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Abstract—Monitoring rice spikelet yield is crucial for 

ensuring food security, but manual observations are tedious and 

subjective. Deep learning approaches for automated counting 

often require high device resources, limiting their applicability 

on low-cost edge devices. This paper presents the Rice 

Lightweight Feature Detection Network (RLFDNet). RLFDNet 

designed for the field of computer vision, features a lightweight 

encoder and decoder, effectively decoding shallow and deep 

information within its neural network architecture. Innovative 

designs including dense feature pyramid network, reinforcement 

learning guidance, attention mechanisms, dynamic receptive field 

adjustment, and shape feature fusion enable outstanding 

performance in object detection and counting, even with low-

resolution images. Across different elevations, ranging from 7m 

to 20m, RLFDNet demonstrates significantly superior accuracy 

and inference efficiency compared to other advanced object 

detection methods. With a parameter count of only 4.40 million, 

it achieves an impressive frame rate of 80.43 FPS on a 

GTX1080Ti GPU, meeting real-time application requirements on 

inexpensive devices. RLFDNet's exceptional performance is 

further highlighted by an MAE of 1.86 and an R² of 0.9461, along 

with an average precision of mAP@0.5 reaching 0.91. These 

results underscore RLFDNet's capability as a potent and reliable 

visual tool for agricultural practitioners, offering promising 

prospects for future research endeavors. 
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I. INTRODUCTION 

Rice is a pivotal global crop, essential for food security, 
particularly for almost half of the world's population. Metrics 
like spikes per square meter and grain size profoundly 
influence cereal crop yield [1] [2]. However, accurately 
counting rice spikes encounters challenges due to outdoor 
environment complexities, including size variations, lighting 
conditions, and occlusion. Traditional monitoring methods 
hinge on manual observation [3], which is time-consuming and 
subjective, impacting rice quality and yield. 

In recent decades, the rapid development of computer 
vision has made deep learning (DL) a key research field in 
artificial intelligence [4]. Similarly, deep learning has also been 
widely applied in agriculture, particularly in various 
agricultural information management practices [5] [6]. Many 
studies utilize machine learning for crop yield prediction by 
estimating the quantity of fruits, such as cotton [7], citrus fruits 
[8], sugar beets [9], and rice. In the realm of rice, various 
studies have been conducted: Xiong et al. [10] proposed a rice 
spike segmentation algorithm based on superpixel region 

generation, CNN, and superpixel optimization. This method 
effectively segments and recognizes complex rice spikes, but 
may involve unreasonable assumptions, such as simplification 
of rice spike shapes. Misra et al. [11] introduced SpikeSegNet 
for rice spike detection and counting, achieving an average 
accuracy of 95%. However, it overly relies on lighting 
conditions. Wang et al. [12] presented an algorithm utilizing 
three-dimensional point clouds for crop size estimation, 
particularly suited for spike counting in high-density scenarios, 
yet highly relies on high-quality sensor data. Shu et al. [13] 
proposed a rice spike detection method based on the SSD 
algorithm, with an average precision mAP of 38.1%. The 
model's accuracy still needs improvement. 

Computer vision applications in agriculture, particularly in 
rice spike detection, have demonstrated significant potential. 
However, these models encounter critical issues such as low 
detection accuracy or lack of lightweight design, resulting in 
suboptimal user experiences and high entry barriers. 
Furthermore, due to variations in terrestrial environments, 
these methods are susceptible to significant errors. 

Recognizing these challenges, researchers have turned to 
micro unmanned aerial vehicles (UAVs). Micro UAVs offer 
several advantages, including convenient platform setup, low 
operating and maintenance costs, small size, light weight, 
simple operation, high flexibility, and short operation cycles, 
making them an ideal choice for agricultural applications. Tri 
et al. [14] combined drones with deep learning to predict paddy 
field yields, marking the first use of drones for image 
collection and deep learning-based rice spike classification.  
Hayat et al. [15] proposed an unsupervised Bayesian learning-
based segmentation algorithm for rice spike segments, 
achieving an average F1-score of 82.10%.  However, they 
require significant computational resources and may not be 
suitable for real-time applications in resource-constrained 
environments.  Reza et al. [16] introduced a method for rice 
yield estimation based on K-means clustering and 
segmentation of low-altitude UAV images.  However, their 
method exhibits relatively low accuracy, with a relative error 
ranging from 6% to 33%, making it challenging to meet the 
requirements for automated detection of rice spike yield.  In 
summary, further improving accuracy and efficiency is a 
natural and important research direction. 

