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Abstract—Surface defect detection is the task of identifying
and localizing defects on the surface of an object, which is
a widely applied task in various industries. In the logistics
industry, logistics companies need to monitor the condition of
goods for potential defects throughout the entire logistics process
for effective logistics quality control. However, effective defect
detection methods are still lacking for courier packages using
corrugated cardboard boxes, which rely on judging whether
deformation and leakage have occurred by examining areas
on their surface with abundant texture. Specifically, the defect
rate and supporting structure of the packages are influenced
by temperature and humidity, and the openings and bends of
defects are inconsistent. This results in defective packages having
rich and non-uniform texture features. Moreover, convolutional
neural networks struggle to effectively extract low-level semantic
texture features of defects and perceive multi-level image features
of packages. Considering the above challenges, we propose a novel
texture prior-aware multi-level feature fusion network (TPMN).
We first introduce prior knowledge and attention mechanisms
to enable the neural network to focus on extracting low-level
texture features from the image in the early stages. We also design
a multi-level feature fusion method to integrate features from
different levels, avoiding the gradual loss of low-level semantic
information in CNN and enabling comprehensive perception
of multi-level image features. To support further research, we
contribute the cardboard-boxes-dataset, comprising 1210 images
of packages. Experiments on this dataset showcase the superior
performance of TPMN, even in few-shot learning scenarios,
demonstrating its effectiveness in surface defect detection within
the logistics and supply chain domains.
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I. INTRODUCTION

Surface defect detection is a widely applied task in various
industries, the goal of which is to identify and locate defects
on the surface of objects. Nowadays, an increasing number
of surface defect detection methods based on deep learning
are being proposed. Lv et al. proposed a single shot multiBox
detector-based end-to-end defect detection network for defects
on metal surfaces [1]. Huang et al. proposed a method for
defect detection in micro-nozzles using canny edge detection
and evaluating the texture features of the regions [2]. Many
mature methods have also been proposed for applications in
other materials, such as steel strips [3], fabric [4], and solar
cells [5].

Nevertheless, the logistics industry, which is rapidly devel-
oping alongside e-commerce, still lacks reliable methods for
surface defect detection. Reliable courier packaging is crucial
for logistics quality, especially for fragile items, and tracking
courier parcel defect helps logistics companies determine re-
sponsibility and improve logistics quality control. However, the
corrugated cardboard boxes used for courier packaging differ
from other industrial materials as they have limited waterproof
properties and compressive strength. It may suffer different
degrees of defect in the logistics environment. Corrugated
cardboard boxes are highly sensitive to atmospheric conditions,
and the defect rate and structural support of the packages
can be significantly affected by temperature and humidity [6],
[7]. Meanwhile, under the pressure of other goods, corru-
gated cardboard boxes may also develop inconsistent sizes of
openings [8] and bends [9], leading to damage to the cargo.
This complex defect scenario renders traditional surface defect
detection methods unsuitable for courier parcels. Therefore,
logistics companies urgently need a comprehensive and reli-
able defect detection method to achieve precise detection of
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Fig. 1. Surface defects in different materials. In human judgment of whether
a corrugated cardboard box has deformed or is leaking, it is typically reliant

on image regions rich in textures, such as uneven package edges, folds
extending around due to indentation, and edges at defect locations.

courier parcels, especially in cases with significant differences
in defect sizes and overall structural. However, we still face
the following challenges.

Firstly, the features of datasets for different defect detec-
tion tasks vary significantly, and the optimal solutions also
differ. For corrugated cardboard boxes, humans judge whether
deformation and leakage have occurred by examining areas
on the surface with abundant texture (e.g., uneven package
edges, depressed folds, defect edges). However, these texture-
related low-level semantic features are often overlooked by
Convolutional Neural Network (CNN) during the feature ex-
traction process [10]. Additionally, low-level texture features
suffer from semantic ambiguity due to their small receptive
fields [11], [12]. Therefore, when analyzing the overall image
and semantics of corrugated cardboard boxes, it is difficult to
extract low-level texture image features.

