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Abstract—In the rapidly developing field of the Internet of 

Things today, effective processing and analysis of perceptual data 

has become crucial. The perception data of the Internet of Things 

is usually large, diverse, and presents high-dimensional 

characteristics, which poses new challenges to data clustering 

algorithms. This study utilizes the K-center point algorithm to 

optimize the density peak fast search clustering algorithm, 

proposes a new clustering algorithm, and applies it to the 

research of semantic classification of perception data in the 

Internet of Things. Firstly, the K-center algorithm was used to 

optimize the clustering center optimization process of the density 

peak fast search clustering algorithm. Then, the optimized 

algorithm was applied to the automatic semantic classification 

model. Thus, a new automatic semantic annotation model for IoT 

aware data has been established. The research results showed 

that the classification accuracy of the proposed optimization 

algorithm was as high as 0.98, and the running stability of the 

automatic semantic annotation model optimized using this 

algorithm was as high as 0.99, with a running time as low as 1s. 

In summary, the automatic semantic annotation model built in 

this study can effectively improve the efficiency and accuracy of 

semantic classification, thereby providing more accurate and 

efficient data support for intelligent services. 

Keywords—Clustering algorithm; Internet of Things; perceived 

data; classification; peak density; semantic information 

I. INTRODUCTION 

With the rapid development of the Internet of Things (IoT) 
technology, more and more devices are connected to the 
Internet, generating a large amount of sensory data. These data 
are not only large and diverse in volume, but also exhibit 
high-dimensional characteristics, bringing unprecedented 
challenges to effective information processing and analysis 
[1-2]. Especially in intelligent service domains such as smart 
city, smart home, health monitoring, etc., how to accurately 
and efficiently extract valuable semantic information from 
massive perceptual data has become an urgent problem to be 
solved [3]. Clustering by Fast Search and Find of Density 
Peaks (CFSFDP) algorithm has gained wide attention in the 
field of data science due to its superior performance, 
especially in identifying the cluster centers, which shows 
significant advantages. However, CFSDP algorithms still face 
problems such as inconsistent sample density and sensitivity 
to noisy data when dealing with IoT sensory data [4]. In 

addition, the K-center algorithm has better robustness in data 
classification, but its performance is limited by the choice of 
centroids [5]. However, existing research mainly focuses on 
data acquisition and transmission optimization, with 
insufficient exploration of efficient data processing and 
accurate semantic classification, failing to give full play to the 
potential of IoT data in intelligent applications. This study 
intends to fill this research gap by proposing a Fusion 
Clustering Algorithm Based on K-Centroids and Fast Search 
of Density Peaks (FCA-KCFSDP) based on the optimization 
of K-centroid algorithm, which aims to improve the accuracy 
and efficiency of semantic information classification of IoT 
sensory data. This algorithm not only improves the stability 
and operational efficiency of the classification model by 
optimizing the clustering center searching process of the 
clustering algorithm, but also provides a strong technical 
support for achieving more accurate and personalized 
intelligent services. The contribution of this study is to clearly 
point out the shortcomings of the existing research and to 
achieve excellent performance in semantic information 
classification of IoT sensory data by proposing and validating 
a new clustering algorithm. The algorithm outperforms the 
existing clustering algorithms in terms of classification 
accuracy, operation stability, and operation time, which 
provides a new solution for the processing of IoT sensory data, 
as well as new ideas and methods for subsequent related 
research. 

