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Abstract—Offline handwritten character recognition (OHCR) 

is considered a challenging task in pattern recognition due to the 

inter-class similarity and intra-class variations among the 

symbols present in the alphabet set. In this work, a learning-

based weighted average ensemble of deep neural network models 

(WEnDNN) is proposed to classify the 10 digits and 47 characters 

present in the alphabet set of Odia language, an official language 

of India. To build the base model for the ensemble network 

(EnDNN), three suitable convolutional neural networks (CNN), 

are designed and trained from scratch. The WEnDNN's accuracy 

is increased by using a grid search approach to determine the 

ideal weight allocations to give to the top-performing model. The 

performance of the WEnDNN model is compared with several 

standard machine learning models, which take the non-

handcrafted features extracted from the finely tuned, pre-trained 

VGG16 model and a combination of Gabor and pixel intensity 

values to create handcrafted features. On several benchmark 

handwritten datasets, including NITR Odia characters (OHCS 

v1.0), ISI Kolkata Odia numerals, and IITBBS Odia numerals, 

the performance of the proposed WEnDNN model is assessed 

and compared. The experimental results demonstrate that, in 

terms of recognition accuracy, the proposed approach beats 

other state-of-the-art approaches. 

Keywords—Odia language; ensemble learning; machine 

learning; Gabor features; CNN; DNN 

I. INTRODUCTION  

It is possible to recognize a symbol easily with our naked 
eye, but hard for a handwritten character recognition (HCR) 
model. To reduce this recognition gap between humans and 
models and to achieve human-like accuracy, handwritten 
character and numeral recognition (HCNR) systems have made 
significant advancements in recent years, with various 
approaches developed in different languages. These systems 
play a crucial role in applications such as document 
digitization, automatic form processing, and handwriting 
analysis. While numerous methods have been proposed to 
tackle this challenging task, researchers are more inclined 
towards deep neural networks (DNN). Deep Convolutional 
Neural Networks have proven their advantage in getting high 
performance in different applications of pattern recognition 
tasks when handling large data sets to extract features 
automatically. 

Acquisition of character images, pre-processing, feature 
extraction, and classification make up the three major steps of 

the conventional OHCR workflow, and much research in this 
paradigm has concentrated on enhancing each of these steps. 
For instance, the feature extraction stage has advanced to the 
point that many researchers aim to create potent feature 
descriptors or vectors referred to as handcrafted in the 
literature. The basic goal of feature engineering is to design 
features that maximize patterns' separation from other classes 
while placing patterns from the same class close to one another 
in the feature space.  

From the literature, in the late 1990s, study into the 
recognition of Odia characters began. The research community 
has paid a lot of attention to the most popular Indian scripts, 
Devanagari, Bangla, and Telugu, compared to Odia scripts. 
Natives of the Indian state of Odisha as well as its neighboring 
states, including West Bengal, Chhattisgarh, and Jharkhand, 
are fluent in Odia, a popular and official language of India. The 
necessity to digitize historical documents available in Odia 
literature inspires researchers to create Odia HCRs that have 
advantages for both business and society. The advancement of 
Odia OHCR needs to be enhanced to meet the requirements of 
real-time recognition. Modern schemes use features that are 
manually designed (handcrafted), which requires a lot of work. 
Several researchers have designed CNN based classification 
model to obtain deep features (non-handcrafted features) for 
Odia OHCR [1], [2]. In Odia language, most letters have a 
perpendicular straight line on the right side, while the upper 
portions are mostly circular. The characteristics of similar 
characters present as well as the roundish structure and the 
randomness of its writing, bring great challenge to the 
recognition task, which motivates us to propose an Odia 
OHCR model that enhances the classification accuracy in this 
regard. 

The right selection of feature descriptors still presents the 
biggest hurdle in these OHCR systems. Utilizing a method 
known as “transfer learning”, those architectures are being 
employed for numerous applications all around the world. In 
this transfer learning method, the weights of a model that has 
already been trained for a particular job are used for a variety 
of tasks. Such architectures include VGG16 [3], ResNet, 
Xception, DenseNet, MobileNet, InceptionNet, ResNeXt etc. 
These architectures differ from one another in terms of depth, 
complexity, and size of input data. Despite having been trained 
on ImageNet 1000 classes, they are successfully used in all 
applications of pattern recognition tasks. According to Odia 
OHCR's related work[4], [5], the majority of researchers 
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choose the model that performs better in terms of accuracy in 
classification. Although significant progress has been made in 
developing individual handwritten character and numeral 
recognition models, their accuracy levels often plateau or show 
diminishing returns with increased complexity. This limitation 
is primarily due to the inherent variability in handwriting 
styles, diverse character and numeral shapes, and the presence 
of noise and distortions in handwritten samples. Therefore, 
there is a need to explore alternative approaches that can 
enhance when solving a classical classification problem using 
various trained machine learning or deep learning models, the 
model that produces the best results is maintained and the other 
models are discarded. If all of the trained models are put 
together for classification, that will be a better option, as some 
models are good for extracting certain features while some 
other models are good for extraction of other kinds of features. 
An ensemble of different trained models can be used for this 
purpose. In the case of handwritten character recognition using 
Convolutional Neural Networks (CNNs), an ensemble of 
different CNNs often performs better than a single CNN for 
several reasons: 

1) Each CNN model in the ensemble is trained 

independently on a different subset of the data or with 

different initialization weights. By combining their 

predictions, the ensemble can help to reduce bias and 

overfitting.  

2) Ensemble learning can help reduce the impact of errors 

made by individual models. If one model misclassifies a 

particular handwritten character, other models in the ensemble 

may still correctly classify it. Through the combination of 

predictions, the ensemble can reduce the overall error rate and 

improve the final classification result. 

3) Ensemble learning involves averaging the predictions 

of individual models. This averaging process helps to smooth 

out noisy predictions and reduce the effects of outliers. By 

leveraging the collective wisdom of multiple models, the 

ensemble can provide a more confident and accurate 

prediction. 

4) Different CNN models may excel at capturing different 

types of features or have different strengths in recognizing 

certain patterns. By combining the strengths of multiple 

models, the ensemble can achieve a more comprehensive and 

discriminative representation of the handwritten characters, 

leading to improved classification performance. 