Secondly, traditional methods often use the last convo-
lutional feature map [13], resulting in insufficient semantic
information and the loss of local information in the image.
Specifically, courier parcels vary in size, and there is incon-
sistency in the texture sizes of corrugated cardboard boxes.
When employing CNN with multiple convolution layers, local
texture information may gradually be lost [14]. Moreover, in
large-scale images, CNNs pay more attention to the high-level
semantic information of the image [15], such as the overall
structure and shape of corrugated cardboard boxes. Therefore,
it is difficult to capture multi-level image features, which limits
the task of surface defect detection on corrugated cardboard
boxes.

In this paper, considering the above challenges, we pro-
pose a texture prior-aware multi-level feature fusion network
(TPMN). Our method aims to accurately detect defect courier

parcels, meeting the logistics company’s need to track pack-
aging defect status and providing crucial information for
determine responsibility and improving logistics processes.
Specifically, we first introduce prior knowledge and attention
mechanisms to enable the neural network to focus on ex-
tracting low-level texture features from the image in the early
stages. Then, we designed a multi-level feature fusion method
to integrate features from different levels, avoiding the gradual
loss of low-level semantic information in CNN and enabling
comprehensive perception of multi-level image features. Ad-
ditionally, we have contributed a dataset that comprises 1210
images of packages, known as the cardboard-boxes-dataset.
On this dataset, we conducted basic experiments, ablation
experiments, and few-shot learning experiments, among others.
The experimental results demonstrate the superior performance
of the TPMN.

To summarize, the primary contributions of this paper are
as follows:

• We design the Texture Prior-Aware Multi-Level Feature
Fusion Network, which integrates ResNet-18 [16] with
multi-scale feature fusion and a prior attention mechanism.
This framework enables precise defect classification and
localization.

• The proposed TPMN is model-agnostic, allowing for effec-
tive extraction and fusion of low-level texture features while
comprehensively perceiving multiscale image information.

• We released the Cardboard-Boxes-Dataset, which can be
used for the task of detecting express packaging defects
and promote further research in this field. The dataset is
publicly available at https://github.com/chanllon/corrugated-
cardboard-boxes-dataset.

II. RELATED WORK

This section provides an overview of related work in three
key fields: surface defect detection, prior attention, and multi-
level feature fusion.

A. Surface Defect Detection

Surface defect detection is a widely applied task in var-
ious industries, with the main goal of identifying and lo-
cating defects or flaws on the surface of objects. Before
the development of deep learning, surface defect detection
primarily utilized traditional image processing techniques to
extract features, employing machine learning for classification.
Sun et al. utilized learning vector quantization networks and
backpropagation networks for classification after segmenting
the images [17]. Borwankar et al. introduced an k-nearest
neighbors based algorithm for cast iron rocker arm inspection
using frequency domain image processing [18]. However, these
methods fall short in achieving superior detection accuracy.
With the development of deep learning (DL), there are also
many DL-based methods utilized for surface defect detection
in the industry. Schlüter et al. introduce a simple and intuitive
self-supervised method for sub-image anomaly detection and
localization [19]. Lv et al. proposed a single shot multiBox
detector-based end-to-end defect detection network for defects
on the metal surface [1]. Huang et al. proposed a method using
canny edge detection and evaluating region texture features for
the defect detection of micro-nozzles [2]. Fang et al. designed
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Fig. 2. Texture Prior-Aware Multi-Level feature fusion network.

a convolutional neural network (CNN) integrated with an
attention mechanism to enhance training stability and detec-
tion accuracy in tactile methods for fabric structural defect
detection [20]. However, the methods designed based on the
specified material features mentioned above are not applicable
to the complex defect scenarios in corrugated cardboard box
defect detection [12], [21], [22]. Specifically, as illustrated in
Fig. 1, the datasets for various defect detection tasks exhibit
significant differences in features. Given the unique features
of express packaging materials, we have devised an innovative
model for surface defect detection.