II. RELATED WORK 

CFSFDP is a density based clustering method aimed at 
addressing some of the limitations of traditional clustering 
algorithms when dealing with complex datasets. Many experts 
have conducted a series of studies using this clustering 
algorithm. In industrial applications, ensuring the reliability of 
rolling bearing rotating machinery is crucial. Wu J et al. 
proposed a new bearing fault diagnosis method that extracts 
bearing features through improved complete set empirical 
mode decomposition and uses CFSFDP for fault identification. 
This method was superior to traditional methods in fault 
diagnosis [6]. Chunhao Z et al. proposed an improved 
RNN-CFSFDP algorithm to address the limitations of the 
CFSFDP algorithm. This new algorithm redefined the sample 
density metric by introducing inverse nearest neighbors, 
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enhancing the robustness of the allocation process, effectively 
reducing the domino effect, and avoiding incorrect selection 
of density peaks as clustering centers. The clustering 
performance of RNN-CFSFDP on manifold and non-uniform 
density datasets was superior to or equivalent to traditional 
methods [7]. To ensure vehicle driving safety, Wang H et al. 
studied vehicle stability identification and coordinated control. 
Firstly, a vehicle dynamics model was established using the 
vehicle simulation software Carsim, and an attribute dataset 
representing the lateral stability of the vehicle was obtained. 
Subsequently, the CFSFDP algorithm was applied to classify 
lateral stability. The final simulation results validated the 
advantages of the proposed method and coordinated control 
strategy [8]. Ren W et al. proposed an improved algorithm to 
address the limitations of the original CFSFDP algorithm in 
anomaly detection. This algorithm effectively reduced storage 
and computing costs by using a small number of key data 
points and reducing redundant data, while maintaining the 
arbitrary shape clustering characteristics of CFSFDP. 
Compared with traditional clustering algorithms, the improved 
CFSFDP algorithm performed better in generating anomaly 
detection files in terms of speed and accuracy, achieving a 
balance between detection accuracy and real-time 
performance [9]. 

The Semantic Information Classification (SIC) refers to 
the process of classifying text or data based on the semantic 
information it contains. Currently, many experts have used 
various algorithms to build various SIC models. Borges J B et 
al. proposed an IoT time series classification strategy and 
named it TSCLAS. TSCLAS is a time series classification 
strategy for IoT data, which mainly distinguishes different 
categories by transforming the original data into the ordinal 
pattern domain. At the same time, this strategy also enhanced 
the dynamic class separability of time series by selecting the 
optimal parameters. TSCLAS performed well in processing 
large-scale and incomplete IoT data, and had advantages in 
classification accuracy and computational time compared to 
other classification algorithms [10]. Wang Z et al. proposed a 
novel network structure for multi label image classification, 
which is a semantic supplementary network with prior 
information. This network first generated prior information 
through prior information networks with different 
convolutional layers, and then used semantic supplementation 
modules to generate semantic information of potential labels 
highly related to the current information based on the prior 
information. The proposed architecture achieved better 
classification performance in predicting certain semantic 
related labels [11]. Chen L et al. proposed a method for 
inferring regional level metadata from building automation 
system data to address the issue of inconsistent and 
incomplete metadata in existing building automation systems. 
Even in the absence of intuitive labels, the proposed 
information classification method could accurately classify 
and associate regional level building automation system points. 
The average accuracy of its classification and association 
stages was 90% and 85%, respectively [12]. Liu Z et al. 
proposed a global semantic memory network for aspect level 
emotion classification tasks. Traditional attention neural 
networks usually only consider the interaction between 
aspects in a single sentence and its context when solving this 

task, ignoring the rich semantic information available in other 
sentences. This network innovatively treated contexts with 
similar meanings as global semantic information and 
incorporated them as domain knowledge into the model to 
generate domain specific labels, proving its effectiveness [13]. 

In summary, many current studies have covered the 
application of CFSFDP and its variants in multiple fields. 
These studies indicate that the CFSFDP algorithm and its 
improved versions have advantages in processing 
high-dimensional, complex, and non-uniform density datasets, 
effectively identifying key information, and achieving 
efficient SIC in multiple application fields. However, these 
methods still have certain limitations in the processing of the 
IoT sensing data (IoT-SD), especially in terms of accuracy and 
efficiency of SIC. To further improve the classification 
performance of the current model for IoT-SD, this study aims 
to propose a new clustering method for optimizing the SIC of 
IoT-SD by combining the K-center point (K-CP) algorithm 
and the CFSDP algorithm. 