Now, there is always the option to employ an ensemble 
learning method that boosts efficiency by using several CNN 
models for the same tasks. This has inspired researchers that 
utilize CNNs for the task of character recognition and to 
develop methods for ensembles of networks to enhance CNN 
performance. It has been observed from related work that 
although many efforts have been made in the area of Odia 
OHCR to improve the performance of the model, no work has 
presented the ensemble of various CNNs. These models even 
result in a further improvement in accuracy of about 1 to 2% 
across the models when combined with the ensemble of 
different CNN's methodologies outlined in the research. This 

motivation led us to the development of EnDNN and 
WEnDNN. 

This paper presents a novel approach for offline Odia 
handwritten character and numeral recognition (OHCNR) by 
using an ensemble of deep neural networks and a weighted 
average ensemble of deep neural networks. Our main 
contributions to this research are as follows: 

 Three CNN models are designed from scratch, from a 
simple to a slightly complex model, by varying the 
feature maps and number of layers, and these CNNs are 
combined to create the base model of the ensemble 
network (EnDNN). 

 A grid search method is used to get the right 
combination of weights to be assigned to the best-
performing model to construct a weighted average 
ensemble of deep neural network models (WEnDNN), 
to boost the ensemble networks’ accuracy. 

 Traditional ML models (Random Forest (RF), Support 
Vector Machine (SVM), k-Nearest Neighbour (kNN), 
and Extreme Gradient Boosting (XG-Boost) are used, 
which are trained on non-handcrafted features obtained 
from fine-tuned, pre-trained VGG16 model and 
handcrafted features extracted by Gabor filters, 
combined with pixel intensity values to create feature 
descriptor. 

 The performance of the WEnDNN model is compared 
with the individual CNN, EnDNN and ML models to 
show the effectiveness of the proposed work and the 
models are verified using a set of benchmark Odia 
databases, namely ISI Image database, NITROHCSv1.0 
and IITBBS numeral database. 

Here is a summary of the remaining portions of the paper: 
Some of the most significant studies on deep learning for Odia 
and other language OHCNR tasks currently published in the 
literature is highlighted in Section II. Section III discusses the 
materials and methodology, which covers the description of 
DCNN models and their components. The datasets used for the 
proposed work are covered in Section IV and the proposed 
model architecture is covered in Section V. Section VI reports 
the results and discussion, and Section VII provides the 
conclusion.  

II. RELATED WORK 

In the Odia script, like every other script vowels, 
consonants, and composite characters (combinations of 
characters with other characters) are present. A total of 10 
numerals and 47 alphabets (vowels and alphabets) are present 
in the Odia script, as shown in Fig. 3(a), 3(b), and 3(c). With 
different handwriting styles and high similarity between 
different characters, it’s challenging for any system model to 
get human-like accuracy. Several works on Odia OHCR were 
reported in [6], [7] based on handcrafted feature extraction. In 
[8], authors have used curvature features and reduced the 
feature set by PCA and with quadratic classifier got a 
classification accuracy of 94.6%. In [9] Binary External 
Symmetry Axis Constellation (BESAC), features are used with 
an accuracy of 95.01 by the k-NN classifier. The authors of 
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[10] used zone centroid distance and standard deviation to 
extract features and got 94% accuracy by back propagation NN 
with a genetic algorithm approach. [11], [12], [13]–[15], [16], 
[17][18] had contributed their work on handwritten Odia 
handwritten numeral recognition (Odia OHNR). The same 
BESAC features are used for numeral classification, on the 
IITBBS numeral dataset [9]. In [19], the authors achieved an 
accuracy of 95% by SVM with directional features by zoning 
method. In a work of [20], authors used Gradient, curvature 
feature, and Feature reduction using PCA fed to low 
complexity neural classifier for recognition with an accuracy of 
98% by gradient feature and 94% by curvature feature. In [16], 
the DCT and DWT coefficients are used by the BPNN 
classifier. Several studies have been reported on the ISI 
numeral dataset [21][22], [23] with a promising accuracy of 
over 90% for handwritten Odia numeral recognition.  

The goal of researchers is to increase the optical character 
recognition (OCR) model's accuracy, so they are more focused 
on deep neural networks and ensembles of networks. To the 
best of our knowledge, almost little efforts on deep neural 
networks were contributed to the field of Odia OHCR and 
OHNR. In [24], the authors proposed RNN and CNN-based 
classification techniques for Odia compound characters. To 
improve the classification accuracy, different augmentation 
techniques were used by [1] to expand the dataset, and 
different CNNs were used for the classification of Odia 
handwritten numerals and characters. Different deep learning-
based classification models proposed for Bangla OHCR, a 
sister language of Odia. In [25], the authors used mobilenet v1 
architecture, whereas the authors [26] proposed a hybrid 
Bangla OHCR model that is a combination of stacked Bi-
directional Long Short-Term Memory (Bi-LSTM) applied on 
the features extracted from CNN. A deep analysis was carried 
out by [27] for Bangla OHCR by different deep networks i.e. 
InceptionResNetV2, DenseNet121, InceptionNetV3, NASNet, 
VGG16, VGG19 and authors claimed InceptionResNetV2 as 
the best performing model.  An improved CNN based digit 
recognition on MNIST dataset with an accuracy of 99.87% by 
[28].  

Combining CNN models into an "ensemble" is one strategy 
for improving the handwritten character recognition system's 
accuracy. For the Odia OHCR, very few works based on 
ensemble networks were published. Three ensemble learning 
methods (AdaBoost, Bagging, and Random Subspace) are 
utilized in the study[29], for improved sentiment analysis and 
in [30]different features were selected and classified using 
Random Forest, which is an ensemble of several decision trees 
for Odia vowel recognition. The authors of [31] reported an 
offline Tai Le OHCR using ensemble deep learning, with a 
DCNN serving as the primary or base classifier. An ensemble 
deep learning model is created by stacking several different 
base classifiers, and the model achieves an accuracy of more 
than 98% on the Devanagari handwritten characters and 
MNIST handwritten digits datasets. The base classifiers' 
parameter combinations are optimized using a grid search 
technique.  