To address this challenge, the focus of this study is on 
achieving high accuracy and lightweight design in the model 
architecture, taking into account the deployment requirements 
of edge devices in the field of plant science. The proposed 
method for rice spike localization and counting is a deep 
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learning-based approach named the Rice Lightweight Feature 
Detection Network (RLFDNet). RLFDNet utilizes the 
lightweight backbone CSPDarknet [17] and further 
incorporates a concise and efficient encoder-decoder module to 
decode features from both shallow and deep layers. Unlike 
existing methods, RLFDNet primarily aims to overcome the 
recognition challenges posed by small and dense targets. It 
offers several advantages: Firstly, it emphasizes higher spatial 
resolution to retain detailed information at each pixel position. 
Secondly, it focuses on extracting more discriminative high-
level semantic information. Specifically, the model decoder 
maximizes the utilization of depth-encoded feature layers 
generated by the encoder to capture abstract information. By 
employing an adaptive strategy, RLFDNet effectively restores 
spatial resolution and merges feature layers from non-adjacent 
levels. Additionally, a channel attention mechanism is 
introduced to suppress irrelevant pixel information at critical 
positions, thus alleviating the difficulty of feature extraction in 
dense scenes. RLFDNet achieves a balance between accuracy 
and computational efficiency, making it suitable for real-world 
implementation on resource-constrained devices, unlike 
existing methods that often prioritize accuracy over 
computational efficiency. 

To validate the universality of the model design, this study 
utilized the Diverse Rice Panicle Detection (DRPD) dataset 
[18], which was publicly released by Teng et al. [19]. It is 
noteworthy that this dataset comprises field rice spikes 
captured by micro UAVs at different altitudes (7m, 12m, and 
20m) and subsequently cropped. Undoubtedly, varying the 
altitude during capture results in different target sizes and 
densities of rice spikes in the images, posing a significant 
challenge for object detection models. Fortunately, extensive 
experimental results demonstrate that RLFDNet's accuracy and 
inference efficiency are significantly superior to other 
advanced object detection methods, showcasing better 
robustness and adaptability. RLFDNet's parameter count is 
only 4.40 million, and it reports an outstanding frame rate of 
80.43 FPS on the affordable GTX1080Ti GPU, making it 
sufficient for real-time applications when deployed on 
inexpensive devices. The efficiency comparison is illustrated in 
Fig. 1. 

In summary, this study makes three main contributions: 

 Innovatively introduces a more precise encoder-decoder 
module and cleverly designs an efficient neural network 
structure, significantly enhancing the integration 
capability of image features and effectively improving 
feature extraction performance. 

 Proposes the lightweight RLFDNet model specifically 
designed for the localization and counting of field rice 
spikes. Its lightweight architecture allows for flexible 
deployment on low-end edge devices, providing a novel 
solution for automated monitoring of rice spikes. 

 Through comprehensive comparisons with mainstream 
object detection models, demonstrates the outstanding 
performance of the RLFDNet model on rice spike 
datasets of different scales compared to state-of-the-art 
methods, highlighting its significant advantages in 
object detection tasks. 

 
Fig. 1. Efficiency comparison of different models. Performed on a device 

with NVIDIA GTX1080Ti GPU (8G). 

The layout of this paper is as follows: 

In Section I (this section), the research background is 
introduced, and the problem statement is emphasized. Section 
II provides a detailed introduction and description of the 
proposed RLFDNet model. Section III conducts experiments 
and performs comprehensive comparative analyses with other 
models across various dimensions. Section IV delves into the 
factors influencing RLFDNet's performance and summarizes 
the model's innovative aspects. Section V concludes the study 
and outlines future research directions. 