B. Prior Attention

Prior attention enables the model to focus on important
regions in the image, thereby improving the accuracy of
object detection or image classification. Specifically, attention
mechanisms allocate different weights to different parts of the
input, allowing the neural network to concentrate on specific
regions. SENet introduces a structure called the “Squeeze-
and-Excitation” block, enabling the model to adaptively learn
relationships between input feature channels [23]. DANet
incorporates parallel global and local attention modules, fo-
cusing on global context and local details, respectively [24].
The role of prior knowledge in attention mechanisms is to
introduce previous experience or assumptions to guide the
neural network in focusing on specific information during
the learning process. Cai et al. introduced image noise and
edges as prior knowledge into the neural network, significantly
enhancing the detection performance [25]. Wang et al. generate
prior attention maps through a binary classifier to enhance
lesion detection in COVID-19 CT screenings [26]. Zhang et

al. assigns different weights to positions based on the prior
that objects are near the image center and perceives object
context information through different receptive fields [26].
However, existing prior attention methods are not applicable to
the detection of defects in corrugated cardboard boxes, which
focus more on regions rich in surface textures.

C. Multi-Level Feature Fusion

The task of multi-level feature fusion aims to effectively
integrate feature information from different levels to enhance
the performance of deep learning models when handling
multi-level input data. HyperNet achieves effective multi-
level feature fusion by aggregating hierarchical features and
compressing them into a uniform space, enabling superior
object detection performance across various levels [13]. Single
shot multiBox detector achieves multi-level feature fusion
by predicting category scores and box offsets for default
bounding boxes using small convolutional filters [27]. Feature
pyramid networks utilize a top-down architecture with lateral
connections to facilitate effective multi-level object detection
by integrating contextual information [28]. This method also
finds extensive applications in other fields, such as remote
sensing images [29], [30], classification of agricultural pests
[31], and medical applications [32], [33], and so on. However,
the above methods do not fully consider the texture information
of low-level images, making it difficult to effectively integrate
texture features on corrugated cardboard boxes at different
levels and overall structures.
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III. TEXTURE PRIOR-AWARE MULTI-LEVEL FEATURE
FUSION NETWORK

The overall architecture of the texture prior-aware multi-
level feature fusion network is depicted in Fig. 2. Our network
mainly consists of four parts: backbone, texture prior atten-
tion module, priori mapping module, and multi-level feature
fusion module. We employ data augmentation techniques in-
cluding mirroring, scaling, rotation, and translation to boost
the diversity and complexity of the samples in light of the
small number of samples in the dataset. This helps reduce
the overfitting problem of the model. Enhanced images are
created by randomly augmenting the original images, which
are then sent into the backbone and texture prior attention
module. Afterwards, we introduce each module of the network
separately.

A. Backbone

ResNet-18 [16] provides strong feature learning capabilities
for image features at various levels and abstraction levels. It is
critical for detecting package defects, which typically manifest
as local detail changes in the image, and ResNet-18 is capable
of capturing these subtle features. Therefore, we designed the
backbone based on ResNet-18. The ResNet-18 was constructed
from residual blocks. ResNet-18 has N residual blocks, with
each residual block’s input set to xi. The first block’s input is
an enhanced image, and the inputs of subsequent blocks are
drawn from the previous block’s output. The calculation for
each residual block in ResNet-18 is as follows.

F 1
RB = ReLU(Conv(BN(Conv(x)))) (1)

F i
RB = ReLU(Conv(BN(Conv(F i−1

RB )))), i = {2, . . . , n}
(2)

where F i
RB represents the output of the i-th residual block.

Conv stands for convolution, BN for batch normalization,
and ReLU for rectified linear unit.

B. Texture Prior Attention Module

Humans frequently rely on “textured” parts, such as zigzag
edges and depressed creases, to determine whether corrugated
boxes are distorted or leaking. Moreover, the value of each
pixel in an RGB image is determined by the richness of the
surrounding texture. We propose a canny-based prior attention
method for texture recognition that extracts wrapped texture
features as priori knowledge, allowing the model to pay more
attention to essential texture areas. Experiments have shown
that the prior attention map improves model performance
significantly.