Apart from OCR applications, ensemble networks were 
used in different fields [23]-[27], and some of the applications 
are described below. A deep ensemble network by using 

LSTM-B was proposed by [32] to obtain the accurate results of 
exchange rates forecasting and to improve the profit of 
exchange rates trading. The authors of [33] proposed a deep 
ensemble learning algorithm on a variety of datasets, including 
those for letter recognition, cancer, diabetes, heart disease, 
thyroid, etc., which determines the ensemble size, the number 
of hidden nodes in a neural network, etc. In [34] the authors 
used CNN as an ensemble model for object detection by 
selecting the region from each CNN model is combined, 
classified, and finally voted. Automated audio classification is 
proposed by [35] that fuses different types of features extracted 
from audio files and uses different pre-trained CNN models 
AlexNet, GoogleNet, VGG16, VGG19, ResNet50, 
InceptionV3 as ensemble and got the maximum accuracy of 
99.3% by using ensemble DL and handcrafted features. In [36], 
the authors used an ensemble model for crash prediction model 
using road geometric alignments (CPM-GA) with three 
traditional models NB model and IHSDM-China and IHSDM-
US models, and CART+SVM, RF + SVM, CART + BPNN, 
RF + BPNN as base models of the ensemble by selecting the 
model by model prediction test and model’s sensitivity test. 
The results of the ensemble learning CPM-GAs using the 
IHSDM + China model and CART + SVM model are 
promising. Due to their improved accuracy, increased 
robustness, and scalability in model design for character 
recognition, ensemble models are becoming more and more 
popular nowadays. Utilizing ensemble data mining techniques 
for the classification of skin diseases is reported in [42][43]. It 
explores methods to enhance accuracy and reliability in 
diagnosing skin conditions through ensemble data mining 
techniques. To improve optical character recognition (OCR) 
performance by employing an ensemble of Support Vector 
Machine (SVM), Multi-Layer Perceptron (MLP), and Extra 
Trees classifiers is shown in [44]. An ensemble model 
composed of Convolutional Neural Networks (CNNs) for 
classifying cloud image patches, particularly on small datasets 
addresses the challenge of achieving accurate classification 
results with limited data and is proposed in [45]. 

III. MATERIALS USED 

This section discusses all the materials and methodologies 
that are utilized to construct the proposed ensemble model of 
deep neural networks. 

A. Deep CNN Models 

Due to the non-linear behavior of neural network models, 
CNNs can learn the complex nonlinear relationships in the 
given input data. Convolutional layers, pooling layers, and 
fully connected dense layers are the three fundamental layers 
that make up the conventional CNN structure. These layers are 
repeated to make an NN to a deep CNN, and it is shown in 
Fig. 1. 

 

Fig. 1. Basic structure of a deep convolutional neural network. 

1) Convolutional layer: These layers identify patterns in 

images by sliding a filter over the input image to produce a 

feature space or feature map. If the input image is directly 
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connected to the fully connected layer for classification, we 

may get the result, but the complexity increases when the 

input image size is large and the number of images is greater. 

The expensive computation and the cost reduction can be 

achieved by including the convolution and pooling layers. The 

basic convolution operation in convolutional layer is 

represented mathematically in Eq. (1), where f (x, y) is the 

input image, c (x, y) is the convolved image and h (x, y) is the 

filter or kernel. 

 (   )   (   )   (   )  (1) 

The advantage of CNN can be taken to extract important 
features by reducing the image dimension and keeping 
important features for better prediction. It learns images by 
applying a filter of a certain size while maintaining translation 
invariance, in addition to learning the features from the data. 
The convolutional layer has several learnable filters, each of 
which can be thought of as a matrix. The convolutional layer 
produces numerous feature maps (also known as activation 
maps), and these feature maps corresponding to distinct filters 
are layered together along the depth dimension. Each member 
of the matrix or filter serves as a parameter (weight and bias) of 
neural networks. The convolutional layer’s operational 
structure is shown in Fig. 2(a).  

The basic component of a convolution operation in a 
convolutional layer is the kernel. The features or significant 
patterns in an image are extracted from the image using a filter 
called a kernel. It is a matrix  (   ) that traverses the input 
image  (   ), performs a dot product with the sub-region of 
the input data, and produces the matrix  (   ) of values from 
the dot product. To obtain another value in the feature map, the 
kernel moves the input image by a stride value.  

2) Pooling layers: This layer down-samples the features 

in the feature map by reducing their dimension. It also 

introduces translation invariance, i.e., even if the CNN input 

image is translated, the CNN will still be able to recognize the 

features, which reduces the CNN model's tendency to overfit 

data. The quantity of network computation and the number of 

parameters to learn are both decreased by the pooling layer. 

The two most common pooling methods are max-pooling and 

average pooling, as shown in Fig. 2(b). The most prominent 

patterns of the feature map are retained as a result of max 

pooling, and the resulting image is sharper than the original. 

Max pooling operates by choosing the maximum value from 

each pool. By averaging the pool, the average pooling layer 

operates and it smooths the image by maintaining the image 

feature's essential qualities. 

3) Fully connected dense layer: A dense layer is one 

whose interior neurons are connected to every neuron in the 

layer preceding to it. Finally, it is connected with the number 

of units, the same as the number of classes, and produces 

output. A CNN model employs one or more FC layers 

following a series of convolutional, ReLU, or pooling layers 

to produce the output. The way FC layer works is similar to 

how classic neural networks work in that it combines all of the 

features that the earlier layers have acquired in order to find 

more important patterns. The main issue with the fully 

connected layer is that it has a lot of trainable parameters and 

requires a lot of computation to train. Therefore, current 

research efforts are concentrated on either lowering these 

layers or substituting methods that may accomplish the same 

purpose with less computational effort for the layers. A soft-

max function is utilized to determine the class label by giving 

each class a probability distribution after the final FC layer. 

The operational structure of a fully connected layer is shown 

in Fig. 2(c). 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. (a) The basic operational structure of the convolutional operation. (b) 

The basic operational structure of pooling. (c) The basic operational structure 
of fully connected layer.  

4) Rectified Linear Unit (ReLU) Activation: After the 

convolutional layer, the ReLU layer is frequently used, which 

introduces non-linearity to the output. All negative input 

values are mapped to zero in this layer, R (I) = max (0, I), and 

its operation is denoted by the following Eq. (2):  
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 (  )  
             

              
   (2) 

ReLU activation function has several advantages, including 
computing efficiency, quicker convergence than non-linear 
functions like sigmoid and tanh, and protection against 
vanishing gradient issues. 

5) Softmax activation: The activation function known as 

softmax, scales numbers into probabilities that generate a 

vector V with probabilities for each class. The sum of all 

output values in the V adds up to 1. It is defined in Eq. (3), 

where y is the vector of possible outcomes of n elements for n 

classes, is input to the softmax function and yj is the j
th 

element of vector y. 

