
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

770 | P a g e

www.ijacsa.thesai.org

Efficient Simulation of Light Scattering Effects in the

Atmosphere

Huiling Guo
1
*, Xiliang Ren

2
, Jing Zhao

3
, Yong Tang

4
*

College of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
1, 3, 4

Department of Information Engineering, Hebei University of Environmental Engineering, Qinhuangdao, 066102, China
1

The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province,

Qinhuangdao, 066004, China
1, 2, 3, 4

Qinhuangdao Bank Co., Ltd, Qinhuangdao, 066004, China
2

Abstract—Atmospheric light scattering encompasses intricate

physical process, including diverse scattering mechanisms and

optical parameters. Addressing the challenges posed by the

computationally intensive task of deciphering this phenomenon,

this study introduces an efficient real-time simulation strategy.

The proposed approach employs a physics-driven atmospheric

modeling, leveraging a unified phase function to emulate both

Rayleigh and Mie scattering phenomena. The scattering integral

is approximated and discretized using the concept of

ray-marching to solve the scattering integral. Based on the

characteristics of different light sources, accurate ray-marching

lengths are determined, streamlining the computational

trajectory of the light path. Additionally, the introduction of

texture dithering enhances the randomness of the initial sampling

positions. The Shadow Map algorithm is adeptly employed to

generate shadow mapping textures, eliminating the need for light

calculations within shadowed regions, thereby reducing the

number of samples and computational workload. Finally, color

synthesis is used to determine the rendering color of the

atmosphere under various fog density conditions. Experimental

results show that this approach significantly improves rendering

efficiency, and achieves real-time rendering while maintaining a

realistic light scattering effect compared with other advanced

light scattering rendering methods.

Keywords—Light scattering; ray marching; jittered sampling;

color synthesis; real-time rendering

I. INTRODUCTION

The real-time simulation of atmospheric light scattering is
essential for enhancing the realism of virtual scenes [1]. In
movies, games, and virtual reality applications, being able to
render realistic skies, lighting effects, and weather conditions
in real time is crucial for improving users' visual experiences
and sense of immersion [2]. Moreover, efficient light
scattering simulation also has a significant impact on scientific
research in climate change, environmental monitoring, and the
field of computer graphics [3].

Currently, the real-time rendering of atmospheric light
scattering effects faces two major challenges: one is the high
computational complexity, as it requires consideration of the
propagation of light through the atmosphere and various
parameters such as atmospheric density and scattering
coefficients, which involve complex integral calculations; the
other is insufficient real-time performance, particularly in
large scenes, where even with GPU hardware acceleration,

achieving satisfactory computational efficiency and rendering
speed remains challenging [4].

In response to the aforementioned issues, we propose an
efficient simulation method tailored for the scattering effects
of various light sources' rays in the atmosphere. Building upon
the physically-based integral solution for light scattering, the
method approximates and discretizes the scattering integral,
enhancing the ray-stepping algorithm and reducing the length
of the computed light paths. Additionally, the Shadow Map
algorithm is employed to generate shadow mapping textures,
eliminating the need for lighting calculations within shadowed
areas, thereby further reducing the number of sampling points.
This approach aims to strike a balance between computational
efficiency and rendering quality, maintaining realistic
simulation effects while enhancing rendering performance to
meet the demands of real-time rendering of light scattering.
The main contributions of this research are the as follows:

 Enhanced Henyey-Greenstein phase function for
Rayleigh and Mie scattering intensities, simplified
single-scattering model, and efficient multiple
scattering integral computation.

 Optimized Ray-Marching with novel down-sampling
method for various light source scenarios, reducing
samples while maintaining rendering quality,
significantly improving efficiency.

 Enhanced scene realism and 3D effects with optimized
ambient and sunlight gradient effects under various
times and weather conditions, using scene blending
techniques for realistic light scattering.

The paper is structured as follows. Section II reviews
previous studies. Section III delves into the construction and
optimization of light scattering models, introducing novel
techniques and methods. Subsequently, it optimizes the
sampling strategy for efficient rendering and presents our
approach to atmospheric color synthesis. Section IV presents
results and discussions. Finally, this paper concludes in
Section V.

II. RELATED WORK

The simulation of light scattering effects relies on the
computation of light scattering integrals, which describe the
physical phenomenon where light changes its direction of

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

771 | P a g e

www.ijacsa.thesai.org

propagation due to interactions with particles in a medium.
This complex process involves principles of wave optics and
variables such as the size, shape, and refractive index of the
particles. In the field of computer graphics, light scattering is
key to creating realistic lighting effects, particularly when
rendering scenes involving fog, smoke, clouds, and other
participating media.

To accurately mimic these visual effects, researchers and
developers have employed a variety of scattering models that
approximate the true scattering behavior. Some widely used
theoretical models and methods include: Rayleigh scattering
[5], Mie Scattering [6], Henyey-Greenstein Phase Function [7],
Monte Carlo Method [8], Light scattering integrals in ray
tracing algorithms [9] and so on. Each model and method have
its own range of applicability and trade-offs, and the choice
often depends on the desired level of accuracy, computational
resources, and specific application scenarios.

Currently, optical scattering models in atmospheric scenes
are primarily categorized into two main types: empirical
models and physical models. Empirical models are typically
derived from measurements and statistics of physical
parameters such as the shape, size, and concentration of gas
particles, in order to deduce the scattering and absorption
characteristics of these particles towards light. Empirical
models are usually suitable for scenarios with low gas particle
concentrations and regular particle shapes. However, physical
based models are more applicable for gas environments
characterized by complex particle distributions, diverse
compositions, or varying properties. Hillaire [10] introduced a
novel method for real-time evaluation of multiple light
scattering within the atmosphere. By introducing a set of
simplified lookup tables and parametrization techniques, it
aims to efficiently render skies and their aerial perspectives.
This method enables dynamic variations in atmospheric
composition to align with artistic visions and weather
conditions, eliminating the need for cumbersome LUT
updating processes.