II. MATERIALS AND METHODS 

A. Datasets 

This study is based on the publicly available dataset 
Diverse Rice Panicle Detection (DRPD) [19]. Aerial images of 
rice fields were captured at three different altitudes: GSD7m, 
GSD12m, and GSD20m. The images were cropped from the 
original aerial images, with each image having a size of 
512×512 pixels. In total, 5,372 RGB sub-images were 
collected, annotated with 259,498 rice spikes exhibiting 
various morphological features. Details of the dataset are 
presented in Table I, where "Panicles per sub-image" indicates 
the number of spikes in each sub-image. The dataset includes 
four key growth stages: heading (1,903 sub-images), flowering 
(1,676 sub-images), early grain filling (1,235 sub-images), and 
middle grain filling (558 sub-images). It is noteworthy that, 
due to cropping by researchers and the high density of the 
aerial images, the difficulty varies across different altitudes. 
Rice spikes are larger and less dense at an altitude of 7m, 
presenting the lowest difficulty. In contrast, at an altitude of 
20m, rice spikes are smaller, more densely distributed, and 
pose the greatest challenge. This requires the model to 
overcome challenges associated with low-resolution images 
and dense predictions. Additionally, factors such as different 
sizes, shapes, postures, occlusions, lighting conditions, and 
water reflections severely impact detection results. It is 
precisely because of these challenges that various methods 
were employed in the model design, carefully addressing these 
limitations to ensure the model's robustness and good 
overcome generalization performance. In this study, these 
challenges were successfully, leading to satisfactory 
experimental results, as demonstrated in the following sections. 
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TABLE I.  DATASET DETAILS 

GSD Images Labels Panicles per sub-image 

GSD7m 3,810 106,878 27-30 

GSD12m 1,004 71,404 65-70 

GSD20m 558 81,216 140-150 

B. Model Architecture 

Taking into account the deployment requirements of edge 
devices in the field of plant science, the model architecture was 
designed with a focus on lightweight design. Effective design 
modifications were applied to the detection network structure, 
making it more comprehensive and detailed, particularly 
suitable for detecting rice spikes of varying sizes in the images. 
As shown in Fig. 2, the global architecture of the model 
consists of three main components: the Encoder for generating 
feature maps, the Decoder for feature parsing, and the Detector 
for visual output. The following sections will provide a detailed 
explanation of the design details and the rationale behind them. 

 

Fig. 2. The global architecture of the RLFDNet model. 

1) Encoder: The role of the encoder is to map the input 

RGB image to feature maps. Given an input image   
      , RLFDNet employs the lightweight network 

CSPDarkNet [17] as the backbone for feature extraction. 

Down-sampling operations are performed using 2D 

convolution layers with a 3×3 kernel size and a stride of 2. 

CSPLayer [20] is inserted at different stages for feature 

extraction, combined with the C2f module [21] to generate 

feature maps at different stages. Through these operations, the 

input image undergoes 32 times downsampling, resulting in 

feature maps with channel numbers of 64, 128, and 256, 

representing 1/8, 1/16, and 1/32 of the original image, 

respectively. These feature maps carry richer gradient 

information and are utilized in the decoder. 

In the final stage of the encoder, the Efficient Channel 
Attention (ECA) mechanism is applied. It compresses spatial 
information through global average pooling, learns channel 
attention information through a 1×1 convolution layer, and 
combines the channel attention information with the original 
input feature map. This approach avoids dimension reduction, 
effectively captures cross-channel interactions, and requires 
only a small number of parameters for excellent results. In 
summary, this encoder contributes to improving object 
detection performance, particularly in the extraction of features 
when dealing with targets of different scales. 

2) Decoder: The role of the decoder is to combine and 

decode the features from the encoder, mapping them to the 

final output of object detection. In RLFDNet, after obtaining 

the feature layer output from the ECA attention mechanism, 

the C2f module is introduced to reduce redundant 

representations of convolutional kernels, significantly 

reducing the number of convolutions and parameters. At this 

point, this layer's features are passed as a branch to the 

Detector because it can maintain the detection of smaller 

objects. To better obtain high-level features and increase 

semantic information while considering model lightweighting, 

nearest neighbor upsampling is applied to the upper-level 

features, doubling the size of the feature map. The Conv layer 

receives features from the previous layer and concatenates 

three 1×1 convolutional layers, increasing the model's 

receptive field to cover a larger area of the image. Then, the 

corresponding scale-sized feature map extracted from the 

Encoder is concatenated, followed by another C2f and a 1×1 

standard convolutional layer to reduce the number of 

parameters and computations. This portion of features is then 

split into two branches: one continues to concatenate the 

decoder for the same operations, and the other is output to the 

Detector for detection preparation. This design ultimately 

accumulates three sets of features at different scales, utilizing 

feature mappings of different scales for predictions, enhancing 

RLFDNet's perception of objects of different sizes. 

