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Abstract—The automatic detection of defects in printed 

circuit boards (PCBs) is a critical step in ensuring the reliability 

of electronic devices. This paper introduces a novel approach for 

PCB defect detection. It incorporates a state-of-the-art hybrid 

architecture that leverages both convolutional neural networks 

(CNNs) and transformer-based models. Our model comprises 

three main components: a Backbone for feature extraction, a 

Neck for feature map refinement, and a Head for defect 

prediction. The Backbone utilizes ResNet and Bottleneck 

Transformer blocks, which are proficient at highlighting small 

defect features and overcoming the shortcomings of previous 

models. The Neck module, designed with Ghost Convolution, 

refines feature maps. It reduces computational demands while 

preserving the quality of feature representation. This module 

also facilitates the integration of multi-scale features, essential for 

accurately detecting a wide range of defect sizes. The Head 

employs a Fully Convolutional One-stage detection approach, 

allowing for the prediction process to proceed without reliance 

on predefined anchors. Within the Head, we incorporate the 

Wise-IoU loss to refine bounding box regression. This optimizes 

the model's focus on high-overlap regions and mitigates the 

influence of outlier samples. Comprehensive experiments on 

standard PCB datasets validate the effectiveness of our proposed 

method. The results show significant improvements over existing 

techniques, particularly in the detection of small and subtle 

defects. 
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I. INTRODUCTION 

PCBs are the cornerstone of modern electronics, providing 
a critical framework for the interconnection of electronic 
components. They consist of a complex network of conductive 
pathways, tracks, and traces etched onto a non-conductive 
substrate, enabling the integration of various components such 
as resistors, capacitors, and integrated circuits to form 
functional electronic devices. The integrity of these boards is 
paramount, as any defects can lead to malfunctioning or failure 
of the electronic equipment. PCB defect detection, therefore, is 
a vital process in the manufacturing industry, aimed at 
identifying and rectifying flaws such as short circuits, open 
circuits, missing components, or misalignments. Traditionally 
performed by human inspectors, this process has increasingly 
been entrusted to automated systems that leverage advanced 
imaging technologies and machine learning algorithms. These 
systems offer greater accuracy, consistency, and efficiency in 
detecting a wide array of subtle and overt flaws that might be 
overlooked by the human eye, ensuring high-quality outputs in 

the fast-paced production environments that define today's 
electronic manufacturing sector. 

Traditional image processing techniques for PCB defect 
detection typically involve a sequence of algorithmic steps 
such as noise reduction, thresholding, edge detection, and 
pattern recognition to analyze images of PCBs for anomalies. 
These methods often start with pre-processing to enhance 
image quality, followed by segmentation to isolate regions of 
interest. Techniques like morphological operations may be 
used to highlight features of defects, and template matching 
could be employed to compare segments against known good 
patterns. While these techniques are deterministic and 
relatively straightforward to implement, they come with 
significant shortcomings. They tend to be highly sensitive to 
variations in lighting, alignment, and image quality, leading to 
false positives or negatives. Additionally, traditional methods 
may struggle with the complexity of modern PCBs, which can 
have intricate designs and high component densities. These 
methods can also be computationally intensive and inflexible, 
requiring manual tuning and adjustments when dealing with 
different types of PCBs or new defect profiles, limiting their 
scalability and adaptability in fast-evolving manufacturing 
environments. 

In recent years, deep learning has revolutionized the field 
of artificial intelligence, leading to significant advancements in 
various domains such as computer vision, natural language 
processing, autonomous vehicles, and medical diagnostics [1, 
2]. At its core, deep learning utilizes neural networks with 
multiple layers to learn representations of data with multiple 
levels of abstraction, enabling the discovery of intricate 
structures in large datasets. As a result, applications that were 
once thought to be challenging, like image and speech 
recognition, have seen substantial improvements in accuracy 
and efficiency. Leveraging these developments, deep learning 
has also been proposed for PCB defect detection, representing 
a paradigm shift from traditional image processing techniques. 
Unlike conventional methods, which rely on hand-engineered 
features and are prone to performance degradation under 
variations in lighting and complex patterns, deep learning 
models can automatically learn to identify defects from data. 
These models, particularly convolutional neural networks 
(CNNs), have shown remarkable success in detecting intricate 
and subtle anomalies on PCBs by learning features directly 
from the raw pixels. However, despite their success, current 
deep learning methods for PCB defect detection still face 
challenges. They require large annotated datasets to learn 
effectively, which can be expensive and time-consuming to 
create. Moreover, they may not generalize well across different 
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PCB designs or manufacturing processes without extensive 
retraining or fine-tuning. To address these shortcomings, the 
method proposed in this paper integrates advanced neural 
network architectures that enhance feature extraction and 
defect localization capabilities, while also employing data 
augmentation and specialized loss functions to improve model 
robustness and generalizability. This approach aims to 
overcome the limitations of both traditional image processing 
and current deep learning techniques, providing a more reliable 
and adaptable solution for PCB defect detection. 