III. SIC OF IOT-SD BASED ON IMPROVED CLUSTERING 

ALGORITHM 

To efficiently process these IoT-SDs, this study first fused 
K-CP and CFSFDP, designed a new clustering algorithm and 
named it Fusion Clustering Algorithm Based on K-Centroids 
and Fast Search of Density Peaks (FCA-KCFSDP). On this 
basis, an Automatic Semantic Annotation (ASA) model for 
IoT-SD was further designed, aiming to achieve automatic 
annotation of semantic information and improve the efficiency 
of information classification. 

A. Design of IoT-SD Clustering Algorithm Integrating 

CFSDP and K-CP 

In the CFSDP algorithm, local density and the minimum 
distance from data points to higher density points are two key 
basic concepts. Local density is usually measured by 
calculating the number of points around each point [14]. For 
each point, CFSDP calculates the distance from it to the 
closest point with higher density, which helps determine the 
cluster center. CFSDP typically uses a large number of 
samples to achieve efficient identification of cluster centers. In 
order to obtain more clustering centers, it is necessary to use 
the objective function in Eq. (1) for data selection [15]. 

 
1

,



n

i ii
Of p obj e    (1) 

In Eq. (1), Of  represents the objective function. 
ie  

represents an example of distance between multiple 
measurement objects. 

iobj  represents the measurement 

object. p  represents the correlation between the measured 

object and the distance example. i  represents the number of 

objects, and n  represents the upper limit of their values. 

Assuming i
 represents local density, its calculation 

formulas are Eq. (2) and Eq. (3). 

   i ij cj
d d    (2) 

In Eq. (2), 
ijd  and 

cd  represent the distance from object 
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iobj  to 
jobj  and the truncation distance, respectively. The 

density value   x  is represented by the difference between 

ijd  and 
cd , and its specific value is Eq. (3). 

 
1, 0

0, 0



 



x
x

x
     (3) 

In Eq. (3), when the difference between 
ijd  and 

cd  is 

less than 0, i.e. 0x , the density value is   1 x . When 

the difference between 
ijd  and 

cd  is greater than or equal 

to 0, i.e. 0x , the density value   0 x . Assuming that 

the minimum distance from a data point to a higher density 
point is  i

, the calculation formulas are shown in Eq.  (4) 

and Eq. (5). 

min    i i j i
   (4) 

In Eq. (4), when the local density  j
 of 

jobj  is greater 

than the local density i
 of 

iobj , the minimum distance  i
 

can achieve a minimum value. 

max    i i j i
   (5) 

In Eq. (5), when  j
 of 

jobj  is less than or equal to i
 

of 
iobj , the minimum distance  i

 can achieve a maximum 

value. Fig. 1 is the recognition decision diagram of the cluster 
center obtained by combining Eq. (1) to Eq. (5). 

(a) Distribution of data before 

identification

(b) Distribution of data after 

identification

Scattered data points Identify the center of clustering

Isolated 

point

Data set Center of clustering

 

 Identification decision diagram of the clustering center. Fig. 1.

Fig. 1(a) and (b) represent the distribution of surrounding 
data before and after cluster center recognition, respectively. 
Due to the high local density and minimum distance of the 
two pentagrams in Fig. 1(b) during the calculation process, 
these two points will be separately identified as outliers. And 
these two points happen to be the cluster centers of the two 
datasets in Fig. 1(a), so this method can be used to determine 
all the remaining cluster centers one by one. After determining 
all cluster centers, the remaining data will be automatically 
divided into nearby clusters based on the principle of nearest 
distance allocation. The identification formula for cluster 
centers is Eq. (6). 

   i i i
     (6) 

In Eq. (6),  i
 represents the product of local density and 

minimum distance. The larger the value, the more likely the 
data is to be the cluster center. Fig. 2 shows the running 
process of the CFSDP algorithm. 