To improve the rendering efficiency of atmospheric
scattering effects, on the one hand, advancements in computer
hardware performance have been leveraged. Modern Graphics
Processing Units (GPUs) are utilized for parallel computation
and optimized algorithms to accelerate calculation speeds [11].
On the other hand, approaches based on analytical formulae,
numerical approximations, and pre-computation are applied to
reduce the complexity of integral calculations in atmospheric
scattering models, thereby improving computational efficiency.
Huo et al. [12] presented an adaptive matrix column sampling
and completion method to accelerate the rendering of
participating media. However, this method could only handle
single scattering scenarios and was not applicable for
rendering participating media in dynamic scenes. In 2020,
West et al. [13] introduced a novel method called Continuous
Multiple Importance Sampling (CMIS) to solve the problem
of multiple importance sampling in Monte Carlo integral
estimation. This method improves the efficiency of rendering
materials, including participating media.

In order to more realistically reproduce light scattering
effects, significant progress has also been made in the study of

multiple scattering. László et al. [14] improved the traditional
light-medium interaction model, allowing control of the
extinction coefficient and control variables through
approximated sampled values, thereby enhancing rendering
efficiency. In 2019, Vibert et al. [15] presented a new scalable
hierarchical VRL method that preferentially samples VRLs
according to their image contribution, yet this method requires
further improvement for rendering anisotropic media. Deng et
al. [16] proposed a novel unbiased volume density estimator,
the photon surface, which is combined through multiple
importance sampling to handle ray paths including single
scattering and within-medium transmission. In 2021,
Alexander et al. [17] introduced a fitting model for skylight
radiance and attenuation in real land atmospheres,
significantly enhancing the visual authenticity of existing
analytical clear-sky models and the visual realism of
interactive methods based on approximate atmospheric light
transmission. In the same year, Kettunen et al. [18] proposed a
method for improving the efficiency of unbiased volume
transmittance estimators. This method reduces variance
through various means, resulting in estimators with several
orders of magnitude lower variance at the same computational
cost, thereby improving the efficiency of ray marching. In
2022, Korkin et al. [19] extended the scope of previous
research by considering the reflection of polarized light by a
Rayleigh scattering spherical atmospheric layer with highly
correlated single-scatter absorption rates. They employed three
advanced radiative transfer models to generate numerical
results, covering both single scattering and multiple scattering
scenarios.

Despite significant advancements in the study of light
scattering effects, further exploration is still needed on how to
better balance high rendering quality with real-time
requirements. In response to the efficiency challenges for
rendering atmosphere light scattering, a real-time simulation
method for the scattering effects of light in the atmosphere is
proposed. This method utilizes approximate numerical
calculations and down-sampling to effectively enhance
rendering efficiency. Additionally, scene blending techniques
are employed to improve the rendering color, resulting in a
more realistic portrayal of light scattering effects in the
atmosphere.

III. MODELING AND SIMULATION OPTIMIZATION METHODS

A. Constructing Light Scattering Model

Light scattering in the atmosphere mainly occurs through
two processes: Rayleigh and Mie scattering. Rayleigh
scattering, caused by tiny particles like air molecules, is why
the sky looks blue and red during sunrise and sunset. Mie
scattering, from larger particles like water droplets and aerosol
particles, makes clouds and fog appear white. Our model
focuses on these two types of scattering.

The relationship between the intensity of Rayleigh
scattering and the wavelength of incident light, as well as the
scattering angle, is expressed as shown in Eq. (1):

2 2 2
2

0 4

(1) ()
() (1 cos)

2

n h
I I

N (1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

772 | P a g e

www.ijacsa.thesai.org

Where ()I is the intensity of scattered light, is the

wavelength of incident light, is the scattering angle, h is

the height of the point, 0I is the intensity of incident light,

n is the refractive index of air, N is the density of air

molecules at standard atmospheric pressure, () h represents

the relative density of air molecules at height h. When =0h ,

then ()=1 h . From this, it can be seen that the intensity of

Rayleigh scattering is inversely proportional to the fourth
power of the wavelength of the incident light. In other words,
shorter wavelengths result in stronger scattering. In optics, the
phase function is commonly used to describe the scattering
properties of light as it interacts with materials. Since
Rayleigh scattering is nearly isotropic, meaning that light is
scattered uniformly in all directions by particles, its phase
function is shown in Eq. (2):

23
() (1 cos)

16

 RF

. (2)

In our model, approximate calculations are performed for
Mie scattering, with extinction coefficients and asymmetry
factors pre-computed. Combined with the improved
Henyey-Greenstein phase function, Rayleigh scattering and
Mie scattering can be uniformly described.

In the atmosphere, larger particles interfere with the light
collected at the observation point. At this point, the light
mapped to the observation point mainly comes from two parts:
the light from target reflection attenuated by particles and
reaching the observation point, and the atmospheric light
formed by light source scattering through particles. Therefore,
based on light energy transmission, an atmospheric scattering
illumination model is constructed, and the total radiation rate
received at point x is shown in Eq. (3):

0
()d ()d

0
0

(,) (,)e (,)e d

x x

ex ex
x

xx x x x

cI x I x g x x
 (3)

Where is the incident direction, (,)cI x is the

outgoing light intensity at position x, 0 (,)I x is the incident

light intensity at position x, ex is the extinction coefficient,

and (,)g x is the scattering distribution intensity at position

x. The first part of this equation represents the intensity of
light transmitted directly from the light source to the
observation point, taking into account the absorption
attenuation of light. The second part represents the scattering
process through the medium, considering the scattering
attenuation of light.

Eq. (4) represents the sum of light intensity scattered from
direction at point x, where the rays from different

directions i
interact with the medium at that location.

4
(,) (,) (,)d

 sc i i ig x I x F

(4)

Where = sc is the scattering coefficient, is a

tunable parameter, represents the atmospheric density

ratio to simulate atmospheric density, (,)iI x is the incident

light intensity from i , and (,) iF is the phase function

of the scattering medium. The angle between and i is

denoted as , which is the scattering angle. Therefore, the

phase function can be expressed as ()F .