                            ( )   
 
  

∑      
   

   (3) 

6) Cross-entropy as loss function: The cross-entropy loss 

quantifies the dissimilarity between the predicted class 

probabilities and the actual class labels. It penalizes the model 

for assigning low probabilities to the correct class and 

assigning high probabilities to incorrect classes. The loss 

value is larger when the model's predicted probabilities 

deviate further from the true expected values. During the 

training process, the model's weights are adjusted to minimize 

the cross-entropy loss. By iteratively updating the weights 

using techniques like gradient descent, the model learns to 

improve its predictions and reduce the loss. As the model gets 

better at classifying the handwritten characters, the loss 

decreases. Cross entropy is defined in Eq. (4), where tj is the 

true label and pj is the class probability value computed by the 

softmax activation function for class j. 

                         ∑      (  )
 
      (4) 

IV. DATABASES 

A benchmark database is necessary for any text recognition 
research to be successful. For efficient classifier or recognizer 
training, large databases are needed. The accuracy of 
recognition is entirely dependent on the type of feature 
extractor employed and the number of training samples taken 
from the database because of cursive scripts and various 
handwriting styles. The databases used for our study are shown 
in Table I, and sample images from the databases are shown in 
Fig. 3. The NITROHCSv1.0 data set is publicly available on 
the NIT Rourkela website, IITBBS numeral, and ISI image 
database will be available on request. These three databases are 
only available to the research community on the handwritten 
character recognition of the Odia language. 

TABLE I. HANDWRITTEN ODIA CHARACTER AND NUMERAL DATASETS 

Database Training Size Testing Size 

ISI Image Database 4,970 1,000 

IITBBS Numeral Database 4,000 1,000 

NITROHCSv1.0 10,528 4,512 

1) ISI image database: An isolated database of 

handwritten Odia numerals was created in 2005 by [37] at ISI 

Kolkata, India. There were precisely 356 participants in the 

data collection procedure. It has 5,970 samples that were 

gathered via 166 application forms, and 105 pieces of mail, 

and the remaining samples were personally collected. The data 

set is then split into a training set and a test set, consisting of 

4,970 samples and 1,000 samples, respectively. Sample 

numeral images of the ISI Image Database are shown in 

Fig. 3(a). 

2) IITBBS numeral database: A new database for Odia 

numerals has been discussed by the authors [38] at the IIT in 

Bhubaneswar. At 300 and 600 dpi, the images were scanned. 

The IITBBS numeral database now has 5,000 handwritten 

examples of Odia numbers, and the database contains 10 

classes and the sample numeral images are displayed in 

Fig. 3(b). 

3) NITR OHCSv1.0 character database: Databases are 

also created and defined at NIT Rourkela by [39], which 

contains an Odia alphabet with 47 classes. There are 15,040 

samples of atomic characters from the Odia language in the 

OHCSv1.0 database, each class contains 320 images. Data 

collection, picture enhancement, and size normalization are 

the procedures used in the construction of the database using 

the Odia character set. The database is split into 70:30 ratios 

for train and test sets. The total number of images in the train 

and test set is 10,528 and 4,512. Fig. 3(a) represents Odia 

character images of the NITR OHCSv1.0 database. 

       

       

       

       

       

       

       
(a) 

 

          
(b) 

 

          
(c) 

Fig. 3. (a) Sample characters of NITROHCSv1.0 database. (b) Sample 

numerals of ISI Image numeral database. (c) Sample numerals of IITBBS 

numeral database. 

V. METHODOLOGY 

The following are the steps of the experimental 
environment for the Odia handwritten character and numeral 
recognition model (OHCNR), which is shown in Fig. 4.  

 Load handwritten images from the training and test sets. 
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 Convert the images to grayscale. 

 Normalize the pixel values of the grayscale images to a 
range of 0 to 1. This enhances the training of the neural 
network (NN) model. 

 Design three CNNs as base models for the Ensemble 
Deep Neural Network (EnDNN). 

 Construct the EnDNN by integrating the three designed 
CNNs. 

Select the right combination of weights by the grid search 
method to be assigned to the best-performing model to 
construct WEnDNN. 

 

Fig. 4. Proposed OHCNR model. 

1) Designed CNN models as base model for EnDNN: To 

achieve high recognition accuracy, a character and numeral 

classifier based on a convolutional neural network (CNN) is 

used. Convolutional, max-pooling, fully-connected, and 

softmax layers are used in the construction of three different 

CNN-based handwritten digit classifiers. Additionally, the 

training is carried out utilizing the back-propagation method 

with mini-batches of size 28 and the adam optimization 

methodology. When an image is processed for a character 

recognition task, the crucial features are retained in the 

convolution layers, intensified, and maintained throughout the 

network, while the irrelevant information is eliminated by the 

pooling operation. Fig. 5 lists the parameters utilized in all 

three created CNN classifiers, each of which has a distinct 

number of convolutional layers, kernel sizes, filters, and 

strides.  

For instance, the CNN1 depicted in Fig. 5(a) contains one 
output layers of 10 classes, 2 max pooling layers, 3 
convolutional layers, and 1 fully-connected layers. The size of 
kernel, stride value, and number of filters in the first 
convolutional layer are 3 x 3, 1, and 32 with an activation 
function ReLU. For down sampling, pool of size (2,2) is 
applied in max-pooling layer, next to convolutional layer to 
reduce the dimensions with a dropout value of 20%. The 
second convolutional layer of filter size (3,3) and 64 number of 
filters are used with a dropout value of 20%. 128 filters with a 
(3,3) filter size are put in the third layer. Next the feature map 
is flattened to create one dimensional feature vector and one 
fully-connected dense layers are used, which are connected 
with 10 output classes. To calculate the class probabilities for 
three CNN models, ReLU activation function is utilized in the 

hidden layer and softmax activation function is used in the 
output layer. Categorical cross entropy is used as the loss 
function, and iteratively updating network weights based on 
training data is done using the adaptive moment estimation 
(adam) optimization method. The input images are fed to the 
network taking 28 images as a batch at a time and epoch size is 
10. In Fig. 5(b) and 5(c), the other two classifiers' 
convolutional, max pooling, and fully connected layer counts 
with activation functions are displayed. 

