
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

684 | P a g e

www.ijacsa.thesai.org

Enhancing the Odia Handwritten Character and

Numeral Recognition System's Performance with an

Ensemble of Deep Neural Networks

Mamatarani Das
1
, Mrutyunjaya Panda

2
, Soumya Sahoo

3

Department of Computer Science and Applications, Utkal University, Bhubaneswar, Odisha, India
1, 3

Department of Computer Science and Engineering, C.V. Raman Global University, Bhubaneswar, Odisha, India
1, 2

Abstract—Offline handwritten character recognition (OHCR)

is considered a challenging task in pattern recognition due to the

inter-class similarity and intra-class variations among the

symbols present in the alphabet set. In this work, a learning-

based weighted average ensemble of deep neural network models

(WEnDNN) is proposed to classify the 10 digits and 47 characters

present in the alphabet set of Odia language, an official language

of India. To build the base model for the ensemble network

(EnDNN), three suitable convolutional neural networks (CNN),

are designed and trained from scratch. The WEnDNN's accuracy

is increased by using a grid search approach to determine the

ideal weight allocations to give to the top-performing model. The

performance of the WEnDNN model is compared with several

standard machine learning models, which take the non-

handcrafted features extracted from the finely tuned, pre-trained

VGG16 model and a combination of Gabor and pixel intensity

values to create handcrafted features. On several benchmark

handwritten datasets, including NITR Odia characters (OHCS

v1.0), ISI Kolkata Odia numerals, and IITBBS Odia numerals,

the performance of the proposed WEnDNN model is assessed

and compared. The experimental results demonstrate that, in

terms of recognition accuracy, the proposed approach beats

other state-of-the-art approaches.

Keywords—Odia language; ensemble learning; machine

learning; Gabor features; CNN; DNN

I. INTRODUCTION

It is possible to recognize a symbol easily with our naked
eye, but hard for a handwritten character recognition (HCR)
model. To reduce this recognition gap between humans and
models and to achieve human-like accuracy, handwritten
character and numeral recognition (HCNR) systems have made
significant advancements in recent years, with various
approaches developed in different languages. These systems
play a crucial role in applications such as document
digitization, automatic form processing, and handwriting
analysis. While numerous methods have been proposed to
tackle this challenging task, researchers are more inclined
towards deep neural networks (DNN). Deep Convolutional
Neural Networks have proven their advantage in getting high
performance in different applications of pattern recognition
tasks when handling large data sets to extract features
automatically.

Acquisition of character images, pre-processing, feature
extraction, and classification make up the three major steps of

the conventional OHCR workflow, and much research in this
paradigm has concentrated on enhancing each of these steps.
For instance, the feature extraction stage has advanced to the
point that many researchers aim to create potent feature
descriptors or vectors referred to as handcrafted in the
literature. The basic goal of feature engineering is to design
features that maximize patterns' separation from other classes
while placing patterns from the same class close to one another
in the feature space.

From the literature, in the late 1990s, study into the
recognition of Odia characters began. The research community
has paid a lot of attention to the most popular Indian scripts,
Devanagari, Bangla, and Telugu, compared to Odia scripts.
Natives of the Indian state of Odisha as well as its neighboring
states, including West Bengal, Chhattisgarh, and Jharkhand,
are fluent in Odia, a popular and official language of India. The
necessity to digitize historical documents available in Odia
literature inspires researchers to create Odia HCRs that have
advantages for both business and society. The advancement of
Odia OHCR needs to be enhanced to meet the requirements of
real-time recognition. Modern schemes use features that are
manually designed (handcrafted), which requires a lot of work.
Several researchers have designed CNN based classification
model to obtain deep features (non-handcrafted features) for
Odia OHCR [1], [2]. In Odia language, most letters have a
perpendicular straight line on the right side, while the upper
portions are mostly circular. The characteristics of similar
characters present as well as the roundish structure and the
randomness of its writing, bring great challenge to the
recognition task, which motivates us to propose an Odia
OHCR model that enhances the classification accuracy in this
regard.

The right selection of feature descriptors still presents the
biggest hurdle in these OHCR systems. Utilizing a method
known as “transfer learning”, those architectures are being
employed for numerous applications all around the world. In
this transfer learning method, the weights of a model that has
already been trained for a particular job are used for a variety
of tasks. Such architectures include VGG16 [3], ResNet,
Xception, DenseNet, MobileNet, InceptionNet, ResNeXt etc.
These architectures differ from one another in terms of depth,
complexity, and size of input data. Despite having been trained
on ImageNet 1000 classes, they are successfully used in all
applications of pattern recognition tasks. According to Odia
OHCR's related work[4], [5], the majority of researchers

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

685 | P a g e

www.ijacsa.thesai.org

choose the model that performs better in terms of accuracy in
classification. Although significant progress has been made in
developing individual handwritten character and numeral
recognition models, their accuracy levels often plateau or show
diminishing returns with increased complexity. This limitation
is primarily due to the inherent variability in handwriting
styles, diverse character and numeral shapes, and the presence
of noise and distortions in handwritten samples. Therefore,
there is a need to explore alternative approaches that can
enhance when solving a classical classification problem using
various trained machine learning or deep learning models, the
model that produces the best results is maintained and the other
models are discarded. If all of the trained models are put
together for classification, that will be a better option, as some
models are good for extracting certain features while some
other models are good for extraction of other kinds of features.
An ensemble of different trained models can be used for this
purpose. In the case of handwritten character recognition using
Convolutional Neural Networks (CNNs), an ensemble of
different CNNs often performs better than a single CNN for
several reasons:

1) Each CNN model in the ensemble is trained

independently on a different subset of the data or with

different initialization weights. By combining their

predictions, the ensemble can help to reduce bias and

overfitting.

2) Ensemble learning can help reduce the impact of errors

made by individual models. If one model misclassifies a

particular handwritten character, other models in the ensemble

may still correctly classify it. Through the combination of

predictions, the ensemble can reduce the overall error rate and

improve the final classification result.

3) Ensemble learning involves averaging the predictions

of individual models. This averaging process helps to smooth

out noisy predictions and reduce the effects of outliers. By

leveraging the collective wisdom of multiple models, the

ensemble can provide a more confident and accurate

prediction.

4) Different CNN models may excel at capturing different

types of features or have different strengths in recognizing

certain patterns. By combining the strengths of multiple

models, the ensemble can achieve a more comprehensive and

discriminative representation of the handwritten characters,

leading to improved classification performance.

Now, there is always the option to employ an ensemble
learning method that boosts efficiency by using several CNN
models for the same tasks. This has inspired researchers that
utilize CNNs for the task of character recognition and to
develop methods for ensembles of networks to enhance CNN
performance. It has been observed from related work that
although many efforts have been made in the area of Odia
OHCR to improve the performance of the model, no work has
presented the ensemble of various CNNs. These models even
result in a further improvement in accuracy of about 1 to 2%
across the models when combined with the ensemble of
different CNN's methodologies outlined in the research. This

motivation led us to the development of EnDNN and
WEnDNN.

This paper presents a novel approach for offline Odia
handwritten character and numeral recognition (OHCNR) by
using an ensemble of deep neural networks and a weighted
average ensemble of deep neural networks. Our main
contributions to this research are as follows:

 Three CNN models are designed from scratch, from a
simple to a slightly complex model, by varying the
feature maps and number of layers, and these CNNs are
combined to create the base model of the ensemble
network (EnDNN).

 A grid search method is used to get the right
combination of weights to be assigned to the best-
performing model to construct a weighted average
ensemble of deep neural network models (WEnDNN),
to boost the ensemble networks’ accuracy.

 Traditional ML models (Random Forest (RF), Support
Vector Machine (SVM), k-Nearest Neighbour (kNN),
and Extreme Gradient Boosting (XG-Boost) are used,
which are trained on non-handcrafted features obtained
from fine-tuned, pre-trained VGG16 model and
handcrafted features extracted by Gabor filters,
combined with pixel intensity values to create feature
descriptor.