Since this incident intensity is a collection of light emitted
from various directions in the sky domain and lacks a specific
directionality as a whole, a unified phase function can be
applied here. Due to the complexity of the true physical
functions for Rayleigh and Mie scattering, using an

approximation for the phase function ()F can significantly

reduce computational complexity. The directional
characteristics of the scattering model vary with particle size.
Unlike Rayleigh scattering, the direction of Mie scattering is
anisotropic, where light is more scattered forward. Different
scattering characteristics can be constructed by combining
various linear phase functions and adjusting the values of the
asymmetry factor. The Henyey-Greenstein phase
approximation function is shown in Eq. (5):

2

2 3/2

(1 cos)
()

(1 2 cos())

F

g g

 (5)

Where g is the asymmetry factor. However, this phase

function can only describe forward scattering and cannot
accurately simulate the effects of backward scattering. To
address this issue, an improved Henyey-Greenstein phase
function, as shown in Eq. (6), was adopted to achieve the
simulation of backward scattering while avoiding the
introduction of excessive complexity coefficients.

2 2

2 2 3/2

1 3(1-g) (1 cos)
()

4 2(2) (1 2 cos())

F

g g g

 (6)

The value range of g is [-0.75, 0.99]. When g is negative, it
corresponds to forward scattering, and when g is positive, it
corresponds to backward scattering. When the g-value is 0, it
results in isotropic scattering, which manifests as Rayleigh
scattering.

B. Simplified Integral Solution and Multiple Scattering

During the propagation of light, particles in the air cause
scattering of the light. When there are fewer particles in the air,
light is usually scattered only once. However, in an
atmosphere with a lot of larger particles, the scattered light
may continue to be scattered by other particles, resulting in a
multiple scattering effect. In conditions where the air quality is
poor, multiple scattering can significantly affect our
perception of the scene. Computing multiple scattering is
complex as it involves extensive integration calculations,
making real-time rendering challenging. To address this issue,
one can utilize the fact that within a certain area, the variation
in particle concentration is typically gradual. Therefore, it's
not necessary to calculate the scattered light intensity for
every single particle; instead, one can compute the scattered
light intensity of some particles along the line of sight to
represent the whole.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

773 | P a g e

www.ijacsa.thesai.org

The specific method, as shown in Fig. 1, involves dividing
the air space through which the line of sight passes into
several segments, taking the average concentration of like
particles within each segment. This allows for segmented
sampling based on the variations in atmospheric particle
concentration and incident light intensity with distance. The
size of each segment needs to be determined by considering
the changes in both atmospheric particle concentration and
incident light intensity to ensure they remain roughly constant
within each segment. The number of segments can be adjusted
based on the required drawing precision. This method avoids
point-by-point sampling along the line of sight, thereby
significantly reducing the computational load.

Fig. 1. Schematic diagram of scattered light intensity calculation.

Uniformly select N sampling points along the path AB,

denoted as 1P , 2P …… NP . The total light intensity scattered

into the viewer's eye along the line of sight is the sum of
particle-scattered light intensities from N sampling segments
along the line of sight. After these simplifications, Eq. (3) can
be simplified to Eq. (7).

1

=

N

i

c c

i

I I

 (7)

Similarly, when calculating the attenuation coefficient

along path iCP , sampling is also required, with the number of

selected points denoted as M. The more sampling points there
are, the closer the result is to Eq. (3). However, having too
many sampling points can impact real-time performance,
necessitating a careful balance. Therefore, Eq. (3) can be
discretized into a summation form to significantly simplify the
computational complexity, as shown in Eq. (8) and Eq. (9).

()()() ()
e

0

11 1

(,) (,) e (,) e

x ex jix

c

N NN
x

ii j i

I x I x g x

(8)

() () ()

1

(,) ()

M

i i

i

g x I F

 (9)

where represents the number of multiple computation

iterations, N signifies the count of particles with different
scattering properties, and M denotes the surrounding voxels
that have already been calculated.

Ray-Marching is a ray stepping technique that works by
shooting rays from the viewpoint and advancing them step by
step, calculating the distance to the surface of objects at each
step until a predefined termination condition is met. Its
advantages over other methods lie in its ability to achieve

extremely smooth effects and handle complex geometries.
Rendering performance can be improved by reducing the
calculated length of light paths, decreasing the number of
samples, and avoiding the computation of unnecessary sample
points.

C. Reducing the Length of Ray Marching

When using Ray-Marching for rendering, it's generally
assumed to start from the camera position and sample along
rays emanating from it until the ray reaches the camera's far
clipping plane or intersects with an object. Lighting is a
necessary condition for scattering, so it's only necessary to
perform ray marching sampling within the range of the
lighting. There's no need to march rays throughout the entire
scene, which can help reduce the length of the calculated
sampling path and improve rendering efficiency. However,
different light sources possess varying lighting ranges and
other characteristics.

1) Directional Light Ray Marching Path: Rays emitted by

directional light sources are mutually parallel, and the

illumination can cover the entire scene. Therefore, ray

marching needs to take place between the camera's near

clipping plane and far clipping plane. The starting point of the

ray can be adjusted from the camera's position to its near

clipping plane. The position of this new starting point can be

determined by the geometric relationship between the camera

and the near clipping plane, as shown in Fig. 2.

Near

Far

O

T

FOVC

D

T

G

R

F

O
E

C

(a) Directional light ray marching range (b) The relative position of the

camera and the near clipping plane

Fig. 2. Schematic diagram for calculating the distance between each point

on the near clipping plane and the camera.

In Fig. 2(a), FOV represents the opening angle of the
visual cone in the vertical direction, Near and Far respectively
indicate the distance from the camera to the near clipping
plane and the far clipping plane. In Fig. 2(b), the plane DEFG

is the near clipping plane. top , right and front represent

the camera's upward, rightward, and forward directions. From
this, the vectors to the four corner points of the near clipping
plane from the camera can be obtained as shown in Eq. (10)-
Eq. (13).