 

 

 

Fig. 5. (a) CNN1 architecture. (b) CNN2 architecture. (c) CNN3 

architecture. 

a) Steps of the recognition process by CNN: The 

handwritten characters and numeral recognition process, using 

a Convolutional Neural Network (CNN), typically involves 

the following steps: 

i) Data Acquisition: Collect Odia handwritten dataset 

ii) Data Split: Creating training and test sets from the 

dataset. The model is trained using the training set, and its 

performance is assessed using the test set. 

iii) Pre-processing: Applying pre-processing techniques to 

the images in both the training and test datasets like resizing 

the images to a consistent size, applying image enhancement 

techniques, and normalization. 

iv) Data Normalization: Normalizing the pixel values of 

the images so that they range from 0 to 1. This step helps in 

improving the convergence of the neural network during 

training and ensures that all features have a similar scale. 

v) Batch Training: Dividing the training dataset into 

batches of a suitable size. Batch training involves feeding a 

subset of the training data to the network at a time instead of 

using the entire dataset in one go. This approach facilitates 

efficient computation and allows the network to update its 

weights based on smaller subsets of data at each iteration. 

vi) Model Training: Training the CNN model and its 

variants using the labelled training data. This step involves 

feeding the batches of training images to the network, 

performing forward and backward propagation, and adjusting 

the network's weights using optimization techniques like 
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gradient descent. The training process aims to minimize the 

difference between the predicted output and the actual labels. 

vii) Classification: Using a trained model to classify new, 

unseen images. This involves passing the test images through 

the trained network and obtaining predictions for each image. 

The predicted labels are compared to the true labels to 

evaluate the model's accuracy. 

viii) Performance Analysis: Analysing the recognition 

accuracy and processing time for all the variants of the trained 

model. This step includes calculating metrics such as 

accuracy, precision, recall, and F1 score to assess the model's 

performance. Processing time can be measured during both 

training and classification phases to evaluate the efficiency of 

different model architectures and training strategies. 

2) Ensemble of Deep Neural Networks (EnDNN): 

Ensemble is the process of combining several learning 

algorithms to improve the performance of existing models by 

combining different models into a single reliable model. There 

is now always the choice to use an ensemble learning 

approach, which increases efficiency by applying a number of 

CNN models to the same tasks. By training numerous models 

instead of just one and combining their predictions, neural 

network models can successfully reduce their variance. So, the 

ensemble learning method, not only lowers the variance of 

predictions but also has the potential to produce predictions 

that are superior to those produced by a single model.  

In a CNN, the produced output probabilities are o1, o2, o3 
.. on, where ∑     , for an unseen image x of n-class 
classification, the CNN determines the unseen image x belongs 
to the class i with the greatest likelihood probability oi. In our 
study, the proposed CNNs should provide a probability value 
to each unseen test image that it was labelled by either of the 
10 numerals for numeral recognition or 47-character classes for 
character recognition. Class probabilities for each image, 
derived by the individual CNN’s, will be the input of our 
ensemble of networks and the ensemble algorithm is shown in 
Algorithm 1. Every individual model will make a prediction 
based on the test data. The ensemble approach combines the 
predictions of the three CNN models by summing their 
predicted probabilities and selecting the class with the highest 
summed probability as the final prediction.  

Algorithm 1: EnDNN: The algorithm evaluates the 

performance of three designed CNN models individually and 

an ensemble of the three models by comparing their predicted 

labels with the true labels.  

1. Load the dataset of Odia character or numeral images along 

with their corresponding class labels. 

2. For each image in the dataset: 

 Apply pre-processing techniques such as 

resizing, RGB to Gray conversion and 

normalization. 

3. Define three sets of convolutional neural network (CNN) 

models as the base models for the ensemble. (The 
architecture of each model is defined in Section 5) 

4. Split the pre-processed dataset into training and test sets. 

     For each base model in the ensemble: 

 Train the model on the training set using adam 

as an optimizer and categorical – cross entropy 

to compute loss.  

 Evaluate the model's performance on the test 

set to measure its individual recognition 

accuracy. 

 Save these models as CNN1, CNN2, CNN3. 

5. Load these pre-trained models: CNN1, CNN2, CNN3. 

6. For each model in the list of models, do the following: 

 Predict the output for the test data and store the 
predictions in the prediction list. 

7. Sum the prediction probabilities of each test image for each 
class obtained from different models of ensemble DNNs.  

8. Determine each test image's maximum class recognition 

accuracy from the summed prediction values of an 

ensemble of DNN as ensemble accuracy: 

 For each test image in the dataset: 

 Determine the class or category with the highest 
summed prediction value. 

 Compare this prediction with the ground truth label 
of the image. 

 Calculate the ensemble accuracy by measuring the 
percentage of correctly recognized test images 

3) Weighted ensemble of DNNs (WEnDNN): Since deep 

learning models differ in architecture and complexity, not all 

of them produce the same outputs; some produce superior 

output than others. To get the maximum output from any 

model, it would be beneficial if we gave larger weights to the 

better-performing models. Weighted ensemble learning is a 

variation of ensemble learning where different models in the 

ensemble are assigned different weights to determine their 

contribution to the final prediction. In the case of handwritten 

character recognition using a weighted ensemble of different 

CNNs, it can perform better because assigning different 

weights to individual CNN models allows the ensemble to 

emphasize the strengths of each model. Certain CNN models 

may be particularly effective at recognizing specific types of 

handwritten characters or capturing certain features. Models 

that consistently produce more accurate predictions can be 

assigned higher weights, while models with lower accuracy 

can be assigned lower weights. By assigning higher weights to 

these specialized models, the ensemble can benefit from their 

expertise and improve the classification accuracy for the 

corresponding classes.  

Finding the ideal mixture of model weights is the issue in 
this situation, and the grid search method is employed to 
achieve this. To determine the best weight, various weight 
combinations were tested. The search procedure will continue 
until it has checked every combination, at which point the 
algorithm will give us the ideal weight combination that 
maximizes accuracy. We multiply the output probability values 
outputij of CNNj (i =1,2 and 3) by ωeightj (j = 1,2, and 3) after 
determining the appropriate weights for all the individual 
CNNs, and the class probabilities are calculatedwe using the 
weighted output probability values ωeightjoutputij instead of 
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the original outputij ones. The weighted ensemble algorithm is 
shown in Algorithm 2. 

Algorithm 2: WEnDNN: This algorithm outlines the steps 

involved in generating predictions using an ensemble of 

DNNs with different weighting schemes and evaluating the 

accuracy of the weighted ensemble predictions on the test 

data. 

1. Create a list for an ensemble of models, called models, and 

add the models (CNN1, CNN2, and CNN3) to it. 