The rest of the paper is organized as follows: Section II 
presents related studies; Section III details the proposed model; 
Section IV describes the experiments and results; Section V 
provides the conclusions. 

II. RELATED WORK 

The emergence of end-to-end deep learning technology [3, 
4] has introduced new opportunities for PCB fault detection. 
Currently, extensive research is being carried out on PCB 
defect detection methods that leverage deep learning. Mingu et 
al. [5] presented a novel contactless inspection method that 
utilizes deep learning to analyze thermal images for the 
detection of PCBA defects. The authors explore the efficacy of 
combining a rule-based object detection approach, employing a 
structural similarity index map, with advanced deep learning 
techniques including CNNs, region with CNN features, and 
autoencoders, thereby enhancing the accuracy and reliability of 
contactless PCBA inspection methods. Sik-Ho et al. [6] 
introduced PCBMTL, multitask learning model designed to 
concurrently tackle classification and segmentation tasks, 
specifically tailored for scenarios with limited data availability. 
This model leverages the intrinsic correlation between 
segmentation knowledge and classification tasks, significantly 
enhancing the classification accuracy even when only a sparse 
dataset is available. Gor et al. [7] proposed an Automated 
Visual Inspection (AVI) methodology for detecting hardware 
trojans (HTs) on PCBs, utilizing imagery from a low-cost 
digital optical camera. This method combines traditional 
computer vision techniques with a dual-tower Siamese Neural 
Network (SNN), structured within a three-stage pipeline for 
effective HT detection. To address the issues of inadequate 
accuracy and speed in visual matching systems, the study in [8] 
introduced a deep learning-based alignment system utilizing 
YOLOv5. This system enhances production efficiency by 
preprocessing images captured by an industrial camera, 
delineating sensitive areas rich in feature points for improved 
alignment accuracy. Naifu et al. [9] employed techniques such 
as relative position estimation, spatially adjacent similarity, and 
k-means clustering of patches to discern finely classified 
semantic features, followed by a local image patch completion 
network that learns the feature consistency between these local 
patches and the background, using the disparities between the 
estimated and original image patches to effectively identify 
anomaly areas in PCBs. 

To enhance the efficiency of current defect detection 
algorithms, [10] introduced RAR-SSD, a novel method 
combining multiscale PCB defect target detection with an 
attention mechanism. This approach integrates a lightweight 
receptive field block module (RFB-s) with an attention 
mechanism, effectively focusing on crucial features across 
various channels without escalating computational demands, 
and incorporates a feature fusion module that synergizes low-
level and high-level feature information, resulting in a 
comprehensive feature map that significantly boosts fault 
recognition accuracy. JiaYou et al. [11] introduce an advanced 
deep learning network specifically designed to tackle the 
challenge of detecting small or variable defects on PCBs in 
real-time. The proposed improvements include a unique multi-
scale feature pyramid network that boosts tiny defect detection 
by incorporating context information and a refined complete 
intersection over union loss function that accurately targets and 
identifies these minuscule defects. CS-ResNet [12] introduced 
a new model, which innovates upon the standard ResNet by 
incorporating a cost-sensitive adjustment layer. This model 
specifically addresses class imbalance by assigning greater 
weights to minority real defects based on their degree of 
imbalance, and optimizes performance through the 
minimization of a weighted cross-entropy loss function. 
Boyuan et al. [13] presented a cutting-edge PCB defect 
detection method utilizing YOLOv7. Additionally, the 
integration of the CBAM attention mechanism with a feature 
fusion module enables the model to selectively focus on 
pertinent feature channels and spatial locations, significantly 
boosting the discriminative power of the feature representation 
and thereby increasing overall accuracy. KD-LightNet [14] 
introduced an efficient and lightweight defect detection 
network optimized for edge computing scenarios. The network 
architecture, LightNet, is crafted using structure 
reparameterization to boost feature extraction capabilities while 
reducing model complexity. 