= CD CO OT OR (10)

= CE CO OT OR (11)

= CF CO OT OR (12)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

774 | P a g e

www.ijacsa.thesai.org

= CG CO OT OR (13)

The current camera's aspect ratio is Aspect. Based on the

positions corresponding to the sampling points in Fig. 4, CO ,

OT , and OR can be obtained as shown in Eq. (14)- Eq.

(16).

 CO front Near
 (14)

(tan)
2

FOV

OT top OT top Near
 (15)

()

(tan)
2

OR right OT Aspect

FOV
right Near Aspect

 (16)

Substituting Eq. (14)-(16) into Eq. (10)-(13), the computed
results are passed to the vertex shader in the form of
three-dimensional vectors. The rendering pipeline will
automatically interpolate these vectors for each fragment.
Subsequently, in the fragment shader, the interpolated vectors
can be used to calculate the ray starting point corresponding to
each pixel.

2) Point Light Ray Marching Path: Unlike directional

light, the illumination range of a point light source is localized

and forms a sphere. The actual effective range for ray

marching is the intersection between the ray and the lighting

sphere. As shown in Fig. 3.

O

C

A

M

B

r

Fig. 3. Analysis of Intersection between light and point light sphere.

The ray emitted from point C intersects the sphere with

radius r and center O at points A and B, where d is the unit

vector representing the ray direction. According to the
definition of vector dot product, the length of the line segment
CM is given by Eq. (17), and the square of the length of AM is
given by Eq. (18).

= CM d CO
 (17)

2 2 2 2
2 2 () AM r OM r CO CM

. (18)

According to Formulas (17) and (18), it can be deduced
that the intersection point vector between the ray and the point
light source's sphere is given by Eq. (19).

2

2

(())

(())

CA CM AM d CO r CO d CO d CO d

CB CM AM d CO r CO d CO d CO d

(19)

From this, the starting and ending positions for the ray
marching can be determined.

3) Spotlight Ray Marching Path: Similar to point lights,

spotlights also have a localized lighting range and exhibit a

conical shape, as shown in Fig. 4.

C

A

B

V

M

n

θ

Fig. 4. Analysis of intersection between light and spotlight cone.

The rays emitted from point C intersect the cone at points

A and B. Where d and n are both unit vectors

representing the directions of the ray and the axis of the cone,
respectively. is the angle between the axis of the cone and

the generatrix. Therefore, the vector from point C to the
intersection points between the ray and the cone can be
expressed as shown in Eq. (20).

=CA td (20)

where t is the parameter along the ray. Based on the
relationships in Fig. 6, Eq. (21) and Eq. (22) can be derived as
follows:

= cos = cos VA n VA n VA
 (21)

= VA VC CA (22)

By substituting Eq. (20) and Eq. (22) into Eq. (21) and
solving, we can obtain the parameter t at which the ray
intersects with the lighting cone, thus obtaining the
coordinates of intersection point A. Similarly, the coordinates
of intersection point B can be obtained. It's worth noting that
due to light attenuation or obstruction by objects, the lighting
cone has a certain height limitation. If the height of the
lighting cone is set to h, it can be determined whether there is
an intersection between the ray and the lighting cone by

evaluating 0 cos VA h h .

D. Reducing Sampling Number

During ray marching, increasing the number of sampling
can lead to lower simulation efficiency. Therefore, minimizing
the number of samples is crucial. However, excessively
reducing the sample count may result in noticeable artifacts or

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

775 | P a g e

www.ijacsa.thesai.org

banding in the image, significantly affecting realism. This is
because larger intervals between sampling points fail to
capture sufficient lighting information. From an image
processing perspective, this issue belongs to quantization
errors and can be mitigated by using dithering. Texture
dithering introduces a certain level of randomness in
atmospheric light scattering simulations to replicate the
complex variability of atmospheric lighting phenomena in the
real world. Due to the non-uniform distribution of atmospheric
particles in the actual environment, light scattered by these
particles creates a natural, seemingly random effect visually.
By applying subtle random noise to the image, texture
dithering achieves random offsets corresponding to screen
pixels, breaking up the regular patterns that quantization errors
might otherwise introduce. This method enhances the
randomness of sampling points, not only improving the
realism of simulated scenes but also optimizing rendering
performance without increasing additional computational
burden.

a) Benchmark sampling

b) Jittered sampling

Fig. 5. Comparison of benchmark sampling and jitter sampling.

Using the sampling starting positions calculated in Section
4.1 as a reference, Fig. 5(a) depicts the benchmark sampling
where the offset is 0. Fig. 5(b) shows the jitter sampling,
which adds a random offset on the benchmark starting
sampling position, allowing the sampling points between
different rays to be staggered. It is worth noting that the
random offset should be less than the step size value of the ray
marching.

Jittered sampling effectively transforms the color band
resulting from reducing the sampling count into noise point in
the image. Common methods for generating jitter maps are
based on Bayer matrix, white noise, and blue noise. Fig. 6
shows the sampling results under different jitter textures.

When the sampling count is set to 15, due to the limited
number of samples, there will be significant banding distortion
at the shadow without using the jitter sampling method, as

shown in Fig. 6(a). The jitter texture generated using the
Bayer matrix has strong regularity and generates duplicate
lattice points, as shown in Fig. 6(b). The white noise jitter
texture generates more noise points, resulting in poor
performance, as shown in Fig. 6(c). The results generated
using blue noise jitter textures exhibit relatively fewer noise
points and higher randomness, which is beneficial for
subsequent blur processing, as shown in Fig. 6(d). In
comparison, the image quality generated by blue noise is
better. Therefore, using blue noise to generate jitter textures is
recommended. After jitter sampling, the generated noise can
be removed using a Gaussian bilateral blur method, while
preserving the clear contours of the image. The Gaussian
bilateral blur weights of pixels are calculated as shown in Eq.
(23).