2. Initialize equal weights for each base model in the ensemble. 

3. For each model in models, do the following: 

 Predict the output for each image in test set and store the 

predictions in the predictions list, where each base model’s 

prediction should be weighted equally at the start. 

predictions ← [prediction1, prediction2, prediction3] 

4. Generate different combinations of weights for the base 

models in the ensemble. 

weights ← [weight1, weight2, weight3] 

5. For each possible weight combination, multiply each 

prediction by its corresponding weight. 

weighted_predictions ← predictioni * weighti, where i = 1,2,3 

6.  For each test data instance, determine the weighted ensemble 

prediction by selecting the maximum value among the 

weighted predictions. 

 Combine the predictions from different models and 

choose the prediction with the highest weighted value. 

weighted_ensemble_prediction←maximum 

(weighted_prediction) 

7. Compare the weighted ensemble predictions to the ground 

truth labels of the test data. 

 Calculate the accuracy of the weighted ensemble by 

measuring the percentage of correctly predicted instances. 

4) OHCNR model with deep and hand-crafted features: In 

order to evaluate the performance of the proposed OHCNR 

model, two more experiments were carried out by extracting 

deep features using a pre-trained VGG16 model and 

handcrafted features from Gabor filter that captures texture 

features and pixel-level features from the images and use these 

features to train and test machine learning models for 

recognition purpose. 

a) Extraction of deep features from pre-trained VGG16 

model: The researchers use a variety of strategies to extract the 

pertinent features, whether handcrafted or non-handcrafted. 

Automatic feature extraction techniques have grown in 

popularity in recent years for solving character recognition 

problems due to their capacity to extract robust features. For 

non-handcrafted feature extraction, transfer learning techniques 

have recently been applied. A learned model for one problem is 

used for solving another problem, a process known as transfer 

learning. Diverse pre-trained models, including VGG16 

(Visual Geometry Group), VGG19, InceptionV3, 

MobileNetV2, Resnet50, ResNetV2, Xception, DenseNet, etc., 

are used in transfer learning. The weights of the pre-trained 

models are used for the training process for the new problem. 

These pre-trained models are used for classification tasks, 

stand-alone or integrated feature extraction processes, and 

weight initialization. These non-handcrafted features are fed to 

RF, SVM, kNN, and XG Boost to train these models and 

compare the results with the proposed state-of-the-art model. 

Data from a subset of the ImageNet dataset, which consists 
of over 14 million photos organized into 22,000 classes, was 
used to train a DCNN variation called VGG16 [3]. The 
VGG16 Model has 16 convolutional layers and, 5 max pooling 
layers connected to convolutional layers of 5 different blocks, 3 
dense layers for the fully-connected layer, and an output layer 
with 1,000 nodes. The model architecture of VGG16 is shown 
in Fig. 6(a). To extract the deep features from the handwritten 
character image can be possible by removing the last few 
layers (fully connected layers) from the VGG16 model, as they 
are specific to classification, and retaining the convolutional 
layers, and its architecture is shown in Fig. 6(b). The filters of 
size (3,3) is used at different layers to extract deep features 
automatically. The filters and extracted features after layers 
Block1-Conv1, Block1-Pool, Block3-Conv2, Block4-Conv1 
and Block5-Conv1 by VGG16 model for the Odia digit 3 is 
shown in Fig. 6(c). 

 
(a) 

 
(b) 

   

VGG16-Filters Block1-Conv1 Block1-Pool1 

   

Block3-Conv2 Block4-Conv1 Block5-Conv1 

(c) 

Fig. 6. (a) VGG16 Model architecture. (b) Deep feature extraction from 

VGG16 model. (c) Extracted features at different layers of VGG16 model. 

b) Extraction of hand-crafted features using Gabor 

filter bank, pixel intensity values: According to the literature, 

the feature extraction stage of OCR is the one that most heavily 

influences any system's accuracy among all other OCR stages. 

Different hand-crafted features that can be extracted from an 

image are structural or geometrical features. Either the entire 
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image or the features that were taken from it serve as the input 

to any OCR. An image is made up of high-frequency 

components that originate from the edges, or the sudden 

changes in intensity values, and low-frequency components 

that make up the image's smooth sections. Any image must be 

transformed into a specific domain to be analyzed. In [40], to 

extract the discriminant features from a picture, image 

transformation is an essential step. Gabor filters are typically 

employed in texture analysis, edge detection, feature 

extraction, and other aspects of image processing and computer 

vision since they are independent of light, rotation, scale, and 

translation. They also infer optimal localization, making them a 

strong candidate for feature extraction issues.  

In our study, 2D Gabor filter bank [41] is used. It is a 
sinusoidal plane with a certain frequency and orientation that is 
modulated by a Gaussian envelope is known as a 2D Gabor 
filter. The Gaussian component provides the weight, and the 
sine component provides the directionality. By using the Gabor 
filter, a bank of filters that can be used to detect and extract 
textures present in an image are created.  The Gabor filter has a 
real and an imaginary component, as shown in Eq. (5), (6), and 
(7).  

 (             )     ( 
       

   )    ( (  
  

 
   )) 

(5) 

The real part and imaginary parts are represented as:  

 (             )     ( 
       

   )    ( (  
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   )    ( (  
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Where, 

                                    

The parameters are (x, y) is size of the kernel,   is the 
standard deviation or sigma of the Gaussian envelope,    is the 
phase offset,    is the orientation of the Gabor function,   is 
spatial aspect ratio and   is the wavelength of sinusoidal 
component. These five parameters determine the magnitude 
and shape of the Gabor function shown in Table II. By 
adjusting these parameters, a variety of Gabor filters can be 
applied to extract relevant characteristics from an image. 

In our study, a bank of Gabor filters with a constant 
frequency for various standard deviations (1.5, 2, 2.5) and 

orientation values ( 
 

 
 

 

 
 
  

 
), are created to extract features. 

For every handwritten image, nine Gabor filters (GF) are 
created which are convoluted on original image to get the 
filtered image. The largest response occurs at edges and 
locations where texture changes when a Gabor filter is applied 
to an image. Also, the pixel intensity values are included to the 
handcrafted feature descriptor (HFD) as shown below: 

   
                                                

The sample two numeral images (0, 3) and character 
images (ma, pa) and their transformation following the 
application of the filter are shown in Fig. 7. 

TABLE II. GABOR KERNEL PARAMETERS 

Gabor Kernel 

Parameters 
Purpose 

Sigma ( ) 
Determines the total size of the Gabor envelope. The 

envelope grows to allow more stripes when the bandwidth 
is bigger, and it shrinks when the bandwidth is smaller. 