3) Detector: The different-stage feature maps output from 

the Decoder are passed to the Detector. The main task of the 

Detector is to merge these feature maps and fuse the encoded 

information into the original feature map. It predicts the 

distances between each anchor point and the four edges of the 

target bounding box through the regression branch, 

determining the target's position. The Non-Maximum 

Suppression (NMS) is then applied to filter the generated 

prediction boxes. The Intersection over Union (IoU) 

evaluation metric is used to measure the overlap between two 

prediction boxes. By comparing the IoU values between 

prediction boxes, the model determines whether they belong 

to the same object, ultimately eliminating redundant detection 

results. 

Overall, the RLFDNet model has a concise overall 
architecture design. Through the implementation of multi-scale 
feature fusion, context information aggregation, and the 
introduction of channel attention mechanisms, the model's 
perception and expressive capabilities are enhanced. This 
enables the model to better adapt to the detection of objects of 
different sizes and complexities. With minimal parameter 
settings, the model maintains its lightweight nature, reducing 
memory requirements, making it easy to deploy on low-end 
edge devices, and ensuring good real-time performance. 

C. Loss Function 

The loss function, serving as a guide for adjusting weights 
during backpropagation, measures the error between the 
forward propagation results of a neural network and the ground 
truth values in each iteration. In the implementation of 
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RLFDNet, various commonly used loss functions were 
explored. For the Complete Intersection over Union (CIoU) 
loss function [22], which functions as the bounding box loss, 
the calculation method is as described in Eq. (1) and Eq. (2): 

              
  (     
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IoU represents the intersection ratio of the real bounding 
box and the bounding box.   denotes the minimum diagonal 
length of the bounding box enclosing the predicted box and the 

ground truth box, and   (     
)  represents the Euclidean 

distance between the center points of the ground truth box and 
the predicted box. The calculation method of   and   is shown 
in Eq. (3) and Eq. (4): 

    
  

         
   

            
 

 
   

     
 

             
 

In Eq. (3),    
 and    

 represent the height and width of 
the ground truth box; h and w represent the height and width of 
the prediction box. CIoU Loss function considers the coverage 
area, aspect ratio, and center distance, comprehensively, which 
can measure its relative position well, and solve the problem of 
optimizing the horizontal and vertical directions of the 
prediction box, but this method does not consider the direction 
matching between the target box and the prediction box, which 
leads to a slow convergence speed. Thus, this paper used the 
Smooth Intersection over Union (SIoU) loss function [23]. 
SIoU introduces the optimization of the vector angle between 
the target box and the predicted box and plays a significant role 
in the strawberry detection network through a linear 
combination of four components: angle cost, distance cost, 
shape cost, and IoU cost. Its calculation method is as described 
in Eq. (5) and Eq. (6): 
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where   and     represent a prediction box and a ground 
truth box,   represents the shape cost, ∆ represents the angle 
cost, and the distance cost is redefined.   and ∆ are defined in 
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In Eq. (9),    

  

 and    

  

 represent the coordinates of the 

ground truth bounding box’s center.     and      represent the 

coordinates of the predicted bounding box’s center. 

The SIoU loss function redefines distance loss by 
considering vector angles between required regressions, 
reducing regression freedom, accelerating network 
convergence, and enhancing accuracy. For instance, in densely 
packed rice panicles, SIoU effectively distinguishes 
boundaries, improving detection accuracy and stability. 
Therefore, SIoU is advantageous for detecting dense or small 
targets. 