2

2

2

1
(,) exp()

22

 i

i i i i

x
x d d

 (23)

The color contribution value of the i-th pixel with a
relative distance of xi and a relative depth of di from the target
pixel can be obtained by Eq. (23).

Where is the standard deviation, and the larger the value,
the stronger the blurring effect. These weights need to be
normalized before it can be used. The normalized pixel
weights are computed as shown in Eq. (24).

1

(,)
(,)

(,)

i i i

i i i N

i i i

i

x d
x d

x d

 (24)

a) No Jitter sampling b) Bayer matrix jitter sampling

c) White noise jitter sampling d) Blue noise jitter sampling

Fig. 6. Comparison of rendering effects of different jitter textures.

E. Reduce the Range of Lighting Calculation

During the process of ray marching, some sampling points
might be situated within shadows, as shown in Fig. 5. These
sampling points within shadows do not contribute to scattering
light. If we can quickly determine whether a sampling point is
in shadows, it would help reduce computational workload and
enhance simulation efficiency.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

776 | P a g e

www.ijacsa.thesai.org

Shadow Map is a simple and fast shadow rendering
algorithm, which means that when viewed from the position of
the light source, all visible objects are illuminated by the light
source, and all occluded and invisible objects are in shadow.
Firstly, the light source is treated as the camera to render the
entire scene and obtain the depth of each object. This depth
information is then saved as a texture, which is referred to as
the shadow mapping texture. Next, the scene is rendered using
the camera's perspective, obtaining vertex coordinates.
Transforming these vertices into the light source's coordinate
space yields their clipping coordinates (x, y, z) within that
space. By utilizing the transformed vertex coordinates (x, y), a
sampling of the shadow mapping texture provides the

maximum depth value z' for the illumination. If z z, then the
vertex is in the shadow, otherwise it is not in the shadow.

By utilizing the Shadow Map, we can quickly determine
whether each sampling point is in shadow. For points within
shadows, light intensity calculations can be skipped, as their
radiance is considered to be zero since they do not contribute
to the final scattered light intensity, effectively reducing the
number of sampling points for which light computations are
required, thus significantly enhancing rendering efficiency.

F. Improving the Ray Marching Rendering Algorithm

Compared to the traditional Ray-Marching algorithm, the
improved Ray-Marching rendering algorithm enhances
sampling efficiency, and its pseudo code is shown in
Algorithm 4.1.

Algorithm 4.1 Improved Ray Marching Rendering Algorithm:

Input: Pixel information X, Number of ray marching samples N,
Light source color Ic

Output: Color corresponding to pixel points

1: Function ImprovedRayMarching(X, N, Ic):

2: W = CalculateWorldCoordinates(X)

3: StartPoint = CalculateStartPoint(W)

4: R = ApplyJitterSampling(StartPoint)

5: S = GetStepSize(R, N)

6: I = 0

7: For i = 1 to N:

8: If InShadowRegion(R):

9: Continue

10: End If

11: Ii = CalculateIncidentLightIntensity(R)

12: ρ = CalculateFogDensity(R)

13: I0 = CalculateScatteredLightIntensity(Ii, ρ)

14: I += I0

15: End For

16: Pc = Ic * I

17: Return Pc

18: End Function

When performing atmospheric rendering based on the
improved Ray-Marching approach, the initial stage involves
recalculating the starting position and step size for ray
marching along the direction of rays emitted from the camera.
Additionally, jittered sampling is applied along the ray
direction. If a ray intersects with an object, its advancement is
halted, and distance information is returned. Furthermore, the
sampled data and coverage information are utilized to
calculate the atmospheric density. Subsequently, the
computation of fog area shadows is performed. Rays situated
within the shadowed region do not necessitate scattering
calculations, and efficiency can be enhanced by excluding
these rays. Afterward, atmospheric color values are sampled at
the current ray position, and a scene shadow map is generated.
This shadow map is then stored in the command buffer for
later storage in a texture. Then, it's combined with sunlight
and ambient light colors. In addition, lighting calculations are
necessary, including extinction coefficient, scattering
contribution, and transmittance, among others. After
completing these calculations through iterative processes, the
final atmospheric color is generated.

G. Atmospheric Color Synthesis

In order to enhance the representation of lighting details,
the light scattering effect in fog is simulated using scene
blending techniques. Ambient light, as diffused rays, pervades
the entire scene and traverses through dynamically changing
fog regions. The fog is denser near the ground, resulting in
deeper colors. The ambient light generated based on height
and time will influence the color of the fog region. Here, a
negative cosine function curve is introduced and the time

difference range is extended to [0, 2]. The ambient light

color for different heights and times is obtained by multiplying
with the ratio of the height field, calculated as shown in Eq.
(25).

cur cur start

amb inc stan

total end start

(1 cos(() 2)) +
2

H T T
C C C

H T T
 (25)

Where cur total/ 2H H represents the height field ratio, curT

is the current time, thus the range of cur start end start() / () T T T T

is [0, 1], incC is the incremental color, and s tanC is the

standard ambient light color. The color and position of
sunlight dynamically change with time. Therefore, the
corresponding color domain is defined, and the current color
value of sunlight is obtained through interpolation based on
the time ratio, as shown in Eq. (26).

cur start cur start

sun 0 s-end

end start end start

[(1)]()

s f v f

T T T T
C C C V V

T T T T
(26)

Where 0C is the starting value of the sunlight color

domain, s-endC is the ending value of the sunlight color

domain, s fV represents the vector from the sun to the

center of the fog, and v fV is the vector from the vertex to

the center of the fog.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

777 | P a g e

www.ijacsa.thesai.org

On the other hand, employing the Alpha blending
technique with translucent textures enhances the realism of the
fog. To further improve real-time performance, a distance
threshold l is set to divide the rendering range. Particles within
the threshold l are only rendered with the particle fog color,
while those beyond the threshold l exhibit varying lighting
effects using UV gradient animation and BillBoard techniques.
As shown in Eq. (27):

fog

sun amb fog(1) ()

final

r

C d l
C

C C C C d l
 (27)

where
finalC represents the blended rendered color,

rC

is the fragment scene color,
fogC is the fog color, is the

blending coefficient, which is used to control the degree to
which the fog color is influenced by the light.