 The performance of the WEnDNN model is compared
with the individual CNN, EnDNN and ML models to
show the effectiveness of the proposed work and the
models are verified using a set of benchmark Odia
databases, namely ISI Image database, NITROHCSv1.0
and IITBBS numeral database.

Here is a summary of the remaining portions of the paper:
Some of the most significant studies on deep learning for Odia
and other language OHCNR tasks currently published in the
literature is highlighted in Section II. Section III discusses the
materials and methodology, which covers the description of
DCNN models and their components. The datasets used for the
proposed work are covered in Section IV and the proposed
model architecture is covered in Section V. Section VI reports
the results and discussion, and Section VII provides the
conclusion.

II. RELATED WORK

In the Odia script, like every other script vowels,
consonants, and composite characters (combinations of
characters with other characters) are present. A total of 10
numerals and 47 alphabets (vowels and alphabets) are present
in the Odia script, as shown in Fig. 3(a), 3(b), and 3(c). With
different handwriting styles and high similarity between
different characters, it’s challenging for any system model to
get human-like accuracy. Several works on Odia OHCR were
reported in [6], [7] based on handcrafted feature extraction. In
[8], authors have used curvature features and reduced the
feature set by PCA and with quadratic classifier got a
classification accuracy of 94.6%. In [9] Binary External
Symmetry Axis Constellation (BESAC), features are used with
an accuracy of 95.01 by the k-NN classifier. The authors of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

686 | P a g e

www.ijacsa.thesai.org

[10] used zone centroid distance and standard deviation to
extract features and got 94% accuracy by back propagation NN
with a genetic algorithm approach. [11], [12], [13]–[15], [16],
[17][18] had contributed their work on handwritten Odia
handwritten numeral recognition (Odia OHNR). The same
BESAC features are used for numeral classification, on the
IITBBS numeral dataset [9]. In [19], the authors achieved an
accuracy of 95% by SVM with directional features by zoning
method. In a work of [20], authors used Gradient, curvature
feature, and Feature reduction using PCA fed to low
complexity neural classifier for recognition with an accuracy of
98% by gradient feature and 94% by curvature feature. In [16],
the DCT and DWT coefficients are used by the BPNN
classifier. Several studies have been reported on the ISI
numeral dataset [21][22], [23] with a promising accuracy of
over 90% for handwritten Odia numeral recognition.

The goal of researchers is to increase the optical character
recognition (OCR) model's accuracy, so they are more focused
on deep neural networks and ensembles of networks. To the
best of our knowledge, almost little efforts on deep neural
networks were contributed to the field of Odia OHCR and
OHNR. In [24], the authors proposed RNN and CNN-based
classification techniques for Odia compound characters. To
improve the classification accuracy, different augmentation
techniques were used by [1] to expand the dataset, and
different CNNs were used for the classification of Odia
handwritten numerals and characters. Different deep learning-
based classification models proposed for Bangla OHCR, a
sister language of Odia. In [25], the authors used mobilenet v1
architecture, whereas the authors [26] proposed a hybrid
Bangla OHCR model that is a combination of stacked Bi-
directional Long Short-Term Memory (Bi-LSTM) applied on
the features extracted from CNN. A deep analysis was carried
out by [27] for Bangla OHCR by different deep networks i.e.
InceptionResNetV2, DenseNet121, InceptionNetV3, NASNet,
VGG16, VGG19 and authors claimed InceptionResNetV2 as
the best performing model. An improved CNN based digit
recognition on MNIST dataset with an accuracy of 99.87% by
[28].

Combining CNN models into an "ensemble" is one strategy
for improving the handwritten character recognition system's
accuracy. For the Odia OHCR, very few works based on
ensemble networks were published. Three ensemble learning
methods (AdaBoost, Bagging, and Random Subspace) are
utilized in the study[29], for improved sentiment analysis and
in [30]different features were selected and classified using
Random Forest, which is an ensemble of several decision trees
for Odia vowel recognition. The authors of [31] reported an
offline Tai Le OHCR using ensemble deep learning, with a
DCNN serving as the primary or base classifier. An ensemble
deep learning model is created by stacking several different
base classifiers, and the model achieves an accuracy of more
than 98% on the Devanagari handwritten characters and
MNIST handwritten digits datasets. The base classifiers'
parameter combinations are optimized using a grid search
technique.

Apart from OCR applications, ensemble networks were
used in different fields [23]-[27], and some of the applications
are described below. A deep ensemble network by using

LSTM-B was proposed by [32] to obtain the accurate results of
exchange rates forecasting and to improve the profit of
exchange rates trading. The authors of [33] proposed a deep
ensemble learning algorithm on a variety of datasets, including
those for letter recognition, cancer, diabetes, heart disease,
thyroid, etc., which determines the ensemble size, the number
of hidden nodes in a neural network, etc. In [34] the authors
used CNN as an ensemble model for object detection by
selecting the region from each CNN model is combined,
classified, and finally voted. Automated audio classification is
proposed by [35] that fuses different types of features extracted
from audio files and uses different pre-trained CNN models
AlexNet, GoogleNet, VGG16, VGG19, ResNet50,
InceptionV3 as ensemble and got the maximum accuracy of
99.3% by using ensemble DL and handcrafted features. In [36],
the authors used an ensemble model for crash prediction model
using road geometric alignments (CPM-GA) with three
traditional models NB model and IHSDM-China and IHSDM-
US models, and CART+SVM, RF + SVM, CART + BPNN,
RF + BPNN as base models of the ensemble by selecting the
model by model prediction test and model’s sensitivity test.
The results of the ensemble learning CPM-GAs using the
IHSDM + China model and CART + SVM model are
promising. Due to their improved accuracy, increased
robustness, and scalability in model design for character
recognition, ensemble models are becoming more and more
popular nowadays. Utilizing ensemble data mining techniques
for the classification of skin diseases is reported in [42][43]. It
explores methods to enhance accuracy and reliability in
diagnosing skin conditions through ensemble data mining
techniques. To improve optical character recognition (OCR)
performance by employing an ensemble of Support Vector
Machine (SVM), Multi-Layer Perceptron (MLP), and Extra
Trees classifiers is shown in [44]. An ensemble model
composed of Convolutional Neural Networks (CNNs) for
classifying cloud image patches, particularly on small datasets
addresses the challenge of achieving accurate classification
results with limited data and is proposed in [45].

III. MATERIALS USED

This section discusses all the materials and methodologies
that are utilized to construct the proposed ensemble model of
deep neural networks.

A. Deep CNN Models

Due to the non-linear behavior of neural network models,
CNNs can learn the complex nonlinear relationships in the
given input data. Convolutional layers, pooling layers, and
fully connected dense layers are the three fundamental layers
that make up the conventional CNN structure. These layers are
repeated to make an NN to a deep CNN, and it is shown in
Fig. 1.

Fig. 1. Basic structure of a deep convolutional neural network.

1) Convolutional layer: These layers identify patterns in

images by sliding a filter over the input image to produce a

feature space or feature map. If the input image is directly

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

687 | P a g e

www.ijacsa.thesai.org

connected to the fully connected layer for classification, we

may get the result, but the complexity increases when the

input image size is large and the number of images is greater.

The expensive computation and the cost reduction can be

achieved by including the convolution and pooling layers. The

basic convolution operation in convolutional layer is

represented mathematically in Eq. (1), where f (x, y) is the

input image, c (x, y) is the convolved image and h (x, y) is the

filter or kernel.