III. METHOD 

In this section, we provide details of our approach for PCB 
defect detection. Fig. 1 illustrates the overall structure of the 
proposed model, which includes three modules: Backbone for 
extracting features from the input image, Neck for enhancing 
the feature maps, and Head for making predictions. Initially, 
the input image is processed by the Backbone, consisting of 
multiple layers that perform feature extraction. Subsequently, 
the extracted features are refined by the Neck module, which is 
designed to enhance and integrate the feature maps at different 
scales. Finally, the Head module takes over, comprising three 
key components: Classification, Center-ness, and Regression, 
which work collectively to output the final defect detection 
results. Details of each module will be explained in the 
following subsections. 
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Fig. 1. Overall structure of the proposed model. 

 

Fig. 2. The structure of the feature extraction network (a) which includes input (b) ResNet Block (c) BoT block. 

A. Feature Extraction with Self-Attention Mechanism 

1) The backbone network proposed for PCB defect 

detection is a critical component of the object detection 

system, designed to process input images and extract relevant 

features that are essential for identifying defects. The 

advanced architecture of this backbone is built upon a 

combination of convolutional layers and ResNet blocks [15], 

further enhanced with Bottleneck Transformer (BoT) blocks 

[16]. The structure is outlined in Fig. 2, which depicts the 

sequential layers and blocks within the network. In detail, the 

backbone begins with a single convolutional layer (C1) that 

performs initial feature extraction. This is followed by a series 

of ResNet blocks (C2, C3, C4) that apply residual learning to 

prevent the vanishing gradient problem and allow deeper 

networks to learn effectively. Each ResNet block consists of a 

bottleneck design with three convolutional layers: a 1×1 

convolution that reduces the dimensionality, a 3×3 

convolution that processes features, and another 1×1 

convolution that restores dimensionality. These blocks are 

equipped with skip connections that add the input of the block 

to its output, facilitating the training of deep networks by 

allowing gradients to flow through. 

2) The novelty of this architecture lies in the integration of 

BoT blocks (C5), which introduce a multi-head self-attention 

(MHSA) mechanism within the transformer architecture [17]. 

Each BoT block is comprised of a 1×1 convolution layer 

followed by an MHSA layer and another 1×1 convolution 

layer. The MHSA layer enables the network to focus on 

different parts of the image when extracting features, which is 

particularly beneficial for detecting small objects-a common 

challenge in PCB defect detection. This capability is 

contrasted with the DETR (Detection Transformer) model [3], 

which shows improvements in detecting larger objects but not 

smaller ones. The use of BoT blocks in the backbone could 
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potentially address this shortfall, enhancing the model's ability 

to recognize smaller defects on PCBs that are often difficult to 

detect. In the BoT block, the MHSA mechanism efficiently 

captures long-range dependencies across the input feature 

map. By utilizing multiple attention heads, MHSA is able to 

concurrently process and focus on various aspects of the 

semantic space within the feature map. This allows the model 

to consider information from different representation 

subspaces at reduced computational costs. The operation of 

MHSA is as follows: 

    (     )               (           )  (1) 

where,    , and   represent three linear layers used for 
computing queries, keys, and values in a standard self-attention 

task.    represent the head of the self-attention mechanism as 
follows: 

          (    
     )                    (2) 

   (     )           (3) 

where,    ans    represent height and width relative 
position, respectively. 