III. EXPERIMENTS 

A. Experimental Details 

In this study, rice spike images captured at different 
altitudes, including 7m, 12m, and 20m, were used to evaluate 
the RLFDNet model. The detailed dataset information is shown 
in Table I, and images at each altitude were randomly divided 
into training, validation, and test sets in a ratio of 6:1:3. The 
experiments were implemented using the PyTorch deep 
learning framework [24] and accelerated with CUDA. Since 
each image's size was 512×512 pixels, inputting the model 
with the original image size maintained a low resolution, 
aligning more with the requirements of edge devices. To 
ensure the objectivity of results, all methods were trained and 
tested under the same configuration. During training, the batch 
size was set to 16, the learning rate was initialized to 0.01, 
Stochastic Gradient Descent (SGD) optimizer was used with a 
momentum factor of 0.937, and weight decay was set to 5×10

-

4
. To prevent overfitting and enhance model robustness, data 

augmentation techniques were applied, including color 
distortion, random translation, random flipping, random 
scaling, and random cropping. After configuring the relevant 
parameters, the RLFDNet model was optimized for 300 epochs 
based on convergence speed considerations. 

B. Evaluation Metrics 

When establishing a detection model, both precision and 
recall need to be considered. Therefore, this study used metrics 
such as Precision, Recall, F1-score, mAP@0.5, and 
mAP@0.5:0.95 to assess the model's performance and evaluate 
the detection results. The calculation methods for Precision, 
Recall, and F1-score are given by Eq. (10) to Eq. (12): 

   
  

     
 

   
  

     
 

      
𝑃    

𝑃    
 

where, P represents precision, R represents recall, and F1 
represents F1-score. TP (True Positive) denotes the number of 
positive samples correctly classified, TN (True Negative) 
represents the number of negative samples correctly classified. 
FP (False Positive) indicates the number of negative samples 
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incorrectly classified as positive, while FN (False Negative) 
represents the number of positive samples incorrectly classified 
as negative. 

The mean Average Precision (mAP) represents the overall 
performance at different IoU thresholds, including mAP@0.5 
and mAP@0.5:0.95. Here, mAP@0.5 denotes the average 
mAP at an IoU threshold of 0.5, with a higher value indicating 
higher detection accuracy for that category. mAP@0.5:0.95 
represents the average mAP across different IoU thresholds 
(ranging from 0.5 to 0.95 with a step size of 0.05), providing a 
more stringent evaluation of the model's performance. The 
calculation method for mAP is given by Eq. (13): 

   𝑃  
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where, n is the number of classes, in this experiment, there 
is only one class, which is rice spikes, so n=1. In addition, 
since the distribution of rice spikes is dense, evaluating 
counting performance is also meaningful. Here, three metrics 
are used to assess the consistency between predicted and true 
values, including Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and Coefficient of Determination (R

2
). 

Specifically, they are defined by the following Eq. (14) to Eq. 
(16): 
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where,   is the number of samples,    is the true count,   ̂ is 
the predicted count, and   ̅  is the mean of the true counts. 
These metrics provide a quantitative assessment of the model's 
ability to accurately predict the count of rice spikes. The result 
of R

2
 falls within the range [0, 1], indicating the proportion of 

the variance in the predicted values to the variance in the actual 
values near the mean. This metric can be interpreted as the 
goodness of fit of the model, where 1 represents a perfect fit, 
and 0 indicates no linear relationship between the actual counts 
and the predicted values. 

C. Analysis of Counting Performance of RLFDNet 

To comprehensively evaluate the performance of the 
RLFDNet model across different altitudes (7m, 12m, and 
20m), the model was trained and tested on each dataset, and the 
experimental results are presented in Table II. 

Furthermore, Fig. 3 illustrates a linear regression plot, 
which is an indispensable tool in the analysis of counting task 

experiments. It visually presents the counting performance 
differences between RLFDNet model inference and manual 
counting. A closer alignment of points to the perfect prediction 
line indicates better model fitting. The results show that the 
model performs exceptionally well at 7m altitude, 
demonstrating more accurate predictions and higher model 
fitting (R

2
=0.9461). Conversely, at altitudes of 12m and 20m, 

the model's performance slightly decreases, showing larger 
MAE, RMSE, and slightly lower R

2
, indicating potential 

challenges in predicting at these two altitudes. 