 () () () (1)

The advantage of CNN can be taken to extract important
features by reducing the image dimension and keeping
important features for better prediction. It learns images by
applying a filter of a certain size while maintaining translation
invariance, in addition to learning the features from the data.
The convolutional layer has several learnable filters, each of
which can be thought of as a matrix. The convolutional layer
produces numerous feature maps (also known as activation
maps), and these feature maps corresponding to distinct filters
are layered together along the depth dimension. Each member
of the matrix or filter serves as a parameter (weight and bias) of
neural networks. The convolutional layer’s operational
structure is shown in Fig. 2(a).

The basic component of a convolution operation in a
convolutional layer is the kernel. The features or significant
patterns in an image are extracted from the image using a filter
called a kernel. It is a matrix () that traverses the input
image (), performs a dot product with the sub-region of
the input data, and produces the matrix () of values from
the dot product. To obtain another value in the feature map, the
kernel moves the input image by a stride value.

2) Pooling layers: This layer down-samples the features

in the feature map by reducing their dimension. It also

introduces translation invariance, i.e., even if the CNN input

image is translated, the CNN will still be able to recognize the

features, which reduces the CNN model's tendency to overfit

data. The quantity of network computation and the number of

parameters to learn are both decreased by the pooling layer.

The two most common pooling methods are max-pooling and

average pooling, as shown in Fig. 2(b). The most prominent

patterns of the feature map are retained as a result of max

pooling, and the resulting image is sharper than the original.

Max pooling operates by choosing the maximum value from

each pool. By averaging the pool, the average pooling layer

operates and it smooths the image by maintaining the image

feature's essential qualities.

3) Fully connected dense layer: A dense layer is one

whose interior neurons are connected to every neuron in the

layer preceding to it. Finally, it is connected with the number

of units, the same as the number of classes, and produces

output. A CNN model employs one or more FC layers

following a series of convolutional, ReLU, or pooling layers

to produce the output. The way FC layer works is similar to

how classic neural networks work in that it combines all of the

features that the earlier layers have acquired in order to find

more important patterns. The main issue with the fully

connected layer is that it has a lot of trainable parameters and

requires a lot of computation to train. Therefore, current

research efforts are concentrated on either lowering these

layers or substituting methods that may accomplish the same

purpose with less computational effort for the layers. A soft-

max function is utilized to determine the class label by giving

each class a probability distribution after the final FC layer.

The operational structure of a fully connected layer is shown

in Fig. 2(c).

(a)

(b)

(c)

Fig. 2. (a) The basic operational structure of the convolutional operation. (b)

The basic operational structure of pooling. (c) The basic operational structure
of fully connected layer.

4) Rectified Linear Unit (ReLU) Activation: After the

convolutional layer, the ReLU layer is frequently used, which

introduces non-linearity to the output. All negative input

values are mapped to zero in this layer, R (I) = max (0, I), and

its operation is denoted by the following Eq. (2):

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

688 | P a g e

www.ijacsa.thesai.org

 ()

 (2)

ReLU activation function has several advantages, including
computing efficiency, quicker convergence than non-linear
functions like sigmoid and tanh, and protection against
vanishing gradient issues.

5) Softmax activation: The activation function known as

softmax, scales numbers into probabilities that generate a

vector V with probabilities for each class. The sum of all

output values in the V adds up to 1. It is defined in Eq. (3),

where y is the vector of possible outcomes of n elements for n

classes, is input to the softmax function and yj is the j
th

element of vector y.

 ()

∑

 (3)

6) Cross-entropy as loss function: The cross-entropy loss

quantifies the dissimilarity between the predicted class

probabilities and the actual class labels. It penalizes the model

for assigning low probabilities to the correct class and

assigning high probabilities to incorrect classes. The loss

value is larger when the model's predicted probabilities

deviate further from the true expected values. During the

training process, the model's weights are adjusted to minimize

the cross-entropy loss. By iteratively updating the weights

using techniques like gradient descent, the model learns to

improve its predictions and reduce the loss. As the model gets

better at classifying the handwritten characters, the loss

decreases. Cross entropy is defined in Eq. (4), where tj is the

true label and pj is the class probability value computed by the

softmax activation function for class j.

 ∑ ()

 (4)

IV. DATABASES

A benchmark database is necessary for any text recognition
research to be successful. For efficient classifier or recognizer
training, large databases are needed. The accuracy of
recognition is entirely dependent on the type of feature
extractor employed and the number of training samples taken
from the database because of cursive scripts and various
handwriting styles. The databases used for our study are shown
in Table I, and sample images from the databases are shown in
Fig. 3. The NITROHCSv1.0 data set is publicly available on
the NIT Rourkela website, IITBBS numeral, and ISI image
database will be available on request. These three databases are
only available to the research community on the handwritten
character recognition of the Odia language.

TABLE I. HANDWRITTEN ODIA CHARACTER AND NUMERAL DATASETS

Database Training Size Testing Size

ISI Image Database 4,970 1,000

IITBBS Numeral Database 4,000 1,000

NITROHCSv1.0 10,528 4,512

1) ISI image database: An isolated database of

handwritten Odia numerals was created in 2005 by [37] at ISI

Kolkata, India. There were precisely 356 participants in the

data collection procedure. It has 5,970 samples that were

gathered via 166 application forms, and 105 pieces of mail,

and the remaining samples were personally collected. The data

set is then split into a training set and a test set, consisting of

4,970 samples and 1,000 samples, respectively. Sample

numeral images of the ISI Image Database are shown in

Fig. 3(a).

2) IITBBS numeral database: A new database for Odia

numerals has been discussed by the authors [38] at the IIT in

Bhubaneswar. At 300 and 600 dpi, the images were scanned.

The IITBBS numeral database now has 5,000 handwritten

examples of Odia numbers, and the database contains 10

classes and the sample numeral images are displayed in

Fig. 3(b).

3) NITR OHCSv1.0 character database: Databases are

also created and defined at NIT Rourkela by [39], which

contains an Odia alphabet with 47 classes. There are 15,040

samples of atomic characters from the Odia language in the

OHCSv1.0 database, each class contains 320 images. Data

collection, picture enhancement, and size normalization are

the procedures used in the construction of the database using

the Odia character set. The database is split into 70:30 ratios

for train and test sets. The total number of images in the train

and test set is 10,528 and 4,512. Fig. 3(a) represents Odia

character images of the NITR OHCSv1.0 database.

(a)

(b)

(c)

Fig. 3. (a) Sample characters of NITROHCSv1.0 database. (b) Sample

numerals of ISI Image numeral database. (c) Sample numerals of IITBBS

numeral database.

V. METHODOLOGY

The following are the steps of the experimental
environment for the Odia handwritten character and numeral
recognition model (OHCNR), which is shown in Fig. 4.

 Load handwritten images from the training and test sets.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

689 | P a g e

www.ijacsa.thesai.org

 Convert the images to grayscale.

 Normalize the pixel values of the grayscale images to a
range of 0 to 1. This enhances the training of the neural
network (NN) model.

 Design three CNNs as base models for the Ensemble
Deep Neural Network (EnDNN).

 Construct the EnDNN by integrating the three designed
CNNs.

Select the right combination of weights by the grid search
method to be assigned to the best-performing model to
construct WEnDNN.

Fig. 4. Proposed OHCNR model.

1) Designed CNN models as base model for EnDNN: To

achieve high recognition accuracy, a character and numeral

classifier based on a convolutional neural network (CNN) is

used. Convolutional, max-pooling, fully-connected, and

softmax layers are used in the construction of three different

CNN-based handwritten digit classifiers. Additionally, the

training is carried out utilizing the back-propagation method

with mini-batches of size 28 and the adam optimization

methodology. When an image is processed for a character

recognition task, the crucial features are retained in the

convolution layers, intensified, and maintained throughout the

network, while the irrelevant information is eliminated by the

pooling operation. Fig. 5 lists the parameters utilized in all

three created CNN classifiers, each of which has a distinct

number of convolutional layers, kernel sizes, filters, and

strides.