IV. DISCUSSION AND ANALYSIS OF RESULTS

To validate the effectiveness of the real-time rendering
algorithm for light scattering effects proposed in this paper,
simulations of atmospheric light scattering were conducted
using Unity. The rendering quality and efficiency of the
algorithm were demonstrated, and its performance was
evaluated across multiple test scenarios by fine-tuning various
algorithmic parameters to assess its robustness in different
settings. The experimental environment of the testing platform
includes the following hardware components: Intel(R) Core
(TM) i7-5820K CPU @3.30 GHz, 16 GB RAM, and the
graphics processor is NVIDIA GeForce GTX 1060. The main
software used includes OS: Windows 10 (64 bit), development
platform: Unity 3D engine, Visual Studio 2017, and the
combination of C # scripting language and CG/HLSL shading
language to design and render different scenes.

A. Comparison of Scattering Effects under Different Light

Sources

The sampling range for ray marching varies under
different light sources. Rendering the scene at a resolution of
1280×720 with the same sampling rate, Fig. 7 shows the
scattering effects generated under different light sources.

(a) Directional light (b) Point light (c) Spotlight

Fig. 7. Comparison of light scattering effects under different light sources.

Fig. 7(a) shows a directional light that generates light
scattering throughout the entire visual space. When using the
traditional ray marching algorithm, the average rendering

efficiency is 76.4 FPS. However, with the method proposed in
this paper, rendering efficiency has improved to 89.5 FPS,
representing a performance increase of 17%. Fig. 7(b)
represents a point light source, with its scattering range
forming a spherical shape. Fig. 7(c) shows a spotlight,
generating a cone-shaped scattering range. Due to their
radiation characteristics, point lights and spotlights require
more ray sampling to capture variations of light in different
directions. Because the scattering range of light in this scene is
relatively concentrated, rendering efficiency demonstrates a
slight improvement.

B. Comparative Analysis of Rendering Effects with Different

Sample Counts

Fig. 8 shows a comparison of volumetric lighting
rendering effects in the small town scene with different sample
counts (N).

Fig. 8(a)-(e) shows the volumetric lighting rendering
effects without Gaussian bilateral blur processing, while
Fig. 8(f)-(j) shows the volumetric lighting rendering effects for
the corresponding sample counts after the application of blur
processing. In 1920×1080 resolution, when the sample count
is low, as shown in Fig. 8(a) and 8(b), a lack of sufficient
lighting information leads to the presence of numerous
artifacts in the scene and the absence of beam effects. Upon
applying the blur processing, extensive light spots are formed
within the lighting area, as shown in Fig. 8(f) and 8(g). This
results in significant distortion of the volumetric lighting
rendering effect in the scene. As the number of samples
increases, as shown in Fig. 8(c), the lighting area begins to
exhibit noticeable beam effects, although some noise points
still exist. With further increase in sample counts, more
lighting information is gathered, resulting in a more refined
and realistic beam effect. When the sample count reaches 256,
the generated beam effect becomes quite realistic, as shown in
Fig. 8(e). After blur processing, it can be observed that when
the sample count reaches 64, the rendered lighting effect
appears highly realistic. The beam boundary transition is
natural, and the result is very close to the rendering achieved
with higher sample counts, as shown in Fig. 8(h)-(j). This
implies that, for practical purposes, the rendering effect
achieved with a sample count of 64, enhanced by the blur
process, can effectively substitute for higher sample counts.
The rendering frame rates for different sample counts are
shown in Table I. Increasing the sample count enhances
rendering quality, but it also raises computational costs. In this
complex scene, the rendering efficiency with 64 samples and
blur processing can reach 46.4 FPS, which is 82% higher than
the rendering efficiency without blur processing with 256
samples.

Therefore, our approach is able to achieve a more efficient
and artifact-free realistic atmospheric lighting effect with
fewer samples, achieving a balance between the desired visual
quality and performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

778 | P a g e

www.ijacsa.thesai.org

a) N=16 No blur processing f) N=16 After blur processing

b) N=32 No blur processing g) N=32 After blur processing

c) N=64 No blur processing h) N=64 After blur processing

d) N=128 No blur processing i) N=128 After blur processing

e) N=256 No blur processing j) N=256 After blur processing

Fig. 8. Comparison of volume light rendering effects with different sample counts.

C. Time-Varying Ray Scattering Effect

Fig. 9 shows the comparison of light scattering effects in
non-uniform media that dynamically vary with the position of
the sun.

Fig. 9(a) and (c) respectively show the light scattering
effect under dynamic mountain fog in the morning and after
sunset. At these times, the sun is near the horizon, and the
sunlight enters the atmosphere at an oblique angle. This leads
to significant scattering of blue light along the transmission
path, preventing it from reaching the camera. As a result, the
closer to the ground, the sky appears orange- yellow or
orange-red. Fig. 9(b) shows the scene at noon, where the sky
displays a gradient blue due to Rayleigh scattering. However,
a noticeable mist-like effect is observed near the ground due to
Mie scattering, significantly enhancing the realism of the
entire scene. Fig. 9(d) shows the scene at midnight, without
considering the influence of light from other celestial bodies,
presenting a completely dark effect.

a) Dawn b) Noon

c) After sunset d) Midnight

Fig. 9. Comparison of time-varying light scattering effects in non-uniform

media.

