inaccurately labeled as
success (Predicted outcome = 0) when the projects were failed
(Actual outcome = 1).

In the comparative evaluation of the proposed weighted
ensemble prediction model, the analysis delves into its
performance in relation to alternative methodologies. By
subjecting the ensemble model to prediction tasks for software
project failure, a comprehensive understanding of its efficacy is
garnered. Table IV elucidates the performance metrics,
showcasing the superiority of the proposed weighted ensemble
model over the simple majority voting model and individual
models such as LR, SVM, and ANFIS. Notably, the ensemble
model consistently achieves higher performance across various
metrics, with an average accuracy of 92%, outperforming its
counterparts. Moreover, insights gleaned from experimentation
highlight the advantageous nature of employing a simple
majority-voting model over relying solely on individual
models. As the software industry navigates complex project
landscapes, such evaluations play a pivotal role in informing
decision-making processes and shaping future research
directions

TABLE V. SAMPLE OF ACTUAL AND PREDICTED OUTCOMES

Project ID Actual outcome Predicted outcome

P 1 1 1 1

P 1 2 0 0

P 1 3 1 1

P 1 4 0 0

P 1 5 0 0

P 1 6 0 1

P 1 7 1 1

P 1 8 0 0

P 1 9 1 1

P 20 1 1

VI. CONCLUSION

In this paper, a new ensemble weighted model is proposed
for predicting software project failures. The proposed
algorithm incorporates six base models to provide the final
decision of the software project outcome. These models are:
NNs, LR, SVM, NB, ANFIS, and DT. We suggest that the
different prediction abilities of these six methods enable the
proposed algorithm to capture different characteristics of the
training data and produce more reliable and accurate
prediction. The proposed algorithm assigns a unique “ranking
number” to each base model according to its ability to predict
the most difficult data. Higher performance base models over
the most difficult-to-predict data will be assigned higher
ranking numbers. A normalized weighted vector is constructed
based on these ranking numbers, and the final predicted value
is obtained based on the weight assigned for each base model.

In the empirical analysis, eight performance measures are
used to evaluate the proposed model performance. The
research proves that the weighted ensemble model outperforms

the simple majority voting and the individual prediction
models. The experiments have also shown that the simple
majority-voting model outperforms the other three individual
models.

As this paper introduces a novel ensemble weighted model
for predicting software project failures, future work could
explore several avenues to enhance and extend the proposed
approach. Firstly, further investigation could be conducted into
the selection and incorporation of additional base models
beyond the six currently utilized (NNs, LR, SVM, NB, ANFIS,
and DT). This exploration may involve considering emerging
machine learning techniques or domain-specific models
tailored to software project prediction tasks. Additionally,
research efforts could focus on refining the methodology for
assigning ranking numbers to base models based on their
predictive capabilities across different data instances. Fine-
tuning this ranking system could potentially lead to more
accurate and nuanced weighting of base models, thereby
improving the overall performance of the ensemble model.
Furthermore, the evaluation framework utilized in this study
could be expanded to include additional performance metrics
or consider alternative evaluation methodologies to provide a
more comprehensive assessment of the proposed model's
efficacy. Lastly, real-world deployment and validation of the
model within software development environments could offer
valuable insights into its practical utility and effectiveness in
mitigating project failure risks. By addressing these future
research directions, advancements can be made towards
developing more robust and reliable predictive models for
software project management.

REFERENCES

[1] A. BEHERA, Rabi Narayan; ROY, Manan; DASH, Sujata. Ensemble
based hybrid machine learning approach for sentiment classification-a
review. International Journal of Computer Applications, 2016, 146.6:
 ‏.31-36

[2] B. Krawczyk, Alberto Cano, Online ensemble learning with abstaining
classifiers for drifting and noisy data streams, Applied Soft Computing,
2018, 68, 677-692.

[3] Basaran, K., Özçift, A., & Kılınç, D. A new approach for prediction of
solar radiation with using ensemble learning algorithm. Arabian Journal
for Science and Engineering, 2019, 44(8), 7159-7171.