In Fig. 2, the execution of the CFSDP algorithm starts by 
calculating the local density of each data point. This step is 
usually achieved by quantifying the number of points within a 
certain radius around each point. Next, the distance from each 
point to the closest point with higher density and the local 
density value are calculated. Both local density and minimum 
distance serve as the axes of the decision graph to identify 
potential cluster centers. After determining the cluster center, 

the algorithm assigns the remaining points to the high-density 
points closest to them, forming independent clusters. Finally, 
to improve the accuracy of clustering, the algorithm will refine 
these preliminary clusters through a series of post-processing 
steps, and ultimately output the clustering results. 

Start
Input samples and 

minimum distances

Generate decision 
diagram

Calculate local 
density and relative 

distance

Select cluster 
centers Assign samples

End Output class labels

1 2

4 3

5 6

8 7

 

 Flowchart of running the CFSDP algorithm. Fig. 2.

K-CP is similar to the K-means algorithm, but it differs in 
selecting cluster centers. In K-means, the cluster center is the 
mean of all points within the cluster, while in K-CP, the 
cluster center is the actual point that exists in the data, that is, 
the center point. Fig. 3 is the operational diagram of K-CP. 
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 Flow chart of the K-CP algorithm. Fig. 3.

In Fig. 3, the calculation steps of K-CP are mainly divided 
into four parts: initializing the center point, data allocation, 
updating the center point, and multiple iteration algorithms. 
Assuming that all center point data (CPD) is denoted as m  

and non-CPD is denoted as o , the calculation formula for the 

exchange criterion function of CPD and non-CPD is Eq. (7). 

 
1

,
 

 
j

k

ii p C
E dist p o    (7) 

In Eq. (7), E  represents the exchange criterion function. 

p  represents all objects. 
io  represents an object in the 

jC  

dataset. k  represents the number of center points. To 

optimize the selection effect of the initial center point (ICP) of 
K-CP, this study adopts the dissimilarity measurement method 
to select the ICP, and its calculation is Eq. (8). 

1
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In Eq. (8), 
jv  represents the measure of dissimilarity of 

calculation object j . To sort the 
jv  values of each CPD and 

select the k  objects with the top k  minimum values as 

ICP. 

Due to the fact that IoT-SD is usually high-dimensional, 
dynamically changing, and may contain noise and outliers, a 
single clustering algorithm is difficult to effectively handle 
such complex data. In order to improve the accuracy and 
robustness of IoT-SDSIC, this study combined CFSDP and 
K-CP to design FCA-KCFSDP, and its operating process is 
Fig. 4. 

In Fig. 4, the calculation steps of the FCA-KCFSDP 
algorithm are mainly divided into three main steps: 
initialization clustering, initial cluster allocation, and cluster 
update. In order to optimize the FCA-KCFSDP, the study 
meticulously examined several key parameters, including the 
selection of the cluster radius, the density threshold, and the 
centroid selection criteria. The main rationale for selecting 
these parameter sets is based on the following considerations. 

When choosing the clustering radius, this study considered the 
distributional characteristics and density variations of the 
dataset. By comparing the effects of different radius values on 
the clustering results, it was ultimately found that the selected 
radius values could effectively differentiate between 
high-density regions and low-density regions, thus identifying 
the peak density points more accurately. In addition, the study 
also tried multiple radius values to evaluate their impact on 
classification accuracy and algorithm efficiency. The density 
thresholds were determined based on an in-depth analysis of 
the dataset features. By setting different density thresholds, it 
enables the final designed FCA-KCFSDP algorithm to control 
the tightness of clustering and thus optimize the clustering 
results. Different density thresholds were tried in this study, 
aiming to find a balance to ensure the quality of clustering 
while not over-dividing or merging real clusters. Finally, the 
choice of centroid directly affects the quality of clustering and 
the efficiency of the algorithm operation. The study develops a 
set of center point selection criteria based on the distribution 
characteristics and density information of the data. It is 
verified through pre-experiments that this set of criteria can 
effectively identify suitable clustering centers and improve the 
accuracy of clustering. In the initialization clustering stage, it 
is first necessary to calculate the local density and relative 
distance. Next, it is necessary to obtain the identification 
decision map of the clustering center based on the local 
density value, and calculate the initial clustering center based 
on the decision map. Then to change the center point of the 
cluster and calculate the distance from the object to the center 
point, obtaining the calculation formula for initial cluster 
allocation as shown in Eq. (9). 