B. Improving Multi-scale Feature with Ghost Convolution 

The neck network for PCB defect detection is designed 
based on Ghost Convolution [18], as depicted in Fig. 3. This 
network serves as an intermediary between the feature-rich 
output from the backbone and the predictive head of the model, 
enhancing the feature maps for more accurate defect 
localization. Starting from the deepest layer (C5), the network 
utilizes Ghost Convolution layers, which are designed to 
generate more feature maps from fewer intrinsic maps, thereby 
reducing computational requirements while maintaining 
effective representation capacity. This is followed by an 
upsampling step, which increases the resolution of the feature 
maps to match the scale of the subsequent layer. The upscaled 
features are then concatenated with the features from the 
previous layer (C4), integrating multi-level semantic 
information. This process is repeated as the network proceeds 
to shallower layers (C4 to C3). Each time, the Ghost 
Convolution layers generate rich feature representations that 
are then upsampled and concatenated with features from earlier 
in the network. This concatenation ensures that the final feature 
maps encompass both high-level semantic information and 
finer, low-level details, which is crucial for detecting the often-
minute anomalies present in PCBs. The repeated pattern of 
Ghost Convolution, upsampling, and concatenation 
progressively enriches the feature maps, culminating in a 
comprehensive composite that feeds into the detection head. 
The head then uses these refined features to make precise 
predictions about the presence, location, and types of defects 
on the PCB. This neck architecture, with its efficient and 
hierarchical processing, is particularly well-suited for the 
demands of PCB defect detection, where the ability to discern 
subtle and small-scale imperfections is key. 

1) Ghost convolution: Ghost Convolution is an innovative 

approach to convolutional neural network design that aims to 

reduce computational workload and model complexity without 

sacrificing performance. The core idea behind Ghost 

Convolution is to generate additional feature maps, known as 

"ghost" features, from inexpensive operations on the original 

convolutional features. This is achieved by applying a series 

of linear transformations, such as simple arithmetic operations 

or small-kernel convolutions, to the output of standard 

convolutional layers. The original set of feature maps is 

obtained through regular convolution operations, which can be 

computationally intensive. Then, for each of these original 

maps, several ghost feature maps are derived using the 

lightweight transformations. These ghost maps are capable of 

capturing variations and fine details by reusing the 

information present in the original feature maps, effectively 

augmenting the feature space with minimal extra computation. 

This process substantially reduces the number of direct 

convolutions that the network needs to perform, thus 

decreasing the number of parameters and the computational 

cost. Despite this reduction, Ghost Convolution preserves the 

network's capacity to encode rich and complex representations 

of the input data, making it particularly useful for resource-

constrained environments or applications where efficiency is 

paramount, such as mobile devices, embedded systems, or 

real-time applications. 

For a standard convolution, the number of FLOPs is 
calculated as follows: 

                             (          
 ) (4) 

where,      and      are the height and width of the 
output feature map;      is the number of output channels;     
is the number of input channels;    and    are the height and 
width of the kernel. 

 

Fig. 3. The neck network with ghost convolution layers. 
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For Ghost convolution, we first calculate the FLOPs for the 
initial standard convolution that generates the intrinsic feature 
maps, and then add the FLOPs for the linear operations used to 
generate the ghost feature maps. The equation for Ghost 
convolution is: 

                          (           )  

                 (                      )

  (5) 

where,      is the number of intrinsic output channels 
produced by the initial standard convolution;        is the 

number of ghost channels generated per intrinsic channel; 
        and         are the height and width of the kernel for 

generating the ghost feature maps, which are typically much 
smaller than the original convolution kernel size. 

The term      (           )  calculates the 
FLOPs for the initial convolution, and the term        

(                      )  calculates the FLOPs for 

generating the ghost feature maps. Typically,      is much less 
than      and the kernel size for ghost operations 
(               ) is smaller, leading to a significant reduction 

in FLOPs compared to standard convolution. 

C. Detection Head with Wise-IoU Loss 

1) We employ FCOS head [19] on each output feature 

layer. FCOS divides its detection head into three branches: the 

classification branch, the bounding box regression branch, and 

the centerness branch. In classification branch, a Focal Loss 

[20] is used to address class imbalance by reducing the weight 

of easy negatives. The centerness branch uses a binary cross-

entropy loss that guides the model to predict higher centerness 

values for locations closer to the center of an object. For the 

bounding box regression branch, Wise-IoU loss [21] is 

employed. This is a novel loss function that modulates the 

geometric penalty based on the overlap between the predicted 

bounding box and the ground truth. If the overlap is high, the 

penalty is reduced, which helps the model to better refine 

boxes that are already largely accurate. The Wise-IoU loss 

also includes an outlier penalty term that increases the loss for 

poor predictions, preventing the model from being overly 

influenced by difficult or mislabeled examples. The formula 

for the Wise-IoU loss function is shown as follows: 

                     (
(     )

 
 (     )

 

(  
    

 )
)      (6) 

where,   represents the gradient gain. 