This indicates that the proposed method can effectively
present dynamic light scattering effects caused by varying
solar positions, enhancing the realism of the rendered scenes.
Moreover, it can maintain a rendering efficiency of over
45FPS, meeting real-time requirements.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

779 | P a g e

www.ijacsa.thesai.org

D. Rendering Effects for Different Atmospheric Density

Ratios

The concentration of aerosol particles significantly affects
the propagation, color, and intensity of light. Due to the fact
that most air pollutants belong to aerosol particles, the
intensity of Mie scattering can be affected by adjusting the
atmospheric density ratio, thereby simulating the light
scattering effect under different air qualities.

Fig. 10(a) presents the lighting scene of an urban street in
the early morning, where the atmosphere does not contain
aerosol particles. As a result, only the Raleigh scattering effect
is evident in the distant sky, and there is no Mie scattering
effect near the ground. The light from street lamps is primarily
concentrated near the light sources, and there is no noticeable
scattering effect. In Fig. 10(b), =0.1 , the lighting scene

under good air quality is shown. In this case, the Mie
scattering effect is evident near the ground. Fig. 10(c) and
Fig. 10(d) respectively show the light scattering effects for
conditions with =0.3 and =0.5 . In both cases, the entire

scene is covered by fog, with street lamps forming light beams
within the fog.

As the atmospheric density ratio increases, the light
scattering effects gradually enhances. The clarity and visibility
of objects in the scene significantly diminish, and the sky
gradually appears gray blue, in complete accordance with the
physical principles of light scattering. This notably enhances
the scene's depth and layering, and effectively elevating the
realism of light scattering simulation under various levels of
atmospheric pollution.

a)

=0 b)

=0.1

c) =0.3 d) =0.5

Fig. 10. Comparison of light scattering effects under different atmospheric

density ratios.

E. Experimental Comparison and Results

Fig. 11 shows the comparison of light scattering effects
between this paper and reference [17] in mountain scenes
under clear skies.

Fig. 11(a) illustrates the rendering results achieved by the
method used in literature [17], which is based on an extensive
atmospheric scattering dataset. This technique employs data
fitting to reduce the size of the dataset and attain high-quality
rendering effects. Despite its ability to produce images with a
high degree of realism, the method's substantial demand for
computational resources and storage space limits its
applicability in real-time rendering scenarios. In contrast,

Fig. 11(b) presents the light scattering effects realized in
large-scale scenes using the method proposed in this paper. By
adopting the same solar elevation angle as in literature [17],
with the top image set at 15 degrees and the bottom image at 2
degrees, our method achieves visually realistic results
comparable to those in literature [17]. Meanwhile, the average
rendering frame rate of our method reached 43.6 FPS,
fulfilling the requirements for real-time performance. The Mie
scattering effect is not obvious in the near area, while it
becomes more evident in the far area. This results in clear
visibility of objects in the foreground and a gradual blurring
and fading of objects in the distance, in accordance with the
natural physics of light. Furthermore, as the elevation
increases, the Mie scattering effect gradually weakens. And
after reaching a certain height, it can still maintain a clear sky
color, effectively achieving a realistic light scattering effect
under a clear sky. It is worth noting that the frame rate of this
method can reach 43.6 FPS, fully meeting the requirements of
real-time rendering. In conclusion, our approach significantly
improves rendering efficiency while maintaining light
scattering effects comparable to those in reference [17]. This
not only meets the requirements for real-time rendering but
also satisfies the demands of applications with high real-time
performance requirements.

a) Rendering effects of reference

b) Rendering effect of this paper

Fig. 11. Comparison of light scattering effects in mountain scenes between

this paper and reference [17].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

780 | P a g e

www.ijacsa.thesai.org

a) Rendering effects of reference [16]

b) Rendering effect of this paper

Fig. 12. Comparison of indoor lighting scattering effects between this paper

and reference [16].

The above experiments were all conducted in outdoor
scenes, and our approach is equally applicable to indoor
environments. Fig. 12 provides a comparative display of the
light scattering effects in a classroom scene between our
approach and the method proposed in reference [16].

Fig. 12(a) illustrates the rendering of a scene using the
photon surface density estimation method from literature [16],
which is suitable for handling cases with highly anisotropic
phase functions. However, it fails to meet the requirements for
real-time rendering. In contrast, Fig. 12(b) displays the
rendering results obtained using the method proposed in this
paper, achieving a frame rate as high as 76 FPS, meeting the
standards for real-time performance. Moreover, the
distribution of light and shadow in our method is similar to
that in literature [16], presenting a trend of gradually
diminishing brightness from the window to the interior of the
room. Our method also achieves the effect of sunlight passing
through glass windows, producing noticeable volumetric light
beams. This greatly enhances the realism of the scene.

F. Performance Analysis

Table I lists the relevant data for each experimental
scenario in this paper. The experimental data indicates that the
method proposed in this paper can achieve real-time rendering
frame rates in various experimental scenarios, with the
sampling numbers not exceeding 256. Particularly, in
smaller-scale scenes, higher rendering frame rates can be
achieved. Compared to the methods in references [16], our
approach has significant advantages in real-time rendering
performance while maintaining consistent rendering quality.

TABLE I. EXPERIMENTAL DATA OF DIFFERENT EXPERIMENTAL SCENARIOS

Scenes
Sample

Count

Atmospheric Density

Ratio
Scattering

Coefficient
Resolution

Average Rendering

Frame Rate (FPS)