For instance, the CNN1 depicted in Fig. 5(a) contains one
output layers of 10 classes, 2 max pooling layers, 3
convolutional layers, and 1 fully-connected layers. The size of
kernel, stride value, and number of filters in the first
convolutional layer are 3 x 3, 1, and 32 with an activation
function ReLU. For down sampling, pool of size (2,2) is
applied in max-pooling layer, next to convolutional layer to
reduce the dimensions with a dropout value of 20%. The
second convolutional layer of filter size (3,3) and 64 number of
filters are used with a dropout value of 20%. 128 filters with a
(3,3) filter size are put in the third layer. Next the feature map
is flattened to create one dimensional feature vector and one
fully-connected dense layers are used, which are connected
with 10 output classes. To calculate the class probabilities for
three CNN models, ReLU activation function is utilized in the

hidden layer and softmax activation function is used in the
output layer. Categorical cross entropy is used as the loss
function, and iteratively updating network weights based on
training data is done using the adaptive moment estimation
(adam) optimization method. The input images are fed to the
network taking 28 images as a batch at a time and epoch size is
10. In Fig. 5(b) and 5(c), the other two classifiers'
convolutional, max pooling, and fully connected layer counts
with activation functions are displayed.

Fig. 5. (a) CNN1 architecture. (b) CNN2 architecture. (c) CNN3

architecture.

a) Steps of the recognition process by CNN: The

handwritten characters and numeral recognition process, using

a Convolutional Neural Network (CNN), typically involves

the following steps:

i) Data Acquisition: Collect Odia handwritten dataset

ii) Data Split: Creating training and test sets from the

dataset. The model is trained using the training set, and its

performance is assessed using the test set.

iii) Pre-processing: Applying pre-processing techniques to

the images in both the training and test datasets like resizing

the images to a consistent size, applying image enhancement

techniques, and normalization.

iv) Data Normalization: Normalizing the pixel values of

the images so that they range from 0 to 1. This step helps in

improving the convergence of the neural network during

training and ensures that all features have a similar scale.

v) Batch Training: Dividing the training dataset into

batches of a suitable size. Batch training involves feeding a

subset of the training data to the network at a time instead of

using the entire dataset in one go. This approach facilitates

efficient computation and allows the network to update its

weights based on smaller subsets of data at each iteration.

vi) Model Training: Training the CNN model and its

variants using the labelled training data. This step involves

feeding the batches of training images to the network,

performing forward and backward propagation, and adjusting

the network's weights using optimization techniques like

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

690 | P a g e

www.ijacsa.thesai.org

gradient descent. The training process aims to minimize the

difference between the predicted output and the actual labels.

vii) Classification: Using a trained model to classify new,

unseen images. This involves passing the test images through

the trained network and obtaining predictions for each image.

The predicted labels are compared to the true labels to

evaluate the model's accuracy.

viii) Performance Analysis: Analysing the recognition

accuracy and processing time for all the variants of the trained

model. This step includes calculating metrics such as

accuracy, precision, recall, and F1 score to assess the model's

performance. Processing time can be measured during both

training and classification phases to evaluate the efficiency of

different model architectures and training strategies.

2) Ensemble of Deep Neural Networks (EnDNN):

Ensemble is the process of combining several learning

algorithms to improve the performance of existing models by

combining different models into a single reliable model. There

is now always the choice to use an ensemble learning

approach, which increases efficiency by applying a number of

CNN models to the same tasks. By training numerous models

instead of just one and combining their predictions, neural

network models can successfully reduce their variance. So, the

ensemble learning method, not only lowers the variance of

predictions but also has the potential to produce predictions

that are superior to those produced by a single model.

In a CNN, the produced output probabilities are o1, o2, o3
.. on, where ∑ , for an unseen image x of n-class
classification, the CNN determines the unseen image x belongs
to the class i with the greatest likelihood probability oi. In our
study, the proposed CNNs should provide a probability value
to each unseen test image that it was labelled by either of the
10 numerals for numeral recognition or 47-character classes for
character recognition. Class probabilities for each image,
derived by the individual CNN’s, will be the input of our
ensemble of networks and the ensemble algorithm is shown in
Algorithm 1. Every individual model will make a prediction
based on the test data. The ensemble approach combines the
predictions of the three CNN models by summing their
predicted probabilities and selecting the class with the highest
summed probability as the final prediction.

Algorithm 1: EnDNN: The algorithm evaluates the

performance of three designed CNN models individually and

an ensemble of the three models by comparing their predicted

labels with the true labels.

1. Load the dataset of Odia character or numeral images along

with their corresponding class labels.

2. For each image in the dataset:

 Apply pre-processing techniques such as

resizing, RGB to Gray conversion and

normalization.

3. Define three sets of convolutional neural network (CNN)

models as the base models for the ensemble. (The
architecture of each model is defined in Section 5)

4. Split the pre-processed dataset into training and test sets.

 For each base model in the ensemble:

 Train the model on the training set using adam

as an optimizer and categorical – cross entropy

to compute loss.

 Evaluate the model's performance on the test

set to measure its individual recognition

accuracy.

 Save these models as CNN1, CNN2, CNN3.

5. Load these pre-trained models: CNN1, CNN2, CNN3.

6. For each model in the list of models, do the following:

 Predict the output for the test data and store the
predictions in the prediction list.

7. Sum the prediction probabilities of each test image for each
class obtained from different models of ensemble DNNs.

8. Determine each test image's maximum class recognition

accuracy from the summed prediction values of an

ensemble of DNN as ensemble accuracy:

 For each test image in the dataset:

 Determine the class or category with the highest
summed prediction value.

 Compare this prediction with the ground truth label
of the image.

 Calculate the ensemble accuracy by measuring the
percentage of correctly recognized test images

3) Weighted ensemble of DNNs (WEnDNN): Since deep

learning models differ in architecture and complexity, not all

of them produce the same outputs; some produce superior

output than others. To get the maximum output from any

model, it would be beneficial if we gave larger weights to the

better-performing models. Weighted ensemble learning is a

variation of ensemble learning where different models in the

ensemble are assigned different weights to determine their

contribution to the final prediction. In the case of handwritten

character recognition using a weighted ensemble of different

CNNs, it can perform better because assigning different

weights to individual CNN models allows the ensemble to

emphasize the strengths of each model. Certain CNN models

may be particularly effective at recognizing specific types of

handwritten characters or capturing certain features. Models

that consistently produce more accurate predictions can be

assigned higher weights, while models with lower accuracy

can be assigned lower weights. By assigning higher weights to

these specialized models, the ensemble can benefit from their

expertise and improve the classification accuracy for the

corresponding classes.

Finding the ideal mixture of model weights is the issue in
this situation, and the grid search method is employed to
achieve this. To determine the best weight, various weight
combinations were tested. The search procedure will continue
until it has checked every combination, at which point the
algorithm will give us the ideal weight combination that
maximizes accuracy. We multiply the output probability values
outputij of CNNj (i =1,2 and 3) by ωeightj (j = 1,2, and 3) after
determining the appropriate weights for all the individual
CNNs, and the class probabilities are calculatedwe using the
weighted output probability values ωeightjoutputij instead of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

691 | P a g e

www.ijacsa.thesai.org

the original outputij ones. The weighted ensemble algorithm is
shown in Algorithm 2.

Algorithm 2: WEnDNN: This algorithm outlines the steps

involved in generating predictions using an ensemble of

DNNs with different weighting schemes and evaluating the

accuracy of the weighted ensemble predictions on the test

data.

1. Create a list for an ensemble of models, called models, and

add the models (CNN1, CNN2, and CNN3) to it.