2) The Wise-IoU loss specifically enhances the bounding 

box regression branch by incorporating a distance attention 

mechanism that scales the loss based on the distance metric 

between the anchor and the target frame. This scaling ensures 

that when the predicted box is already close to the ground 

truth (high IoU), the model is encouraged to make finer 

adjustments rather than over-penalizing small discrepancies. 

Moreover, by introducing a gradient attenuation factor for 

outliers, the Wise-IoU loss ensures that samples with poor 

quality predictions do not dominate the gradient update during 

backpropagation, thus stabilizing training and steering the 

model away from local optima that are not generalizable. This 

thoughtful design of the loss function supports more precise 

localization in PCB defect detection, which is critical for 

ensuring the accurate identification of defects. 

IV. EXPERIMENTS 

A. Dataset and Experimental Setup 

The dataset utilized in this study is derived from the PCB 
defect dataset released by the Intelligent Robotics Open 
Laboratory at Peking University. It encompasses various types 
of defects, such as shorts, open circuits, spurs, spurious copper, 
mouse bites, and missing holes. To mitigate the risk of network 
overfitting, we augmented the original 693 samples using 
techniques like random rotations, random cropping, brightness 
adjustments, and noise injection, resulting in a substantial 
increase to 5,814 samples. The distribution of different defect 
types is depicted in Fig. 4. We partitioned the expanded dataset 
into training, validation, and test sets in a ratio of 6:2:2, 
respectively. 

 

Fig. 4. Distribution of PCB defect dataset. 

We conducted our training and evaluation on a high-
performance Windows PC outfitted with an Intel Core i7-
10400 CPU, an NVIDIA GeForce RTX 4080 GPU, and 32GB 
of RAM, ensuring efficient processing capabilities for deep 
learning tasks. Our software stack consisted of Python 3.8, 
leveraging libraries such as OpenCV for image processing and 
PyTorch for model development and training. The models were 
trained over 300 epochs with a batch size of 2, and we 
standardized the input image size to 640×640 pixels to 
maintain consistency in training and testing. 

For model evaluation, we adopted two primary metrics: the 
mean average precision (mAP) and the detection speed, 
measured in frames per second (FPS). The mAP provides a 
comprehensive measure of model accuracy across all classes, 
factoring in both precision and recall, while FPS gauges the 
model's real-time performance capabilities. These benchmarks 
allowed us to assess the overall effectiveness and efficiency of 
our PCB defect detection models in a controlled and 
quantifiable manner. 
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B. Comparison with other Models 

Table I provides a comparative analysis of various object 
detection models on the PCB defect dataset, showcasing their 
performance in terms of mean average precision (mAP), 
frames per second (FPS), and computational complexity 
measured in GFLOPs. The proposed model outperforms all 
other models with an exceptional mAP of 99.2%, indicating its 
superior accuracy in defect detection. Despite this high 
precision, it maintains a competitive detection speed of 51 FPS, 
balancing efficiency with effectiveness. Notably, the proposed 
model achieves this while having a lower computational cost 
(41.0 GFLOPs) than YOLOv5 and Faster R-CNN, which have 
higher GFLOPs of 100 and 170, respectively. The YOLOv7 
and the Improved YOLOv5 models also exhibit high mAP 
scores, suggesting that the latest iterations and enhancements in 
the YOLO series continue to advance the state-of-the-art in 
object detection. However, the proposed model's edge in mAP 
suggests that the integration of novel architectural features or 
training strategies could be particularly beneficial for the 
specific challenges presented by PCB defect detection. The 
Transformer-YOLO and the Improved YOLOv5, while 
yielding high accuracy, do not report FPS, which leaves a gap 
in understanding their real-time applicability. On the other end 
of the spectrum, SSD demonstrates the lowest GFLOPs, 
indicating a very efficient model, but it lags in mAP, 
underscoring a trade-off between computational efficiency and 
detection accuracy. Overall, the results in Table I highlight the 
proposed model's capability to set a new benchmark for PCB 

defect detection by achieving a harmonious balance between 
accuracy, speed, and computational efficiency. 