   
2

1
,


 

n

i j it jtt
dist a a a a    (9) 

In Eq. (9), 
ia  and 

ja  both represent objects. it jta a  

represent the distance between two objects at time t . 

Introduce the variance of data objects as the weight factor for 
cluster center updates in cluster updates, and its expression is 
Eq. (10). 
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 Flowchart of running the FCA-KCFSDP algorithm.Fig. 4.
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In Eq. (10),  i
 represents variance. 

it  represents the 

closest data object. Based on Eq. (10), Eq. (11) is introduced 
to measure the total distance from all nearest data objects to 
object 

ja . 

 
1

 
n

i i jj
D dist a     (11) 

In Eq. (11), 
iD  represents the total distance. According to 

Eq. (11), it is possible to update the cluster and achieve 
dynamic classification of data, ultimately completing the SIC 
of IoT data. 

B. Construction of ASA Model for IoT-SD 

To improve the classification efficiency of IoT-SD and 
further achieve automatic classification of IoT-SD, this study 
combined the FCA-KCFSDP clustering algorithm to build an 
ASA model for IoT-SD. The current ASA research mainly 
focuses on two methods, namely pattern based and machine 
learning based semantic annotation methods. For data 
documents with consistent formats and preprocessed data, 
pattern based semantic annotation methods are more effective 
[16-17]. This method relies on identifying patterns and 
implementing specific rules based on data characteristics to 
perform semantic annotation. On the other hand, machine 
learning based methods are more suitable for processing text 
or other unstructured data types. This type of method typically 
combines natural language processing technology and various 
machine learning algorithms for data analysis and feature 
extraction to reveal hidden information and knowledge in text 
or data. Fig. 5 shows a common ASA model structure. 

Cloud platform layer

Gateway Layer

Sensor Node Layer

Data preparation module

Data Labeling Module

Cloud Interface Module

 

 Structure diagram of the traditional ASA model. Fig. 5.

In Fig. 5, the entire ASA model consists of a cloud 
platform layer, a gateway layer, and a sensor node layer. The 
key architecture for implementing ASA is the gateway layer. 
In the gateway layer, it mainly includes three modules: data 
preparation module (DPM), data labeling module (DLM), and 
cloud interface module (CIM). DPM is mainly responsible for 
filtering and removing excess data, while converting the 
remaining data into XML format. This process analyzes and 
processes the initial data emitted by sensor nodes to minimize 
the computational resources required for the annotation 
process. Subsequently, DLM receives XML formatted data 
from DPM and annotates it, utilizing the concept of mapping 
to the application domain ontology to label the data. CIM is 
responsible for connecting cloud services and IoT data 
gateways, and implementing three main tasks. These include 
ensuring functional independence between the physical layer 
and the cloud service layer, transferring annotated IoT data to 
the cloud in RDF file format, processing sensor discovery 
content from upper layer applications, and querying requests 
for real-time data. The FCA-KCFSDP clustering algorithm 
was introduced as the core semantic classification component 
in the original ASA model, and the optimized structure of the 
IoT-SD oriented ASA model is Fig. 6. 