2. Initialize equal weights for each base model in the ensemble.

3. For each model in models, do the following:

 Predict the output for each image in test set and store the

predictions in the predictions list, where each base model’s

prediction should be weighted equally at the start.

predictions ← [prediction1, prediction2, prediction3]

4. Generate different combinations of weights for the base

models in the ensemble.

weights ← [weight1, weight2, weight3]

5. For each possible weight combination, multiply each

prediction by its corresponding weight.

weighted_predictions ← predictioni * weighti, where i = 1,2,3

6. For each test data instance, determine the weighted ensemble

prediction by selecting the maximum value among the

weighted predictions.

 Combine the predictions from different models and

choose the prediction with the highest weighted value.

weighted_ensemble_prediction←maximum

(weighted_prediction)

7. Compare the weighted ensemble predictions to the ground

truth labels of the test data.

 Calculate the accuracy of the weighted ensemble by

measuring the percentage of correctly predicted instances.

4) OHCNR model with deep and hand-crafted features: In

order to evaluate the performance of the proposed OHCNR

model, two more experiments were carried out by extracting

deep features using a pre-trained VGG16 model and

handcrafted features from Gabor filter that captures texture

features and pixel-level features from the images and use these

features to train and test machine learning models for

recognition purpose.

a) Extraction of deep features from pre-trained VGG16

model: The researchers use a variety of strategies to extract the

pertinent features, whether handcrafted or non-handcrafted.

Automatic feature extraction techniques have grown in

popularity in recent years for solving character recognition

problems due to their capacity to extract robust features. For

non-handcrafted feature extraction, transfer learning techniques

have recently been applied. A learned model for one problem is

used for solving another problem, a process known as transfer

learning. Diverse pre-trained models, including VGG16

(Visual Geometry Group), VGG19, InceptionV3,

MobileNetV2, Resnet50, ResNetV2, Xception, DenseNet, etc.,

are used in transfer learning. The weights of the pre-trained

models are used for the training process for the new problem.

These pre-trained models are used for classification tasks,

stand-alone or integrated feature extraction processes, and

weight initialization. These non-handcrafted features are fed to

RF, SVM, kNN, and XG Boost to train these models and

compare the results with the proposed state-of-the-art model.

Data from a subset of the ImageNet dataset, which consists
of over 14 million photos organized into 22,000 classes, was
used to train a DCNN variation called VGG16 [3]. The
VGG16 Model has 16 convolutional layers and, 5 max pooling
layers connected to convolutional layers of 5 different blocks, 3
dense layers for the fully-connected layer, and an output layer
with 1,000 nodes. The model architecture of VGG16 is shown
in Fig. 6(a). To extract the deep features from the handwritten
character image can be possible by removing the last few
layers (fully connected layers) from the VGG16 model, as they
are specific to classification, and retaining the convolutional
layers, and its architecture is shown in Fig. 6(b). The filters of
size (3,3) is used at different layers to extract deep features
automatically. The filters and extracted features after layers
Block1-Conv1, Block1-Pool, Block3-Conv2, Block4-Conv1
and Block5-Conv1 by VGG16 model for the Odia digit 3 is
shown in Fig. 6(c).

(a)

(b)

VGG16-Filters Block1-Conv1 Block1-Pool1

Block3-Conv2 Block4-Conv1 Block5-Conv1

(c)

Fig. 6. (a) VGG16 Model architecture. (b) Deep feature extraction from

VGG16 model. (c) Extracted features at different layers of VGG16 model.

b) Extraction of hand-crafted features using Gabor

filter bank, pixel intensity values: According to the literature,

the feature extraction stage of OCR is the one that most heavily

influences any system's accuracy among all other OCR stages.

Different hand-crafted features that can be extracted from an

image are structural or geometrical features. Either the entire

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

692 | P a g e

www.ijacsa.thesai.org

image or the features that were taken from it serve as the input

to any OCR. An image is made up of high-frequency

components that originate from the edges, or the sudden

changes in intensity values, and low-frequency components

that make up the image's smooth sections. Any image must be

transformed into a specific domain to be analyzed. In [40], to

extract the discriminant features from a picture, image

transformation is an essential step. Gabor filters are typically

employed in texture analysis, edge detection, feature

extraction, and other aspects of image processing and computer

vision since they are independent of light, rotation, scale, and

translation. They also infer optimal localization, making them a

strong candidate for feature extraction issues.

In our study, 2D Gabor filter bank [41] is used. It is a
sinusoidal plane with a certain frequency and orientation that is
modulated by a Gaussian envelope is known as a 2D Gabor
filter. The Gaussian component provides the weight, and the
sine component provides the directionality. By using the Gabor
filter, a bank of filters that can be used to detect and extract
textures present in an image are created. The Gabor filter has a
real and an imaginary component, as shown in Eq. (5), (6), and
(7).

 () (

) ((

))

(5)

The real part and imaginary parts are represented as:

 () (

) ((

))

(6)

 () (

) ((

))

(7)

Where,

The parameters are (x, y) is size of the kernel, is the
standard deviation or sigma of the Gaussian envelope, is the
phase offset, is the orientation of the Gabor function, is
spatial aspect ratio and is the wavelength of sinusoidal
component. These five parameters determine the magnitude
and shape of the Gabor function shown in Table II. By
adjusting these parameters, a variety of Gabor filters can be
applied to extract relevant characteristics from an image.

In our study, a bank of Gabor filters with a constant
frequency for various standard deviations (1.5, 2, 2.5) and

orientation values (

), are created to extract features.

For every handwritten image, nine Gabor filters (GF) are
created which are convoluted on original image to get the
filtered image. The largest response occurs at edges and
locations where texture changes when a Gabor filter is applied
to an image. Also, the pixel intensity values are included to the
handcrafted feature descriptor (HFD) as shown below:

The sample two numeral images (0, 3) and character
images (ma, pa) and their transformation following the
application of the filter are shown in Fig. 7.

TABLE II. GABOR KERNEL PARAMETERS

Gabor Kernel

Parameters
Purpose

Sigma ()
Determines the total size of the Gabor envelope. The

envelope grows to allow more stripes when the bandwidth
is bigger, and it shrinks when the bandwidth is smaller.

Aspect ratio ()
Determines the height of the Gabor function, height

increases at very low gamma values and falls at very high
aspect ratios.

Theta ()
Determines the Gabor function's orientation. Theta at

and 0 degree represents the horizontal and vertical

positions of the Gabor function.

Wavelength ()
It controls the strips' width. When the wavelength is

lowered, stripes are thinner; when the wavelength is

increased, stripes are thicker.

Phase offset

()

Varying the phase offset can help in detecting edges or
texture patterns in different orientations and locations

within an image.

c) Classification by machine learning algorithms:

Utilizing the Support Vector Machine (SVM), Random Forest

(RF), XG Boost, and k-Nearest Neighbor (kNN) algorithms,

the performance of the proposed OHCNR model is compared

with these techniques.

i) Random Forest: Random Forest is a bunch of decision

trees (DT), a supervised learning methodology that can be

applied to classification problems based on the idea of

ensemble learning (EL). The method of integrating various

classifiers to address complex problems and improve model

performance is known as EL. Random forest takes a random

subset from the training dataset, and adds some duplicate

instances to make the same size as the training set. This is

called a bootstrapped dataset, and its working procedure is

shown in Fig. 8(a). So many DT’s are trained on these various

subsets of the training set, and it takes the average value to

make the decision. Instead of depending on a single decision

tree, the random forest uses decisions from all of the trees to

anticipate the outcome based on majority voting. The root of

RF takes a random subset of features available and picks the

one that gives the best split in data based on Gini impurity, as

shown in Eq. (8), where C is the number of classes and p(i) is

the probability of randomly picking an element of class i.