Aspect ratio ( ) 
Determines the height of the Gabor function, height 

increases at very low gamma values and falls at very high 
aspect ratios. 

Theta ( ) 
Determines the Gabor function's orientation. Theta at 

 

 
 

and 0 degree represents the horizontal and vertical 

positions of the Gabor function. 

Wavelength ( ) 
It controls the strips' width. When the wavelength is 

lowered, stripes are thinner; when the wavelength is 

increased, stripes are thicker. 

Phase offset 

( ) 

Varying the phase offset can help in detecting edges or 
texture patterns in different orientations and locations 

within an image. 

c) Classification by machine learning algorithms: 

Utilizing the Support Vector Machine (SVM), Random Forest 

(RF), XG Boost, and k-Nearest Neighbor (kNN) algorithms, 

the performance of the proposed OHCNR model is compared 

with these techniques. 

i) Random Forest: Random Forest is a bunch of decision 

trees (DT), a supervised learning methodology that can be 

applied to classification problems based on the idea of 

ensemble learning (EL). The method of integrating various 

classifiers to address complex problems and improve model 

performance is known as EL. Random forest takes a random 

subset from the training dataset, and adds some duplicate 

instances to make the same size as the training set. This is 

called a bootstrapped dataset, and its working procedure is 

shown in Fig. 8(a). So many DT’s are trained on these various 

subsets of the training set, and it takes the average value to 

make the decision. Instead of depending on a single decision 

tree, the random forest uses decisions from all of the trees to 

anticipate the outcome based on majority voting. The root of 

RF takes a random subset of features available and picks the 

one that gives the best split in data based on Gini impurity, as 

shown in Eq. (8), where C is the number of classes and p(i) is 

the probability of randomly picking an element of class i. 

   ∑  ( )  (   ( )) 
     (8) 

ii) Support Vector Machine: A supervised machine 

learning technique called SVM requires labelled data. The 

goal of the SVM algorithm is to find the best decision 

boundary or line that divides the data into "n" classes so that 

following data points can be promptly classified into the 

appropriate class category. This ideal decision boundary is 

known as the “hyperplane”. Mathematically, any hyperplane 

can be represented as in Eq. (9), where xi is the feature value. 

∑      
 
         (9) 
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Fig. 7. Input, Gabor filter and filtered image. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. (a) Working procedure of random forest. (b) Working procedure of 

support vector machine. (c) Working procedure of k – Nearest neighbor. 

Support vectors are the data points or vectors that are 
closest to the hyperplane and have the biggest impact on where 
the hyperplane is located, as seen in Fig. 8(b).  

iii) Extreme Gradient Boosting (XG Boost): Gradient 

boosting is the technique of "boosting" or strengthening a 

single weak model by combining it with a number of 

additional weak models to produce a more reliable model all 

together. The XG Boost is a gradient boosting solution that 

pushes the limits of processing power for boosted tree 

algorithms. It is scalable and incredibly accurate. It was 

developed mainly to improve the efficiency and performance 

of machine learning models. In addition to building trees, XG 

Boost also evaluates the quality of splits at each potential split 

in the training set by scanning through gradient values level-

wise and using these partial sums. 

iv) K-Nearest Neighbor (kNN): One of the fundamental 

classification algorithms, the k-nearest neighbor algorithm, is 

well-liked for its effectiveness and simplicity. It stores the 

training dataset rather than learning from it immediately, 

which makes it a lazy learner algorithm. The algorithm selects 

k, the number of the nearest data points or neighbors, then 

calculates the Euclidean distance of the k number of 

neighbors, and its working process is shown in Fig. 8(c). The 

most popular classes are selected and given to the test pattern 

in the k-NN algorithm after searching for the closest training 

patterns for each test pattern. Some of the method's limitations 

are that it stores the complete training set for testing purposes, 

searches the entire training set in order to categorize a certain 

pattern, and that classification performance suffers in the 

presence of noisy data. 

VI. RESULT ANALYSIS 

A PC with a 2.81 GHz processor and 16 GB of RAM was 
used to implement both the proposed character recognition 
model and the state-of-the-art models. The EnDNN model is 
implemented in Python to evaluate its recognition accuracy of 
handwritten characters and numerals. Training and validation 
accuracy are computed for the three different CNN, EnDNN, 
and WEnDNN models. Three standard benchmark datasets of 
handwritten Odia characters are used to evaluate the 
performance of the proposed model. Table I lists the number of 
samples used in training and testing for each dataset. The 
accuracy is calculated by using a confusion matrix and is 
defined as the number of correct predictions by the classifier 
based on the total number of predictions. For our study, in a 
random forest model, 50 decision trees are ensembled. The 
handcrafted features for our study were a combination of pixel 
intensity values (PV) as well as features extracted from Gabor 
filters (GF). The Gabor filters are applied to original images 
with the following parameters: Image size (x, y) = (9,9)   
 1.5, 2, 2.5                      ,        and   
   The classification result obtained from different experiments 
by these models with handcrafted and non-handcrafted feature 
descriptors is shown in Table III.  
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TABLE III. PERFORMANCE ANALYSIS OF THE PROPOSED MODEL 

Approach Descriptor 

Datasets 

ISI Image 

– 

numeral 

(10 

classes) 

IITBBS- 

numeral 

(10 

classes) 

NITROHCS – 

character ( 47 

classes) 

1. 