Fig. 6 shows the ASA model with the addition of 
FCA-KCFSDP semantic classification component. The 
optimized ASA model consists of four parts, namely data 
pre-processing, semantic classification optimization (SCO), 
semantic annotation module (SAM), and CIM. Among them, 
the data pre-processing module aims to maintain the original 
functions of data aggregation, data filtering, and structured 
data representation. Structured data representation ensures that 
data is transformed in a way that is easy to process by the 
FCA-KCFSDP algorithm. The SCO module aims to replace 
the original semantic classification module with the 
FCA-KCFSDP clustering method. This module is responsible 
for assigning data to the correct semantic categories based on 
its characteristics and patterns. SAM will continue to receive 
the output of the semantic classification module and use 
domain ontology mapping and referencing concepts for 
semantic annotation of data. CIM refers to the transmission of 
semantically annotated data in RDF format to the cloud 
platform and processing of requests from the cloud platform 
and high-level applications. The optimized ASA model 
introduces the FCA-KCFSDP clustering method as the core of 
semantic classification, and all semantic classification work is 
carried out through this newly integrated algorithm. Compared 
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to traditional ASA models, ASA models that use 
FCA-KCFSDP clustering method as the semantic 
classification core have better classification performance and 
adaptability. It not only enables reasonable clustering and 
annotation of various types of information, further reducing 
the need for subsequent data processing and storage, but also 
reduces computational costs without sacrificing performance. 

IV. RESULTS 

To test the effectiveness of the research method, the results 
analysis section first tested the performance of the 
FCA-KCFSDP clustering algorithm and proved that the 
algorithm performed better than other comparative algorithms 
in error performance and SIC. Subsequently, this study 
applied the FCA-KCFSDP clustering algorithm to the ASA 
model and tested the model's performance in actual IoT-SD 
classification. 

A. Performance Testing of FCA-KCFSDP Clustering 

Algorithm 

To evaluate the performance of the FCA-KCFSDP 
clustering algorithm in the IoT-SD semantic classification 
problem, this study constructed a comprehensive dataset 
containing multidimensional temporal data as the 
experimental dataset. The data set consists of readings from 
different sensors, including temperature, humidity, light 
intensity, and motion sensor data. In addition, the data was 
collected from three different indoor environments, covering a 
duration of four weeks to ensure inclusion of various 
environmental changes and possible anomalies. Table I shows 
the specific dataset data. 

Table I provides the dataset information for this study. To 
ensure that experimental errors caused by equipment changes 
can be avoided in multiple repeated experiments, this study 
conducted experiments in the same simulation environment. 
The experimental operating system is Ubuntu 20.04 LTS, with 
an Intel Core i7-9700K CPU @ 3.60GHz and 32GB DDR4 
RAM. The algorithm design was completed using Python 3.8 

and TensorFlow 2.4.1. Firstly, the changes in Mean Square 
Error (MSE) and Mean Absolute Error (MAE) of 
FCA-KCFSDP, CFSDP, and K-Means Clustering algorithms 
in the training dataset were compared, as shown in Fig. 7. 

TABLE I. DATASET INFORMATION TABLE 

Data 

Indicators 
Specific description 

Data Source 
Indoor environment sensor data (temperature, humidity, 
light, motion) 

Sampling 

Period 
1 min 

Total Duration 4 weeks 

Number of data 
points 

10000 

Pre-processing 

operation  
Labelling 

information 

Missing value interpolation, outlier rejection, 

normalization  
Provided by domain experts, contains labels such as 

normal, abnormal operation, equipment failure, etc. 

Data division Training set (80%), validation set (10%), test set (10%) 

1.Data preprocessing 
module

2.Semantic 
Categorization Module

3.Semantic Annotation 
Module

4.Cloud interface 
module

Data preprocessing

Data Conversion Semantic assignment

Data characterization

Automatic Semantic Annotation Model for IoT Sensory 

Data

Receive semantic 

categorization output

Semantic annotation Data transmission

Processing Cloud 

Requests

 

 Structural diagram of the ASA model for introducing FCA-KCFSDP. Fig. 6.
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 MSE and MAE for the different clustering algorithms. Fig. 7.
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Fig. 7(a) and Fig. 7(b) show the MSE and MAE values of 
the three clustering algorithms in the training dataset, 
respectively. In Fig. 7(a), as the number of training samples 
increases, the MSE value of the FCA-KCFSDP algorithm 
remains below 0.1, CFSDP is between 0.1 and 0.3, and 
K-Means is between 0.2 and 0.4. In Fig. 7(b), the increase in 
the number of training samples resulted in the MAE value of 
the FCA-KCFSDP algorithm always being below 0.05, 
CFSDP between 0.05 and 0.15, and K-Means between 0.10 
and 0.20. In summary, the FCA-KCFSDP algorithm has better 
error performance. 