Fig.7 a) 64 0.1 0.33 1280×720 89.5

Fig.7 b) 64 0.1 0.33 1280×720 96.5

Fig.7 c) 64 0.1 0.33 1280×720 98.6

Fig.8 a) (No blur) 16 0.1 0.29 1920×1080 54.2

Fig.8 c) ((No blur)) 64 0.1 0.29 1920×1080 48.2

Fig.8 e) ((No blur)) 256 0.1 0.29 1920×1080 25.5

Fig.8 f) 16 0.1 0.29 1920×1080 52.6

Fig.8 h) 64 0.1 0.29 1920×1080 46.4

Fig.8 j) 256 0.1 0.29 1920×1080 24.3

Fig.9 64 0.1 0.33 1920×1080 45.8

Fig.10 64 0, 0.1, 0.3, 0.5 0.33 1920×1080 46.2

Fig.11 a) (Reference [17]) - - - 1500×1000 <0.003

Fig.11 b) 64 0.1 0.33 1920×1080 43.6

Fig.12 a) (Reference [16]) - - - - <30

Fig.12 b) 128 0.3 0.65 1280×720 76

V. CONCLUSION

In this paper, a real-time simulation method is proposed
for light scattering effects in the atmosphere. By utilizing a
physically-based atmospheric model that incorporates both
Rayleigh and Mie scattering mechanisms, the total radiance
equation is simplified and discretized, to construct a multiple
scattering model. In addition, based on different light source
characteristics, the method employs accurate ray marching
path lengths, jittered sampling, and exclusion of shadowed
region samples for lighting computations. This significantly
reduces the required number of samples, resulting in a

noteworthy enhancement in rendering efficiency, while
maintaining stable rendering quality. Rendering is
accomplished by utilizing an improved ray marching
algorithm to achieve a more accurate simulation of scattering
effects. In terms of simulating ambient light and sunlight, this
paper optimized the gradient effects under different time and
weather conditions. It blends the fog color with scene
fragments during rendering, accurately presenting the various
scattering properties of light in the atmosphere. In summary,
the proposed method has demonstrated excellent performance
in both real-time processing and realism, achieving a good
balance between computational efficiency and visual effects. It

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

781 | P a g e

www.ijacsa.thesai.org

provides valuable reference for further research and
applications in the field of light scattering simulation,
effectively enhancing the realism and three-dimensional sense
of the scene while meeting real-time requirements.

Although our method can achieve real-time rendering in
most scenarios, rendering efficiency can still be significantly
impacted in cases involving large-scale scenes or high
sampling counts. Future research could explore more efficient
computational optimization methods to reduce the
computational overhead. Meanwhile, the application of blur
effects might result in some loss of detail. Efforts can be
directed towards finding improved methods that allow for
preserving the intricate details of simulation results to their
maximum while still maintaining real-time rendering.

ACKNOWLEDGMENT

This research is supported by the National Natural Science
Foundation of China under Grant No. 61902340.

REFERENCES

[1] Song G, Pan W-J. (2021) "Real-Time Rendering Algorithm of Aerial
Scene Based on Atmospheric Scattering Model," Computer Simulation
38(8), 43-47+322.

[2] Bauer F. (2019) "Creating the Atmospheric World of Red Dead
Redemption 2," SIGGRAPH 2019 course, 1-79.

[3] Li J, Carlson B E, Yung Y L, et al. (2022) "Scattering and absorbing
aerosols in the climate system," Nature Reviews Earth & Environment
3(6), 363-379.

[4] Wang R, Hua W, Huo Y, et al. (2022). "Real-time Rendering and Editing
of Scattering Effects for Translucent Objects," ArXiv, abs/2203.12339,
1-10.

[5] Nishita T, Sirai T, Tadamura K, et al. (1993) Display of the earth taking
into account atmospheric scattering. Proceedings of the international
conference on computer graphics and interactive techniques.
NewYork:ACM Press, 175-182.

[6] Jackel D, Walter B. (1997) "Modeling and Rendering of the Atmosphere
Using Mie-Scattering," Computer Graphics Forum 16(4), 201-210.

[7] Kuz'Min V. L, Val'Kov A. Y, Zubkov, L. A. (2019). "Photon diffusion in
random media and anisotropy of scattering in the henyey-greenstein and
rayleigh-gans models," Journal of Experimental and Theoretical Physics
(3), 128.

[8] Su G. Y, Huang Q, Sun C. J. (2023). "A study on light extinction model
and inversion of mixed particle system based on monte carlo method.,"
Powder Technology: An International Journal on the Science and
Technology of Wet and Dry Particulate Systems, 430.

[9] Kobrtek J, Milet T , Michal T, et al. (2022). "Comparison of modern
omnidirectional precise shadowing techniques versus ray tracing,"
Computer Graphics Forum: Journal of the European Association for
Computer Graphics (1), 41.

[10] Hillaire S. (2020) "A Scalable and Production Ready Sky and
Atmosphere Rendering Technique," Computer Graphics Forum 39(4),
13-22.

[11] Czerninski I, Schechner Y. Y. (2021). Accelerating Inverse Rendering By
Using a GPU and Reuse of Light Paths. ArXiv, abs/2110.00085, 1-31.

[12] Huo Y, Wang R, Hu T, et al. (2016) "Adaptive matrix column sampling
and completion for rendering participating media," ACM Transactions
on Graphics 35(6), 1-11.

[13] West R, Georgiev I, Gruson A, et al. (2020) "Continuous multiple
importance sampling," ACM Transactions on Graphics 39(4), 1-12.

[14] Szirmaykalos L, Magdics M, Sbert M. (2018) "Multiple Scattering in
Inhomogeneous Participating Media Using Rao-Blackwellization and
Control Variates," Enfermería Intensiva 24(1), 12-22.

[15] Vibert N, Gruson A, Stokholm H, et al. (2019) "Scalable Virtual Ray
Lights Rendering for Participating Media," Computer Graphics Forum
38(4), 57-65.

[16] Deng X, Jiao S, Bitterli B, et al. (2019) "Photon surfaces for robust,
unbiased volumetric density estimation," ACM Transactions on Graphics
38(4), 1-12.

[17] Wilkie A, Vevoda P, Bashford-Rogers T, et al. (2021) "A fitted radiance
and attenuation model for realistic atmospheres," ACM Transactions on
Graphics 40(4), 1-14.

[18] Kettunen M, D'Eon E, Pantaleoni J, et al. (2021) "An unbiased
ray-marching transmittance estimator," ACM Transactions on Graphics
40(4), 1-20.

[19] Korkin S, Yang E-S, Spurr R, et al. (2022) "Numerical results for
polarized light scattering in a spherical atmosphere," Journal of
Quantitative Spectroscopy and Radiative Transfer 287,108194.