 ∑ () (())
 (8)

ii) Support Vector Machine: A supervised machine

learning technique called SVM requires labelled data. The

goal of the SVM algorithm is to find the best decision

boundary or line that divides the data into "n" classes so that

following data points can be promptly classified into the

appropriate class category. This ideal decision boundary is

known as the “hyperplane”. Mathematically, any hyperplane

can be represented as in Eq. (9), where xi is the feature value.

∑

 (9)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

693 | P a g e

www.ijacsa.thesai.org

Fig. 7. Input, Gabor filter and filtered image.

(a)

(b)

(c)

Fig. 8. (a) Working procedure of random forest. (b) Working procedure of

support vector machine. (c) Working procedure of k – Nearest neighbor.

Support vectors are the data points or vectors that are
closest to the hyperplane and have the biggest impact on where
the hyperplane is located, as seen in Fig. 8(b).

iii) Extreme Gradient Boosting (XG Boost): Gradient

boosting is the technique of "boosting" or strengthening a

single weak model by combining it with a number of

additional weak models to produce a more reliable model all

together. The XG Boost is a gradient boosting solution that

pushes the limits of processing power for boosted tree

algorithms. It is scalable and incredibly accurate. It was

developed mainly to improve the efficiency and performance

of machine learning models. In addition to building trees, XG

Boost also evaluates the quality of splits at each potential split

in the training set by scanning through gradient values level-

wise and using these partial sums.

iv) K-Nearest Neighbor (kNN): One of the fundamental

classification algorithms, the k-nearest neighbor algorithm, is

well-liked for its effectiveness and simplicity. It stores the

training dataset rather than learning from it immediately,

which makes it a lazy learner algorithm. The algorithm selects

k, the number of the nearest data points or neighbors, then

calculates the Euclidean distance of the k number of

neighbors, and its working process is shown in Fig. 8(c). The

most popular classes are selected and given to the test pattern

in the k-NN algorithm after searching for the closest training

patterns for each test pattern. Some of the method's limitations

are that it stores the complete training set for testing purposes,

searches the entire training set in order to categorize a certain

pattern, and that classification performance suffers in the

presence of noisy data.

VI. RESULT ANALYSIS

A PC with a 2.81 GHz processor and 16 GB of RAM was
used to implement both the proposed character recognition
model and the state-of-the-art models. The EnDNN model is
implemented in Python to evaluate its recognition accuracy of
handwritten characters and numerals. Training and validation
accuracy are computed for the three different CNN, EnDNN,
and WEnDNN models. Three standard benchmark datasets of
handwritten Odia characters are used to evaluate the
performance of the proposed model. Table I lists the number of
samples used in training and testing for each dataset. The
accuracy is calculated by using a confusion matrix and is
defined as the number of correct predictions by the classifier
based on the total number of predictions. For our study, in a
random forest model, 50 decision trees are ensembled. The
handcrafted features for our study were a combination of pixel
intensity values (PV) as well as features extracted from Gabor
filters (GF). The Gabor filters are applied to original images
with the following parameters: Image size (x, y) = (9,9)
 1.5, 2, 2.5 , and
 The classification result obtained from different experiments
by these models with handcrafted and non-handcrafted feature
descriptors is shown in Table III.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

694 | P a g e

www.ijacsa.thesai.org

TABLE III. PERFORMANCE ANALYSIS OF THE PROPOSED MODEL

Approach Descriptor

Datasets

ISI Image

–

numeral

(10

classes)

IITBBS-

numeral

(10

classes)

NITROHCS –

character (47

classes)

1.

Handcrafted

features with
ML

algorithms

Pixel value

+Gabor + RF
95.80 90.34 91.93

Pixel value +

Gabor +
SVM

94.81 89.52 90.62

Pixel value

+Gabor +

XG Boost

94.21 91.21 90.01

Pixel value

+Gabor +

kNN

92.51 88.78 89.85

2.Non-

handcrafted
feature with

VGG16 + ML

algorithms

VGG16 + RF 98.61 93.37 93.59

VGG16 +

SVM
98.21 92.54 88.58

VGG16 + XG

Boost
98.67 95.03 93.35

VGG16 + k

NN
98.50 92.63 88.36

3.Non-

handcrafted

feature with
NN

CNN1 97.92 96.31 96.11

CNN2 98.12 95.40 94.73

CNN3 96.33 95.73 95.19

4.Ensemble of

Deep learning

models

EnDNN 98.33 96.13 96.31

5.Weighted
Ensemble of

Deep learning

models

WEnDNN 98.78 96.81 96.45

Table III and Fig. 9 investigate the performance of the
WEnDNN model under different datasets. The proposed state-
of-the-art model’s performance was also compared with other
approaches (1-5). The experimental results highlighted that the
proposed WEnDNN model has gained maximum recognition
performance for all handwritten characters as well as numeral
recognition. This is because each model in the ensemble might
focus on different aspects of the input data, capturing distinct
patterns and characteristics of handwritten characters. Each
CNN model in an ensemble learns different representations or
features from the input data. Combining these diverse
representations allows the ensemble to capture a broader range
of patterns and variations in handwritten characters. By
combining the strengths of multiple models, the ensemble can
achieve a more comprehensive and discriminative
representation of the handwritten characters, leading to
improved classification performance in EnDNN. In case of
WEnDNN, the weights assigned to CNN models can be
dynamically adjusted based on their performance on validation
data or during training. By continuously adjusting the weights,
the WEnDNN optimizes its performance, leading to improved
classification accuracy.

Fig. 9. Result analysis of proposed ensemble model and different ML

models with hand-crafted and non-handcrafted features.

The training and validation accuracy as well as training and
validation loss of CNN1, CNN2, and CNN3 for the ISI image
database are shown in Fig. 11. The confusion matrix and
fraction of incorrect predictions of the proposed WEnDNN for
the ISI Image numeral database are shown in Fig. 12(a).
Structural difference between the numerals present in Odia
language is shown in Fig. 10, which leads to more
misclassification results. From Fig. 12(b), it is clear that the
incorrect prediction of the numeral six() is more compared

to other numerals, as six() is predicted as nine (), three()

or seven().

90

95

100

CNN1 CNN2 CNN3 EnDNN WEnDNN

Classification accuracy - CNNs, EnDNN and
WEnDNN models

ISI numeral IITBBS numeral OHCSv1.0 character

80

85

90

95

100

RF SVM XG Boost kNN

Classification accuracy - RF, kNN, SVM and
XG Boost models with extracted features

from VGG16

ISI numeral IITBBS numeral OHCSv1.0 character

85

90

95

100

RF SVM XG Boost kNN

Classification accuracy - RF, SVM, XG Boost
and kNN models with handcrafted GF and PV

features

ISI numeral IITBBS numeral OHCSv1.0 character

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

695 | P a g e

www.ijacsa.thesai.org

One (eka)

Three (tini)

Six (chha)

Seven (sata)

Nine (na)

Fig. 10. Structurally different numerals in ISI Kolkata Image database.

CNN# Training and validation loss
Training and validation

accuracy

CNN1

CNN2

CNN3

Fig. 11. The training and validation accuracy and loss at each epoch of ISI

numeral database.

(a)

(b)

Fig. 12. (a) Confusion matrix of WEnDNN. (b) Fraction of incorrect

predictions of WEnDNN.

WEnDNN can also handle the noise in a more effective
way. When noise is present in the data, different models may
have different levels of sensitivity to noise. By combining their
predictions with appropriate weights, the ensemble can reduce
the impact of noise by relying more on the predictions of
models that are less affected by the noise. If a particular CNN
model is more susceptible to noise and tends to produce
incorrect predictions for noisy samples, its weight can be
reduced. Other models that are more accurate in the presence
of noise can be assigned higher weights. By giving more
importance to the predictions of robust models, the ensemble
can mitigate the effects of noise and make more reliable
classifications.

A comparison among the performance of ensemble model
applied on applications is shown in Table IV.