We first convert the image to grayscale before using the
canny algorithm to extract the edges. The texture feature map
is then min-max normalized to ensure that the value of each
pixel is between 0 and 1, in order to obtain the prior knowledge
map. The calculation process is as follows:

FC = Canny(Gray(x), Clower, Cupper) (3)

T =
FC–min(EC)

max(FC)–min(FC)
(4)

where, Gray represents converting the input image x to a
grayscale image, Canny represents the Canny edge detection

Fig. 3. The priori mapping module.

algorithm, and Clower and Cupper indicate the lower and
upper thresholds. T denotes the feature map after Max-Min
normalization.

Included in the texture feature should be the surrounding
texture-rich area as well as the texture itself. We extend the
attention space even more by using downsampling and average
pooling layers. Specifically, through the local perceptiveness
of convolution and the information integration of average
pooling, the expansion of texture edges can be achieved. This
process allows the final Prior Attention Map to cover both
the texture edges and the nearby texture information. The
size of the output image after average pooling is the same
as the size of the RGB branch feature map. Each feature
downsampling module includes a 3×3 convolutional layer with
16 channels, followed by a 7×7 average pooling layer. The
preceding method is as follows:

F 1
PA = AvgPool(Conv(T )) (5)

F 2
PA = AvgPool(Conv(F 1

PA)) (6)

where F i
PA represents the prior attention map at the i-th layer.

AvgPool is an acronym for average pooling.

C. Priori Mapping Module

The primary function of the Prior Attention Mapping mod-
ule is to map the prior attention map to the enhanced feature
map of the image obtained from the backbone. We consider
fusing texture features and image features in the shallow layer
of the network since downsampling the prior attention map
leads to an erroneous attention range. The overview of this
module is illustrated in Fig. 3.

This module gets the backbone feature FRB of size H ×
W × C from the encoder shallow layer and the texture prior
attention module’s prior attention map FPA of size H×W×16
as input and outputs the fusion feature FPM . The process is
as follows:

K = ReLU(Conv(F i
PA)), i = {1, 2} (7)

F i
PM = F i

RB ⊙K + F i
RB (8)

where, ⊙ stands for dot-product. To prevent the above proce-
dure from producing too small values and causing the gradient
to vanish, we use the residual technique to let another F i

RB skip
the priori mapping module and add it to F i

RB⊙K. This ensures
that the performance of the network with the attention map will
not be poorer than the original performance. Specifically, this
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module is applied to the output of block1 and block2 of the
encoder.

D. Multi-Level Feature Fusion Module

In order to better incorporate high-level semantic informa-
tion from images and prevent low-level semantic information,
including texture features, from vanishing during the training
process. We design the multi-level feature fusion module based
on the feature pyramid network mechanism. Consider that
there are n blocks in the multi-level feature fusion module.
Defined the input consists of the priori mapping map F 1

PM ,
F 2
PM obtained in the priori mapping module and the backbone

feature F i
RB of various sizes obtained in the backbone. The

output of each block as F i
MF , where, i ∈ {1, .., n}. The

module’s ultimate output is the final fusion map P , which
integrates feature maps from all levels. The final output of this
module is the fusion of feature maps from all levels, denoted
as P. Later, we will explain the specific details.

In order to preserve the rich texture information contained
in low-level semantics, the lowest-level multi-level features
need to be fused with the priori mapping map F i

PM and
the upper-level multi-level features F i+1

MF . The process is as
follows:

F 1
MF = Conv(F 1

PM )⊙ F 2
MF (9)

F 2
MF = Conv(F 2

PM )⊙ F 3
MF (10)

where Conv stands for the convolution. ⊙ stands for dot-
product. F 1

MF and F 2
MF represent the priori mapping maps

for the first and second layers, respectively. F i
MF denotes the

multi-level features for the i-th layer.