[4] BreiGanaie, M. A., & Hu, M. (2021). Ensemble deep learning: A
review. arXiv preprint arXiv:2104.02395.‏man, L. Bagging predictors.
Machine learning,1996, 24(2), 123-140.‏

[5] C.-X. Zhang, R.P.W. Duin, An experimental study of one- and two-level
classifier fusion for different sample sizes, Pattern Recogn. Lett, 2011,
(32) 1756-1767.

[6] Damen, J. A., Pajouheshnia, R., Heus, P., Moons, K. G., Reitsma, J. B.,
Scholten, R. J., ... & Debray, T. P. Performance of the Framingham risk
models and pooled cohort equations for predicting 10-year risk of
cardiovascular disease: a systematic review and meta-analysis. BMC
medicine, 2019, 17(1), 109.

[7] Dietterich, T. G. Ensemble methods in machine learning. In
International workshop on multiple classifier systems, 2000 (pp. 1-15).
Springer, Berlin, Heidelberg.

[8] Ewusi-Mensah, K. Software Development Failures: Anatomy of
Abandoned Projects. Cambridge: MIT Press, 2003.

[9] Ibraigheeth, M. A., & Eid, S. A. Software project risk assessment using
machine learning appro. In 2022 American Journal of Multidisciplinary
Research & Development (AJMRD), 2022, 4,2 (pp. 35-41). IEEE.‏

[10] Ibraigheeth, M. A., & Fadzli, S. A. Software project failures prediction
using logistic regression modeling. In 2020 2nd International

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

365 | P a g e

www.ijacsa.thesai.org

Conference on Computer and Information Sciences (ICCIS), 2020, (pp.
1-5). IEEE.‏

[11] Idrees, F., Rajarajan, M., Conti, M., Chen, T. M., & Rahulamathavan, Y.
PIndroid: A novel Android malware detection system using ensemble
learning methods. Computers & Security, 2017, 68, 36-46.

[12] J.M. Moyano, E.L. Gibaja, K.J. Cios, S. Ventura , Review of ensembles
of multi-label classifiers: Models, experimental study and prospects,
Information Fusion. 44 2018, 33-45.

[13] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. Supervised machine
learning: A review of classification techniques. Emerging artificial
intelligence applications in computer engineering, 2007, 160, 3-24.

[14] Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M.
Ensemble learning for data stream analysis: A survey. Information
Fusion, 2017, 37, 132-156.‏

[15] L. Breiman, Bagging Predictors, Machine Learning, 1996, 24, 123-140.

[16] L. Breiman, Random Forests, Machine Learning, 2001,45, 5-32.

[17] L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms,
Wiley, 2004.

[18] Laradji, I. H., Alshayeb, M., & Ghouti, L. Software defect prediction
using ensemble learning on selected features. Information and Software
Technology,2015, 58, 388-402.‏

[19] Lehtinen, T. O., Mäntylä, M. V., Vanhanen, J., Itkonen, J., &Lassenius,
C. Perceived causes of software project failures–an analysis of their
relationships. Information and Software Technology,2014 56(6), 623-
643.

[20] M. Warmuth, J. Liao, G. Ratsch, Totally corrective boosting algorithms
that maximize the margin, in Proc. 23rd Int. Conf. on Machine Learning,
2006, pp. 10011008.

[21] Q. Wu, M. Tan, H. Song, J. Chen, M.K. Ng, ML-FOREST: A Multi-
Label Tree Ensemble Method for Multi-Label Classification, IEEE
Transactions On Knowledge And Data Engineering. 2016,28(10).

[22] R. Blaser, P. Fryzlewicz, Random Rotation Ensemble, Journal of
Machine Learning Research.2, 2015, 1-15.

[23] R.M.O.Cruza, R. Sabourin, G.D.C. Cavalcanti, Dynamic classifier
selection: Recent advances and perspectives, Information Fusion, 2018,
41, 195-216.

[24] Rashid, M., Khan, M. A., Sharif, M., Raza, M., Sarfraz, M. M., & Afza,
F, Object detection and classification: a joint selection and fusion
strategy of deep convolutional neural network and SIFT point features.
Multimedia Tools and Applications, 2019, 78(12), 15751-15777.‏

[25] Reyes, F., Cerpa, N., Candia-Véjar, A., & Bardeen, M. The optimization
of success probability for software projects using genetic algorithms.
Journal of Systems and Software, 2011, 84(5), 775-785.