Fig. 8(a) and 8(b) show the classification accuracy of the 
three algorithms in the training and validation sets, 
respectively. In Fig. 8(a), the FCA-KCFSDP, CFSDP, and 
K-Means algorithms have the highest classification accuracy 
in the training set of 0.96, 0.89, and 0.84, respectively. The 

highest classification accuracy of the three algorithms in Fig. 
8(b) in the validation set is 0.98, 0.91, and 0.86, respectively. 
Therefore, the FCA-KCFSDP algorithm has higher 
classification accuracy in both training and validation 
processes, indicating that the algorithm can better perform SIC 
on experimental data. 

The temperature, humidity, lighting, and motion data of 
indoor environmental sensors are classified separately, and the 
loss curves of three clustering algorithms on the four 
classification datasets are obtained. Fig. 9(a) to Fig. 9(d) 
indicate that compared to CFSDP and K-Means, the 
FCA-KCFSDP algorithm always obtains a more stable loss 
curve. The FCA-KCFSDP algorithm can achieve stable 
classification on four datasets: illumination, temperature, 
motion, and humidity by iterating 15, 22, 16, and 20 times 
respectively. 
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 Classification accuracy of different clustering algorithms in the training and test sets. Fig. 8.
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B. Test of the Classification Performance of ASA Models for 

IoT-SD 

After testing the performance of the FCA-KCFSDP 
algorithm, this study applied it to the ASA model to further 
verify the classification performance of the IoT SDASA 
model optimized by the algorithm. Firstly, the operational 
stability and time variation of ASA models built by various 
clustering algorithms were compared, as shown in Fig. 10. 

Fig. 10(a) to Fig. 10(c) shows the operational stability and 
time variation of three models under multiple actual tests. The 
above figure shows that the semantic annotation model 
combined with K-Means, CFSDP, and FCA-KCFSDP 
algorithms has the highest running stability of 0.79, 0.90, and 
0.99, respectively, and the shortest running time of 19 seconds, 

8 seconds, and 1 second, respectively. Therefore, applying the 
FCA-KCFSDP algorithm to the IoT-SDASA model can 
enable the model to have higher operational stability and 
shorter data classification time. 

Fig. 11(a) and Fig. 11(b) show the satisfaction levels of 
IoT company users and experts with three different 
classification models, respectively. The satisfaction levels of 
users with the annotation models under K-Means, CFSDP, and 
FCA-KCFSDP algorithms are 0.76, 0.83, and 0.96, 
respectively. The satisfaction rates of experts with the models 
under K-Means, CFSDP, and FCA-KCFSDP algorithms are 
0.72, 0.86, and 0.95, respectively. 

0.9

0.8

0.7

0.6

0.5
1

 
Number of experiments

10

20

30

40

0

S
ta

bi
li

ty

T
im

e/s

Stability Time/s

(a) Operational stability and runtime of K-Means 

classification models

2 3 4 5 6 1

 

0

T
im

e/s

2 3 4 5 6

Stability

Number of experiments

(b) Operational stability and runtime of 

CFSDP classification models

10

20

30

40
Time/s

1

 

0

T
im

e/s

2 3 4 5 6

Stability

Number of experiments

(c) Operational stability and runtime of FCA-

KCFSDP classification models

10

20

30

40
Time/s

1.0

0.9

0.8

0.7

0.6

0.5
S

ta
bi

li
ty

1.0

0.9

0.8

0.7

0.6

0.5

S
ta

bi
li

ty

1.0

 