Fig. 5 presents a comprehensive visualization of the 
detection results achieved by the proposed PCB defect 
detection model. Across multiple instances, the model 
successfully identifies and localizes various types of PCB 
defects. Each type of defect is accurately marked with 
bounding boxes and labeled, indicating a high level of 
precision in the model's predictive capability. The clarity of the 
bounding boxes and the accuracy of the labels suggest that the 
model is well-tuned to the intricacies of PCB defect detection. 
The absence of mislabeling or missed detections in the 
provided visualization underscores the robustness of the model 
and its potential for practical applications in quality control and 
automated inspection systems within electronic manufacturing. 

TABLE I.  COMPARING THE PROPOSED MODEL WITH OTHER MODELS ON 

THE PCB DEFECT DATASET 

Models mAP (%) FPS GFLOPs 

Faster R-CNN [22] 74.4 21 170 

SSD [23] 82.2 42 2.5 

YOLOv3 [24] 87.2 69 65 

YOLOv5 91.4 102 100 

Transformer-YOLO [25] 97.0 - - 

YOLOv7 [26] 97.8 54 51.2 

Improved YOLOv5 [27] 97.9 - 53.5 

Proposed Model 99.2 51 41.0 

 

 

Fig. 5. Visualization of detection results of the proposed model. 
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C. Effect of Backbone with Self-Attention Mechanism 

We also conduct experiments on the PCB defect validation 
set with various backbone architectures to evaluate the 
effectiveness of the proposed backbone with self-attention 
mechanism. Fig. 6 illustrates the performance trade-offs 
between mean average precision (mAP) and inference speed 
(FPS) for various backbone architectures on the validation set, 
including ResNet-50, ResNet-101 [15], EfficientNet [28], 
SENet-50 [29]. The proposed model achieves the highest mAP 
of 98.4% with a competitive FPS of 51, showcasing its 
superior defect detection accuracy without significantly 
compromising on speed. The ResNet-50 and ResNet-101 
architectures offer a good balance between accuracy and speed, 
with ResNet-101 slightly trailing in FPS at 41 but offering 
near-top mAP performance at 98.2%. Notably, EfficientNet 
stands out with the highest FPS of 68, suggesting it is the 
fastest model; however, this speed comes at the cost of a lower 
mAP of 95.8%. SENet-50 has the lowest mAP of 94.4% and a 
modest FPS of 48, indicating it may not be the optimal choice 
for scenarios where high precision is critical. Overall, the 
proposed model’s impressive mAP, coupled with a substantial 
FPS, positions it as a compelling choice for real-time PCB 
defect detection applications. 

 

Fig. 6. The performance trade-offs between mean average precision (mAP) 

and inference speed (FPS) for various backbone architectures on the 

validation set. 

V. CONCLUSIONS 

In conclusion, this research paper proposes a novel 
approach to PCB defect detection, leveraging advanced hybrid 
neural network architecture. Our model integrates a ResNet 
and Bottleneck Transformer Backbone, a Ghost Convolution 
Neck, and Fully Convolutional One-stage detection Head, 
showing superior performance in identifying subtle and small-
scale defects on PCBs. The comparative analysis highlights our 
model's exceptional mean average precision of 99.2%, 
significantly surpassing that of existing object detection 
models. Moreover, it achieves this high level of accuracy while 
maintaining a competitive detection speed of 51 FPS and 
requiring fewer computational resources compared to other 
high-performing models. The introduction of extensive 
augmentation techniques has further enhanced the dataset's 
diversity, improving the model's robustness and its ability to 
generalize across various PCB defect types. Future work will 

focus on optimizing the model to further improve its detection 
capabilities, particularly for the smallest and most challenging 
defects. Additionally, we will explore the potential for real-
time processing in greater depth, aiming to extend the model's 
applicability to industrial settings and automated quality 
control systems. The success of this study marks a significant 
step forward in the field of automated defect detection, 
promising to enhance the reliability and efficiency of electronic 
manufacturing processes through the adoption of advanced 
neural network architectures. 
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