Handcrafted 

features with 
ML 

algorithms 

Pixel value 

+Gabor + RF 
95.80 90.34 91.93 

Pixel value + 

Gabor + 
SVM 

94.81 89.52 90.62 

Pixel value 

+Gabor + 

XG Boost 

94.21 91.21 90.01 

Pixel value 

+Gabor +  

kNN 

92.51 88.78 89.85 

2.Non-

handcrafted 
feature with 

VGG16 + ML 

algorithms 

VGG16 + RF 98.61 93.37 93.59 

VGG16 + 

SVM 
98.21 92.54 88.58 

VGG16 + XG 

Boost 
98.67 95.03 93.35 

VGG16 + k 

NN 
98.50 92.63 88.36 

3.Non-

handcrafted 

feature with 
NN 

CNN1 97.92 96.31 96.11 

CNN2 98.12 95.40 94.73 

CNN3 96.33 95.73 95.19 

4.Ensemble of 

Deep learning 

models 

EnDNN 98.33 96.13 96.31 

5.Weighted 
Ensemble of 

Deep learning 

models 

WEnDNN 98.78 96.81 96.45 

Table III and Fig. 9 investigate the performance of the 
WEnDNN model under different datasets. The proposed state-
of-the-art model’s performance was also compared with other 
approaches (1-5). The experimental results highlighted that the 
proposed WEnDNN model has gained maximum recognition 
performance for all handwritten characters as well as numeral 
recognition. This is because each model in the ensemble might 
focus on different aspects of the input data, capturing distinct 
patterns and characteristics of handwritten characters. Each 
CNN model in an ensemble learns different representations or 
features from the input data. Combining these diverse 
representations allows the ensemble to capture a broader range 
of patterns and variations in handwritten characters. By 
combining the strengths of multiple models, the ensemble can 
achieve a more comprehensive and discriminative 
representation of the handwritten characters, leading to 
improved classification performance in EnDNN. In case of 
WEnDNN, the weights assigned to CNN models can be 
dynamically adjusted based on their performance on validation 
data or during training. By continuously adjusting the weights, 
the WEnDNN optimizes its performance, leading to improved 
classification accuracy. 

 

 

 

Fig. 9. Result analysis of proposed ensemble model and different ML 

models with hand-crafted and non-handcrafted features. 

The training and validation accuracy as well as training and 
validation loss of CNN1, CNN2, and CNN3 for the ISI image 
database are shown in Fig. 11. The confusion matrix and 
fraction of incorrect predictions of the proposed WEnDNN for 
the ISI Image numeral database are shown in Fig. 12(a). 
Structural difference between the numerals present in Odia 
language is shown in Fig. 10, which leads to more 
misclassification results. From Fig. 12(b), it is clear that the 
incorrect prediction of the numeral six(  ) is more compared 

to other numerals, as six( ) is predicted as nine ( ), three( ) 

or seven( ). 

90

95

100

CNN1 CNN2 CNN3 EnDNN WEnDNN

Classification accuracy - CNNs, EnDNN and 
WEnDNN models 

ISI numeral IITBBS numeral OHCSv1.0 character
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90

95

100
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Classification accuracy - RF, kNN, SVM and 
XG Boost models with extracted features 

from VGG16 

ISI numeral IITBBS numeral OHCSv1.0 character

85

90

95

100

RF  SVM XG Boost kNN

Classification accuracy - RF, SVM, XG Boost 
and kNN models with handcrafted GF and PV 

features 

ISI numeral IITBBS numeral OHCSv1.0 character
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One (eka) 
 

Three (tini) 
 

Six (chha) 
 

Seven (sata) 
 

Nine (na) 
 

Fig. 10. Structurally different numerals in ISI Kolkata Image database. 

CNN# Training and validation loss 
Training and validation 

accuracy 

CNN1 

  

CNN2 

  

CNN3 

  

Fig. 11. The training and validation accuracy and loss at each epoch of ISI 

numeral database. 

 
(a) 

 
(b) 

Fig. 12. (a) Confusion matrix of WEnDNN. (b) Fraction of incorrect 

predictions of WEnDNN. 

WEnDNN can also handle the noise in a more effective 
way. When noise is present in the data, different models may 
have different levels of sensitivity to noise. By combining their 
predictions with appropriate weights, the ensemble can reduce 
the impact of noise by relying more on the predictions of 
models that are less affected by the noise. If a particular CNN 
model is more susceptible to noise and tends to produce 
incorrect predictions for noisy samples, its weight can be 
reduced. Other models that are more accurate in the presence 
of noise can be assigned higher weights. By giving more 
importance to the predictions of robust models, the ensemble 
can mitigate the effects of noise and make more reliable 
classifications. 

A comparison among the performance of ensemble model 
applied on applications is shown in Table IV. 

TABLE IV. DIFFERENT ENSEMBLE LEARNING APPLICATIONS 

Reference 
Application 

field 
Method 

# of 

classes 
Accuracy 

[42] skin disease 
Ensemble CART, 
SVM, DT, RF, 

GBDT 

6 95.9% 

[43] skin disease 

Ensemble using 
Bagging, AdaBoost 

and Gradient 

Boosting classifier 
techniques; PAC, 

LDA, RNC, BNB, 

NB, ETC 

6 

98.56% - 
Bagging 

99.25% - 

AdaBoost 
99.68% - 

Gradient 

Boosting 

[44] OCR 

Ensemble of 

Decision Trees, 

Random Forest, 
Extra Trees 

Classifier, MLP, 

and SVM for the 
detection of printed 

regions in an 

invoice 

- 94.53% 

[31] OCR 

Ensemble of 30 
deep convolutional 

neural network 

model was 
constructed using a 

stacking method 

35 98.85% 

[45] 
Cloud image 
patches 

Ensemble of 10 
CNN’s (4 CONV 

5 99.40% 
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and POOL layers 

and 3FC layers) 

[46] 
IoT Cyber 

Attacks 

An Ensemble of 

Deep RNN for the 

detection of IoT 
Cyber Attacks by 6 

LSTM models 

2 99.41% 

[47] 
Cardiovascul

ar Disease 

An ensemble-based 

approach of 
machine learning 

and deep learning 

models 

2 88.70% 

[48] Plant disease 

An ensemble of 

Random Forest and 

K-Nearest Neighbor 
(KNN) 

3 96.00% 

VII. CONCLUSION 

This study makes an effort to identify the handwritten 
atomic Odia character and numeral. The handwritten characters 
causes the biggest issue in the character recognition procedure 
due to the freestyle writings of the individual and varies from 
person to person. There are many different shapes and 
orientations that a letter can take. Firstly, CNN models are 
designed from scratch, then a learning-based weighted average 
ensemble of deep neural network models (WEnDNN) is 
proposed to classify 10 digits and 47 characters present in 
alphabet set of Odia language and to enhance the accuracy. The 
performance of proposed WEnDNN model with EnDNN and 
machine learning models, namely, like RF, SVM, k NN and 
XG Boost trained on hand-crafted extracted features by using 
Gabor filter and pixel intensity values, non-handcrafted 
extracted features from pre-trained VGG16 neural network are 
compared. The proposed WEnDNN OHCNR model’s overall 
accuracy recorded as 98.78% on ISI image numeral database.  
In comparison to state-of-the-art techniques, it has been found 
that the suggested method offers superior recognition accuracy. 
These ensemble models can be extended to continuously learn 
and adapt to changing data patterns over time. This could 
involve online learning approaches where the ensemble is 
updated incrementally as new data becomes available, allowing 
it to stay relevant and effective in dynamic environments. 
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