 Stability and running time of each classification model. Fig. 10.
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The classification effects of four different clustering 
algorithms in practical applications are given in Table II. One 
week's IoT sensing data was collected from an enterprise, 
which was divided into noisy data and non-noisy data, and 
1,000 of each was taken. In Table II, the classification 
accuracy and classification time of K-Means algorithm are 
84.25% and 1.87s for noisy data, and 86.32% and 1.59s for 
non-noisy data, respectively. The classification accuracy and 
classification time of CFSDPs algorithm are 88.30% and 1.38s 
for noisy data, and 88.30% and 1.38s for non-noisy data, 
respectively. The classification accuracy and time were 89.94% 
and 1.26s for noisy data. k-means++ algorithm was 91.05% 
and 1.12s for noisy data, and 92.17% and 1.05s for non-noisy 
data. fca-KCFSDP algorithm was 98.49% and 1.59s for noisy 
data. Classification time is 98.49% and 0.25s for noisy data, 
and 98.85% and 0.21s for non-noisy data. Taken together, all 
the clustering algorithms are better at dealing with noisy data 
than non-noisy data, and the FCA-KCFSDP algorithm, 
compared to the other three comparative algorithms, has 
higher classification accuracy and classification efficiency. 

TABLE II. ACTUAL CLASSIFICATION EFFECT OF DIFFERENT ALGORITHMS 

Algorithmic 

models 
Data Type 

Classification 

accuracy 

Classification 

execution time 

K-Means 

Noise data 84.25% 1.87s 

Non-noise 

data 
86.32% 1.59s 

CFSDP 

Noise data 88.30% 1.38s 

Non-noise 
data 

89.94% 1.26s 

K-means++ 

Noise data 91.05% 1.12s 

Non-noise 

data 
92.17% 1.05s 

FCA-KCFSDP 

Noise data 98.49% 0.25s 

Non-noise 

data 
98.85% 0.21s 

V. CONCLUSION 

In response to the shortcomings of low classification 
accuracy and poor classification performance of the current 
IoT SDSIC tool, this study combined the K-CP and CFSDP 
algorithms to design an optimized FCA-KCFSDP, and used it 
to build an ASA model for IoT-SD. The research results 
indicate that compared to K-means and CFSDP algorithms, 
FCA-KCFSDP clustering algorithm had better error 
performance, with MAE and MSE below 0.05 and 0.1, 
respectively. In addition, the classification accuracy of 
FCA-KCFSDP, CFSDP, and K-means algorithms in the entire 
dataset could reach up to 0.98, 0.91, and 0.86, respectively. 
The sensor data in the dataset was subdivided into four types 
of data: motion, humidity, temperature, and lighting. It was 
found that the FCA-KCFSDP algorithm can reach a stable 
state by iterating 15, 22, 16, and 20 times respectively. 
Therefore, the performance of FCA-KCFSDP algorithm was 
superior to the other two comparative algorithms. Finally, this 
study also compared the stability and running time of 
classification models under K-means, CFSDP, and 
FCA-KCFSDP algorithms, and found that their highest 
running stability reached 0.79, 0.90, and 0.99, respectively, 
and their shortest running time was 19 seconds, 8 seconds, and 

1 second. The FCA-KCFSDP classification model could also 
achieve higher classification satisfaction. In summary, the 
clustering algorithm and classification model designed in this 
study can achieve good semantic classification results. 
Subsequent research can further expand the types of semantic 
information in the dataset, thereby proving that the model has 
better generalization properties. Future research work includes 
the following points. Firstly, explore the possibility of 
integrating density peak based fast search clustering 
algorithms with deep learning models to improve the accuracy 
and efficiency of the model when dealing with complex 
datasets. Secondly, the research will be extended to more 
application areas, such as intelligent transportation systems, 
environmental monitoring, etc., to verify the universality and 
applicability of the algorithm. In addition, focus on security 
and privacy protection during data processing, and study how 
to ensure algorithm performance while ensuring data security 
and user privacy are not compromised. 
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