A deeper investigation into the performance differences at 
different shooting heights and discussion of the possible 
reasons for these differences were conducted. The variations in 
this regard are mainly influenced by two key factors: shooting 
height and environmental conditions. Firstly, changes in 
shooting height directly affect the size and resolution of 
panicles in the images. At lower altitudes, panicles are 
relatively larger and easier for the model to capture details. At 
higher altitudes, smaller panicles increase the difficulty of 
detection. Secondly, lighting conditions also vary at different 
altitudes, leading to varying degrees of light and shadow in the 
images. Uniform lighting at lower altitudes facilitates the 
model in capturing the edges and details of panicles. 
Conversely, lighting conditions at higher altitudes may be more 
complex, adding to the difficulty of model inference. 

At the same time, Fig. 4 illustrates images with the highest 
prediction errors in each dataset.  Ground Truth (GT) is 
represented by red points in the images, indicating manual 
counting results, while Predicted (PD) is indicated by red 
boxes in the inference images, representing the model's 
inference results.  This aids in understanding the potential 
reasons behind these inaccuracies.  Clearly, these images 
confirm a common notion that they mostly contain significant 
environmental noise.  Factors such as differences in lighting, 
small target sizes, and high density significantly increase the 
difficulty of detection.  In some cases, even experienced human 
experts may find identifying spikes challenging. A 
comprehensive evaluation of counting performance across the 
entire dataset will be further discussed in the next section. 

 
Fig. 3. The linear regression graph, illustrating the variance between 

counting results of RLFDNet model and human counting. 

TABLE II.  RLFDNET'S COMPREHENSIVE PERFORMANCE ACROSS ALTITUDES 

GSD P R mAP@0.5 mAP@0.5:0.95 MAE RMSE R2 

GSD7m 0.915 0.923 0.961 0.691 1.86 2.49 0.946 

GSD12m 0.830 0.813 0.861 0.423 6.97 9.07 0.906 

GSD20m 0.871 0.839 0.907 0.614 15.26 19.29 0.816 
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Fig. 4. Images with the maximum errors at each altitude. (GT: Red points - 

manual counting results; PD: Red boxes - RLFDNet's inference results). 

D. Comparison with different Object Detection Method 

To compare the superiority of the RLFDNet model, six 
advanced and commonly used object detection models, 
including YOLOv5 [25], YOLOv7-tiny [26], YOLOv8 [21], 
CenterNet [27], Faster R-CNN [28], and SSD [29], were 
selected for a comprehensive analysis of evaluation 
performance, counting performance, and model lightweighting. 
To ensure fair and objective results, they were trained and 
tested on identical training, validation, and test sets for each 
altitude dataset. Although this effort was substantial, it was 
meaningful, providing insights into the differences between 
different models and presenting results more objectively. 

1) Performance comparison: The results of the evaluation 

performance for different models are presented in Table III. 

Upon examination of the test results, RLFDNet demonstrated 

satisfactory counting performance. While YOLOv8's results 

were very close, even surpassing RLFDNet in one metric at 

altitudes 12m and 20m, the difference was marginal. Overall, 

RLFDNet outperformed its counterparts. Conversely, other 

models exhibited slightly inferior performance in detecting 

rice panicles at each altitude, particularly Faster R-CNN and 

SSD. This suggests that these models may lack robustness 

when dealing with smaller targets or more complex 

conditions, hindering their ability to achieve highly accurate 

object detection. 

2) Counting performance comparison: Furthermore, a 

detailed analysis of counting performance was conducted for 

each altitude dataset, and the experimental results are 

presented in Table IV. Observations revealed that YOLOv8, 

CenterNet, and RLFDNet consistently demonstrated stable 

prediction performance at each altitude, with RLFDNet 

maintaining the optimal performance. On the other hand, 

Faster R-CNN and SSD exhibited higher errors and lower 

fitting accuracy at higher altitudes, corroborating the results of 

the performance evaluation. These models faced challenges in 

object detection when dealing with smaller targets or more 

complex environments. In contrast, RLFDNet maintained 

relatively good and stable performance even at higher altitudes 

with smaller targets and higher density. The experiments 

indicate that RLFDNet exhibits strong generalization and 

robustness in counting performance. 