[26] T.T. Nguyen, A.W.C. Liew, M.T. Tran, T.T.T. Nguyen, M.P. Nguyen,
Classifier Fusion Based On A Novel 2-Stage Model, in: X. Wang, W.
Pedrycz, P. Chan, Q. He (Eds.), Machine Learning and Cybernetics,
Springer, 2014, pp. 60-68.

[27] T.T. Nguyen, A.W.C. Liew, M.T. Tran, X.C. Pham, M.P. Nguyen, A
novel genetic algorithm approach for simultaneous feature and classifier

selection in multi classifier system, in: IEEE Congress on Evolutionary
Computation (CEC), 2014, pp.1698-1705.

[28] T.T. Nguyen, A.W.C. Liew, X.C. Pham, M.P. Nguyen, A Novel 2-Stage
Combining Classifier Model with Stacking and Genetic Algorithm
Based Feature Selection, in: D.-S. Huang, K.- H. Jo, L. Wang (Eds.),
Intelligent Computing Methodologies, Springer International Publishing,
2014, pp. 33-43.

[29] T.T. Nguyen, A.W.C. Liew, X.C. Pham, M.P. Nguyen, Optimization of
ensemble classifier system based on multiple objectives genetic
algorithm, International Conference on Machine Learning and
Cybernetics (ICMLC), 2014 (Vol.1), pp. 46 51.

[30] T.T. Nguyen, T.T.T. Nguyen, X.C. Pham, A.W.C. Liew, A Novel
Combining Classifier Method based on Variational Inference, Pattern
Recognition, 2016, 49, 198-212.

[31] Takagi, Y., Mizuno, O., &Kikuno. An empirical approach to
characterizing risky software projects based on logistic regression
analysis. Empirical Software Engineering, 2005, 10(4), 495-515.

[32] Verner, J., Sampson, J., &Cerpa, N. What factors lead to software
project failure?.In Research Challenges in Information Science,
2008.RCIS 2008. Second International Conference (IEEE) , 2008, (pp.
71-80).

[33] Wang, X., & Zhong, R. A New Weighted Ensemble Classifier Based on
Granular Model. In The International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery, Springer,
Cham, 2020, (pp. 866-873).

[34] Wang, X., Wu, C., & Ma, L. Software project schedule variance
prediction using Bayesian Network.In Advanced Management Science
(ICAMS), 2010 IEEE International Conference, 2010, Vol. 2, pp. 26-30.

[35] Wu, Classifier Ensemble by Exploring Supplementary Ordering
Information, IEEE Transactions on Knowledge and Data Engineering,
2018, In Press, DOI: 10.1109/TKDE.2018.2818138.

[36] X.C. Pham, M.T. Dang, S.V. Dinh, S. Hoang, T.T. Nguyen, A.W.C.
Liew, Learning from Data Stream Based on Random Projection and
Hoeffding Tree Classifier, in Proceeding of Digital Image Computing:
Techniques and Applications (DICTA), 2017.

[37] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm,
in: Proceedings of International Conference on Machine Learning
(ICML), 1996, pp. 148-156.

[38] Z. Yu , D. Wang, Z. Zhao, C.L.P. Chen, J. You, H.-S. Wong, J. Zhang,
Hybrid Incremental Ensemble Learning for Noisy Real-World Data
Classification, IEEE Transactions on Cybernetics, 2018, In Press, DOI:
10.1109/TCYB.2017.2774266.

[39] Z. Yu , Y. Zhang, J. You, C.L. P. Chen, H.-S. Wong, G. Han, J. Zhang,
Adaptive Semi-Supervised Classifier Ensemble for High Dimensional
Data Classification, IEEE Transactions on Cybernetics, 2018, In Press,
DOI: 10.1109/TCYB.2017.2761908.

[40] Z. Yu, L. Li, J. Liu, G. Han, Hybrid Adaptive Classifier Ensemble, IEEE
Transactions on Cybernetics, 2015, 45(2) 177 – 19.

[41] Ibraigheeth, M. A., & Fadzli, S. A. (2019). Fuzzy Logic Driven Expert
System for the Assessment of Software Projects Risk. International
Journal of Advanced Computer Science and Applications, 10(2).