TABLE IV. DIFFERENT ENSEMBLE LEARNING APPLICATIONS

Reference
Application

field
Method

of

classes
Accuracy

[42] skin disease
Ensemble CART,
SVM, DT, RF,

GBDT

6 95.9%

[43] skin disease

Ensemble using
Bagging, AdaBoost

and Gradient

Boosting classifier
techniques; PAC,

LDA, RNC, BNB,

NB, ETC

6

98.56% -
Bagging

99.25% -

AdaBoost
99.68% -

Gradient

Boosting

[44] OCR

Ensemble of

Decision Trees,

Random Forest,
Extra Trees

Classifier, MLP,

and SVM for the
detection of printed

regions in an

invoice

- 94.53%

[31] OCR

Ensemble of 30
deep convolutional

neural network

model was
constructed using a

stacking method

35 98.85%

[45]
Cloud image
patches

Ensemble of 10
CNN’s (4 CONV

5 99.40%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

696 | P a g e

www.ijacsa.thesai.org

and POOL layers

and 3FC layers)

[46]
IoT Cyber

Attacks

An Ensemble of

Deep RNN for the

detection of IoT
Cyber Attacks by 6

LSTM models

2 99.41%

[47]
Cardiovascul

ar Disease

An ensemble-based

approach of
machine learning

and deep learning

models

2 88.70%

[48] Plant disease

An ensemble of

Random Forest and

K-Nearest Neighbor
(KNN)

3 96.00%

VII. CONCLUSION

This study makes an effort to identify the handwritten
atomic Odia character and numeral. The handwritten characters
causes the biggest issue in the character recognition procedure
due to the freestyle writings of the individual and varies from
person to person. There are many different shapes and
orientations that a letter can take. Firstly, CNN models are
designed from scratch, then a learning-based weighted average
ensemble of deep neural network models (WEnDNN) is
proposed to classify 10 digits and 47 characters present in
alphabet set of Odia language and to enhance the accuracy. The
performance of proposed WEnDNN model with EnDNN and
machine learning models, namely, like RF, SVM, k NN and
XG Boost trained on hand-crafted extracted features by using
Gabor filter and pixel intensity values, non-handcrafted
extracted features from pre-trained VGG16 neural network are
compared. The proposed WEnDNN OHCNR model’s overall
accuracy recorded as 98.78% on ISI image numeral database.
In comparison to state-of-the-art techniques, it has been found
that the suggested method offers superior recognition accuracy.
These ensemble models can be extended to continuously learn
and adapt to changing data patterns over time. This could
involve online learning approaches where the ensemble is
updated incrementally as new data becomes available, allowing
it to stay relevant and effective in dynamic environments.

REFERENCES

[1] M. Das, M. Panda, and S. Dash, “Enhancing the Power of CNN Using
Data Augmentation Techniques for Odia Handwritten Character
Recognition,” Advances in Multimedia, vol. 2022, 2022, doi:
10.1155/2022/6180701.

[2] Das A, Patra G A, and Mohanty M N, “LSTM based Odia Handwritten
Numeral Recognition,” in International Conference on Communication
and Signal Processing, July 28 - 30, 2020, Institute of Electrical and
Electronics Engineers Inc., Nov. 2020. doi:
10.1109/ICECCT.2017.8117879.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 3rd International Conference on
Learning Representations, ICLR 2015 - Conference Track Proceedings,
pp. 1–14, 2015.

[4] K. S. Dash, N. B. Puhan, and G. Panda, “Odia character recognition: a
directional review,” Artif Intell Rev, vol. 48, no. 4, pp. 473–497, Dec.
2017, doi: 10.1007/s10462-016-9507-5.

[5] R. K. Mohapatra, B. Majhi, and S. K. Jena, “Printed Odia digit
recognition using finite automaton,” Smart Innovation, Systems and
Technologies, vol. 43, pp. 643–650, 2016, doi: 10.1007/978-81-322-
2538-6_66.

[6] D. Basa and S. Meher, “Handwritten Odia Character Recognition,” no.
July 2015, pp. 5–8, 2011.

[7] I. Rushiraj, S. Kundu, and B. Ray, “Handwritten character recognition of
Odia script,” International Conference on Signal Processing,
Communication, Power and Embedded System, SCOPES 2016 -
Proceedings, pp. 764–767, 2017, doi: 10.1109/SCOPES.2016.7955542.

[8] U. Pal, T. Wakabayashi, N. Sharma, and F. Kimura, “Handwritten
numeral recognition of six popular Indian scripts,” Proceedings of the
International Conference on Document Analysis and Recognition,
ICDAR, vol. 2, pp. 749–753, 2007, doi: 10.1109/ICDAR.2007.4377015.

[9] K. S. Dash, N. B. Puhan, and G. Panda, “BESAC: Binary External
Symmetry Axis Constellation for unconstrained handwritten character
recognition,” Pattern Recognit Lett, vol. 83, pp. 413–422, 2016, doi:
10.1016/j.patrec.2016.05.031.

[10] D. Padhi, “A Novel Hybrid approach for Odiya Handwritten Character
recognition System,” IJARCSSE, vol. 2, no. 5, pp. 150–157, 2012.

[11] T. K. Mishra, B. Majhi, P. K. Sa, and S. Panda, “Model based odia
numeral recognition using fuzzy aggregated features,” Front Comput
Sci, vol. 8, no. 6, pp. 916–922, 2014, doi: 10.1007/s11704-014-3354-9.

[12] P. G. Dash Kalyan S, Puhan N.B., “Non Redundant Stockwell
Transform Based Faeture Extraction For Handwritten Digit
Recognition,” IEEE International Conference in Signal Processing and
Communications, 2014, [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84911969452&partnerID=tZOtx3y1

[13] P. KSarangi, A. K Sahoo, and P. Ahmed, “Recognition of Isolated
Handwritten Oriya Numerals using Hopfield Neural Network,” Int J
Comput Appl, vol. 40, no. 8, pp. 36–42, 2012, doi: 10.5120/4986-7250.

[14] P. K. Sarangi, P. Ahmed, and K. K. Ravulakollu, “Naïve Bayes
Classifier with LU Factorization for Recognition of Handwritten Odia
Numerals,” International Journal of Science and Technology, vol. 7, no.
January, pp. 35–38, 2014.

[15] M. Das, M. Panda, and S. Dash, “4 A Comparative Analysis of Machine
Learning Techniques for Odia Character Recognition,” Machine
Learning Applications, pp. 65–90, Apr. 2020, doi:
10.1515/9783110610987-006.

[16] T. K. Mishra, B. Majhi, and S. Panda, “A comparative analysis of image
transformations for handwritten Odia numeral recognition,” Proceedings
of the 2013 International Conference on Advances in Computing,
Communications and Informatics, ICACCI 2013, pp. 790–793, 2013,
doi: 10.1109/ICACCI.2013.6637276.

[17] M. K. Mahato, A. Kumari, and S. Panigrahi, “A System For Oriya
Handwritten Numeral Recognition For Indian Postal Automation,”
IJASTRE, pp. 1–15, 2014.

[18] N. Tripathy, M. Panda, and U. Pal, “System for Oriya handwritten
numeral recognition,” SPIE Proceedings, vol. 5296, pp. 174–181, 2004.

[19] C. Mitra and A. K. Pujari, “Directional Decomposition for Odia
Character Recognition,” Springer, Cham, 2013, pp. 270–278. doi:
10.1007/978-3-319-03844-5_28.

[20] B. Majhi, J. Satpathy, and M. Rout, “Efficient recognition of Odiya
numerals using low complexity neural classifier,” Proceedings - 2011
International Conference on Energy, Automation and Signal, ICEAS -
2011, pp. 140–143, 2011, doi: 10.1109/ICEAS.2011.6147094.