TABLE III.  COMPARISON OF EVALUATION PERFORMANCE ACROSS  

DIFFERENT MODELS 

GSD Model F1 mAP@0.5 mAP@0.5:0.95 

GSD7m 

YOLOv5 0.835 0.884 0.528 

YOLOv7-tiny 0.870 0.923 0.609 

YOLOv8 0.919 0.959 0.675 

CenterNet 0.600 0.958 0.756 

Faster R-CNN 0.647 0.654 0.635 

SSD 0.478 0.513 0.463 

RLFDNet 0.942 0.961 0.691 

GSD12m 

YOLOv5 0.818 0.956 0.409 

YOLOv7-tiny 0.554 0.674 0.397 

YOLOv8 0.819 0.860 0.428 

CenterNet 0.638 0.793 0.432 

Faster R-CNN 0.493 0.392 0.364 

SSD 0.317 0.352 0.269 

RLFDNet 0.821 0.861 0.423 

GSD20m 

YOLOv5 0.835 0.883 0.525 

YOLOv7-tiny 0.554 0.678 0.466 

YOLOv8 0.862 0.909 0.608 

CenterNet 0.656 0.877 0.566 

Faster R-CNN 0.369 0.237 0.192 

SSD 0.340 0.361 0.267 

RLFDNet 0.872 0.907 0.614 

TABLE IV.  COMPARISON OF COUNTING PERFORMANCE ACROSS 

DIFFERENT MODELS AT VARIOUS ALTITUDES 

GSD Model MAE RMSE R2 

GSD7m 

YOLOv5 12.38 18.88 0.829 

YOLOv7-tiny 4.04 5.24 0.868 

YOLOv8 1.70 2.98 0.943 

CenterNet 1.70 2.93 0.942 

Faster R-CNN 10.74 11.67 0.843 

SSD 5.84 7.65 0.677 

RLFDNet 1.86 2.49 0.946 

GSD12m 

YOLOv5 6.59 9.65 0.900 

YOLOv7-tiny 8.18 10.59 0.846 

YOLOv8 10.00 12.80 0.873 

CenterNet 9.61 12.12 0.883 

Faster R-CNN 18.51 21.55 0.653 

SSD 28.66 32.87 0.660 

RLFDNet 6.97 9.07 0.906 

GSD20m 

YOLOv5 15.76 23.60 0.816 

YOLOv7-tiny 23.31 29.65 0.549 

YOLOv8 15.34 21.85 0.812 

CenterNet 19.72 24.91 0.696 

Faster R-CNN 27.34 35.57 0.302 

SSD 33.81 42.16 0.195 

RLFDNet 15.26 19.29 0.816 
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3) Model lightweight comparison: After evaluating model 

performance metrics and counting performance, it is crucial to 

consider another key factor in the design of the RLFDNet 

model – achieving lightweightness. To assess different 

models, the number of parameters (Params) is used to reflect 

the total trainable parameters in the network, indicating model 

complexity and its capacity to learn and represent features. 

The calculation is defined by Eq. (17): 

 𝑃      [         ]    

where, i is the input size, k is the convolution kernel size, 
and o is the output size. Regarding inference efficiency, the 
evaluation is conducted using the Frames per Second (FPS) 
metric to reflect the model's inference speed. A higher FPS 
indicates a faster generation of inference results. The 
calculation is defined by Eq. (18): 

  𝑃  
    

                         
 

Here, pre-process, inference, NMS is pre-processing, 
inference, and Non-Maximum Suppression time, respectively 
for each image. 

In this experiment, RLFDNet's efficiency is compared with 
different models. FPS measures the number of image frames 
the model can process per unit time, while Params is a direct 
measure of model complexity and an important constraint for 
deployment. The tests were conducted on an NVIDIA 
GTX1080Ti GPU (8G) device, a lower-end GPU with slower 
computational speed. The results are shown in Fig. 1. It is 
evident that RLFDNet achieves an excellent overall 
performance. Compared to YOLOv5, which is relatively close 
in performance, RLFDNet has only 4% more Params, while 
the FPS has increased by 70%, reaching 80.43 frames per 
second. This improvement is significant, as it maintains a 
relatively small total parameter count while substantially 
enhancing inference efficiency. It contributes greatly to 
deploying the model on low-end edge devices. The size of the 
model's parameter count directly impacts whether individuals 
with budget-friendly devices can enjoy the benefits of 
advanced technology, especially in resource-constrained fields 
such as agriculture, where edge devices, embedded systems, 
and mobile robots provide practitioners with more decision 
support and production management tools. 