[21] K. S. Dash, N. B. Puhan, and G. Panda, “On extraction of features for
handwritten Odia numeral recognition in transformed domain,” ICAPR
2015 - 2015 8th International Conference on Advances in Pattern
Recognition, pp. 0–5, 2015, doi: 10.1109/ICAPR.2015.7050694.

[22] P. K. Sarangi and P.Ahemad, “Recognition of Handwritten Odia
Numerals Using Artificial Intelligence Techniques,” International
Journal of Computer Science and Applications, vol. 2, no. 02, pp. 41–
48, 2013.

[23] U. Pal, T. Wakabayashi, and F. Kimura, “A system for off-line oriya
handwritten character recognition using curvature feature,” Proceedings
- 10th International Conference on Information Technology, ICIT 2007,
pp. 227–229, 2007, doi: 10.1109/ICOIT.2007.4418301.

[24] R. Panda, S. Das, S. Padhy, S. Palo, and P. Suman, “Complex Odia
Handwritten Character Recognition using Deep Learning Model,” in
Proceedings of 2022 IEEE International Conference of Electron Devices
Society Kolkata Chapter, EDKCON 2022, Institute of Electrical and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

697 | P a g e

www.ijacsa.thesai.org

Electronics Engineers Inc., 2022, pp. 479–485. doi:
10.1109/EDKCON56221.2022.10032934.

[25] T. Ghosh et al., “Bangla handwritten character recognition using
mobilenet v1 architecture,” Bulletin of Electrical Engineering and
Informatics, vol. 9, no. 6, pp. 2547–2554, Dec. 2020, doi:
10.11591/eei.v9i6.2234.

[26] J. Fairiz Raisa, M. Ulfat, A. Al Mueed, and M. Abu Yousuf,
“Handwritten bangla character recognition using convolutional neural
network and bidirectional long short-term memory,” in Advances in
Intelligent Systems and Computing, Springer Science and Business
Media Deutschland GmbH, 2021, pp. 89–101. doi: 10.1007/978-981-33-
4673-4_8.

[27] Tapotosh Ghosh, M. H. Z. Abedin, H. Al Banna, N. Mumenin, and M.
Abu Yousuf, “Performance Analysis of State of the Art Convolutional
Neural Network Architectures in Bangla Handwritten Character
Recognition,” Pattern Recognition and Image Analysis, vol. 31, no. 1,
pp. 60–71, Jan. 2021, doi: 10.1134/S1054661821010089.

[28] S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon,
“Improved handwritten digit recognition using convolutional neural
networks (Cnn),” Sensors (Switzerland), vol. 20, no. 12, pp. 1–18, Jun.
2020, doi: 10.3390/s20123344.

[29] Onan, Aytug. "Ensemble of classifiers and term weighting schemes for
sentiment analysis in Turkish." Scientific Research Communications 1,
no. 1 (2021).

[30] M. Das and M. Panda, “An ensemble method of feature selection and
classification of Odia characters,” 1st Odisha International Conference
on Electrical Power Engineering, Communication and Computing
Technology, ODICON 2021, 2021, doi:
10.1109/ODICON50556.2021.9428979.

[31] H. Guo, Y. Liu, D. Yang, and J. Zhao, “Offline handwritten Tai Le
character recognition using ensemble deep learning,” Visual Computer,
vol. 38, no. 11, pp. 3897–3910, 2022, doi: 10.1007/s00371-021-02230-2.

[32] S. Sun, S. Wang, and Y. Wei, “A new ensemble deep learning approach
for exchange rates forecasting and trading,” Advanced Engineering
Informatics, vol. 46, no. July, p. 101160, 2020, doi:
10.1016/j.aei.2020.101160.

[33] K. M. R. Alam, N. Siddique, and H. Adeli, “A dynamic ensemble
learning algorithm for neural networks,”Neural Comput Appl, vol. 32,
no. 12, pp. 8675–8690, 2020, doi: 10.1007/s00521-019-04359-7.

[34] J. Lee, S. K. Lee, and S. il Yang, “An Ensemble Method of CNN
Models for Object Detection,” 9th International Conference on
Information and Communication Technology Convergence: ICT
Convergence Powered by Smart Intelligence, ICTC 2018, pp. 898–901,
2018, doi: 10.1109/ICTC.2018.8539396.

[35] L. Nanni, Y. M. G. Costa, R. L. Aguiar, R. B. Mangolin, S. Brahnam,
and C. N. Silla, “Ensemble of convolutional neural networks to improve
animal audio classification,” EURASIP J Audio Speech Music Process,
vol. 2020, no. 1, 2020, doi: 10.1186/s13636-020-00175-3.

[36] P. Wu, X. Meng, and L. Song, “A novel ensemble learning method for
crash prediction using road geometric alignments and traffic data,”
Journal of Transportation Safety and Security, vol. 12, no. 9, pp. 1128–
1146, 2020, doi: 10.1080/19439962.2019.1579288.

[37] U. Bhattacharya and B. B. Chaudhuri, “Databases for research on
recognition of handwritten characters of Indian scripts,” Proceedings of
the International Conference on Document Analysis and Recognition,
ICDAR, vol. 2005, pp. 789–793, 2005, doi: 10.1109/ICDAR.2005.84.

[38] K. S. Dash, N. B. Puhan, and G. Panda, “Odia character recognition: a
directional review,” Artif Intell Rev, vol. 48, no. 4, pp. 473–497, 2017,
doi: 10.1007/s10462-016-9507-5.

[39] R. K. Mohapatra, T. K. Mishra, S. Panda, and B. Majhi, “OHCS: A
database for handwritten atomic Odia Character Recognition,” 2015 5th
National Conference on Computer Vision, Pattern Recognition, Image
Processing and Graphics, NCVPRIPG 2015, 2016, doi:
10.1109/NCVPRIPG.2015.7490020.

[40] R. K. Mohapatra, “Handwritten Character Recognition of a Vernacular
Language : The Odia Script Handwritten Character Recognition of a
Vernacular Language : The Odia Script”.

[41] D.Gabor, “Theory_of_communication_Part_1_The_analy-1,” 1946.

[42] A. K. Verma, S. Pal, and S. Kumar, “Classification of skin disease using
ensemble data mining techniques,” Asian Pacific Journal of Cancer
Prevention, vol. 20, no. 6, pp. 1887–1894, 2019, doi:
10.31557/APJCP.2019.20.6.1887.

[43] A. K. Verma, S. Pal, and S. Kumar, “Comparison of skin disease
prediction by feature selection using ensemble data mining techniques,”
Inform Med Unlocked, vol. 16, no. April, p. 100202, 2019, doi:
10.1016/j.imu.2019.100202.

[44] L. Abhishek, “Optical character recognition using ensemble of SVM,
MLP and extra trees classifier,” 2020 International Conference for
Emerging Technology, INCET 2020, pp. 7–10, 2020, doi:
10.1109/INCET49848.2020.9154050.

[45] V. H. Phung and E. J. Rhee, “A High-accuracy model average ensemble
of convolutional neural networks for classification of cloud image
patches on small datasets,” Applied Sciences (Switzerland), vol. 9, no.
21, 2019, doi: 10.3390/app9214500.

[46] M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K. K. R. Choo, and
R. M. Parizi, “An Ensemble of Deep Recurrent Neural Networks for
Detecting IoT Cyber Attacks Using Network Traffic,” IEEE Internet
Things J, vol. 7, no. 9, pp. 8852–8859, 2020, doi:
10.1109/JIOT.2020.2996425.

[47] A. Alqahtani, S. Alsubai, M. Sha, L. Vilcekova, and T. Javed,
“Cardiovascular Disease Detection using Ensemble Learning,” Comput
Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/5267498.

[48] M. Peker, “Multi-channel capsule network ensemble for plant disease
detection,” SN Applied Sciences, vol. 3, no. 7. 2021. doi:
10.1007/s42452-021-04694-2.