IV. DISCUSSION 

This study introduces the RLFDNet model, offering a 
lightweight and real-time method for rice panicle localization 
and counting. The model leverages the lightweight backbone 
CSPDarknet and introduces an innovative strategy in the 
design, maintaining a relatively low image resolution in 
experiments to meet the requirements of edge devices, 
achieving high accuracy and lightweight characteristics. As 
shown in Fig. 5, the model accurately localizes and counts rice 
panicles in four crucial growth stages at different shooting 
heights of 7m, 12m, and 20m. Moreover, RLFDNet 
demonstrates good robustness and adaptability when facing 
common natural factors in the field, such as strong sunlight, 
overcast conditions, and interferences like mutual occlusion, 

varied panicle poses, changes in lighting conditions, and water 
reflections, as depicted in Fig. 6. 

 
Fig. 5. Rice panicle detection results at four different growth stages 

(Example at 7m altitude). 

 
Fig. 6. Detection results of rice panicles in the face of various influencing 

factors (Example at 7m altitude). 

In summary, RLFDNet's design incorporates several key 
innovations: 

1) Multi-Scale receptive fields and feature fusion: 

RLFDNet employs a pyramid network architecture in the 

encoder to capture multi-scale information effectively. 

Different convolutional layers' receptive fields help in 

understanding spatial object relationships, while a feature 

fusion mechanism integrates features from various scales to 

enhance dense target detection. 

2) Reinforcement learning-guided object detection: 

RLFDNet dynamically adjusts its object detection strategy 

during training using reinforcement learning mechanisms.   

This adaptive approach helps the model better adapt to 

changes in altitudes and environmental conditions, enhancing 

performance in complex scenes. 

3) Attention mechanism integration: RLFDNet 

incorporates attention mechanisms at the connections between 

the encoder and decoder, allowing the model to adaptively 

focus on important regions in the image. By introducing 

attention mechanisms, the model learns the importance of 

target regions during training, improving the precision of 

target localization and counting accuracy. 

4) Lightweight design: Prioritizing lightweight design for 

feasible deployment on edge devices, RLFDNet reduces the 

total number of network parameters, enhancing the model's 

inference efficiency. This design decision maintains counting 

performance while strengthening the model's adaptability in 

resource-constrained environments. 

5) Environmental adaptability: Experimental details 

consider different shooting heights and environmental 

conditions, with the model employing a self-adaptive 

adjustment strategy. Learning richer features under varying 

conditions enhances adaptability to complex scenarios, crucial 

for practical rice panicle counting applications. 
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However, while RLFDNet significantly outperforms other 
advanced object detection methods in both accuracy and 
inference efficiency, it acknowledges certain limitations. 
Firstly, as the experiments were conducted at three specific 
altitudes (7m, 12m, and 20m), real-world applications may 
involve different shooting heights not covered in this study, 
potentially affecting inference results due to variations in 
panicle size and density. Secondly, variations in rice panicle 
phenotypes due to different rice varieties in different regions 
could result in suboptimal inference performance, highlighting 
the need for further research in addressing these limitations. 

V. CONCLUSION 

In this research, rice panicle localization and counting 
method named RLFDNet was designed and proposed. A 
concise and efficient encoder-decoder module was further 
developed within the model. A series of experiments 
demonstrated that RLFDNet achieved excellent results in rice 
panicle detection at different shooting heights, providing real-
time and accurate localization and counting of rice panicles. 
With an MAE of 1.86 and an R² of 0.9461, the model showed 
robust performance. Considering various altitudes, the model 
achieved an average accuracy of mAP@0.5 at 0.91, with a total 
parameter count of only 4.40M. The inference efficiency 
reached 80.43 FPS, meeting the requirements for deployment 
on low-end edge devices. This provides a valuable tool for 
farmers and governments in assessing rice yields. In the future, 
exploration will be conducted to test the model with more 
shooting heights and different rice varieties to expand its 
capability to adapt to diverse environmental conditions, such as 
varying lighting and weather patterns, thereby enhancing its 
adaptability and reliability in real agricultural settings. The aim 
is to broaden its applicability across different countries and 
regions while addressing emerging challenges in agricultural 
technology. 
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