In multi-level features from the third layer and above, the
model focuses more on the high-level semantic information of
corrugated cardboard boxes. Therefore, the fusion of multi-
level features from the third layer and above involves the
backbone feature F i

RB from the backbone and the upper-level
multi-level features F i+1

MF . The computation is as follows:

F i
MF = Conv(F i

RB)⊙ F i+1
MF , i = {3, ..., n− 1} (11)

Fn
MF = Conv(Fn

RB) (12)

where F i
RB represents the backbone feature for the i-th layer.

For the multi-level feature Fn
MF in the nth layer, which doesn’t

have upper-level features, we only need to consider the nth
layer’s backbone feature Fn

RB .

In order to further fuse maps of different levels, we
upsample each F i

MF to the same size as F 1
MF using different

factors, denoted as pi. After that, we process the features with
the following:

P = Concate{F 1
MF , p

2, . . . , Pn} (13)

where Concate represents connecting features by channel
dimension.

E. Predict and Loss Function

In addition to the aforementioned modules, it is essential
to incorporate an additional classifier that takes the final fusion
map as input to detect whether the corrugated cardboard
box has defects. Specifically, the features that the multi-level
feature fusion module outputs are average pooled and input
to a fully connected network classifier for classification. The
training goal is to minimize the cross-entropy loss function,
aiming to make the predicted probability ŷ closely match the
true label y:

L = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (14)

where N denotes the total number of samples in the test set.
yi represents the ground truth label of the i-th sample, taking
binary values (0 or 1). ŷi represents the predicted probability
of the i-th sample.

IV. EXPERIMENT

In this section, we first introduce the data we collected,
known as the cardboard-boxes-dataset. Then, we detail a series
of experiments we conducted to test on cardboard-boxes-
dataset. Additionally, we analyze the critical roles of several
key modules designed by us in neural network learning through
visualization.

A. Dataset

We provide a detailed overview of the data collection and
feature labeling processes, as well as the specific details of
dataset split.

1) Data Collection and Feature Labeling: In cardboard-
boxes-dataset, we collected a total of 1210 images of pack-
ages. Among them, 761 images are from packages that have
undergone express delivery and were actually delivered. The
remaining images were obtained by purchasing new corrugated
cardboard boxes of different sizes and manually simulating
various types of defects that might occur to packages before
capturing images.

We used LabelMe* to annotate detailed auxiliary informa-
tion for 990 images, which can be used for tasks such as
package localization and defect detection.

The annotation process involved two experts and was
conducted in two rounds due to slight differences in their psy-
chological expectations regarding whether the packages were
defective. In the first round, each expert independently labeled
each package image without any communication. Images that
both experts found ambiguous or impossible to categorize were
eliminated (225 images). In the second round, the experts
continued to label the images without communication. The
consistency of the labeling results was assessed using Cohen’s
Kappa:

k =
p0 − pe
1− pe

(15)

where p0 is the actual probability of agreement between the
two experts, and pe is the probability of agreement due to
chance.

*https://github.com/wkentaro/labelme
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TABLE I. COMPARISON EXPERIMENTS OF ATTENTION NETWORKS

Times CE Acc
SENet DANet AttNet Our Method SENet DANet AttNet Our Method

1 0.5202 0.516 0.5342 0.4625 0.8365 0.8428 0.8365 0.8805
2 0.5193 0.4779 0.5353 0.4753 0.8616 0.8679 0.8176 0.8742
3 0.5214 0.4925 0.5289 0.5114 0.8491 0.8742 0.8239 0.8553
4 0.5017 0.5098 0.5109 0.4856 0.8742 0.8553 0.8428 0.8742
5 0.4979 0.4726 0.5241 0.4932 0.8428 0.8679 0.8302 0.8742
6 0.5353 0.5096 0.5107 0.4986 0.8365 0.8491 0.8491 0.8491
7 0.4771 0.4985 0.5234 0.4953 0.8553 0.8742 0.8239 0.8679
8 0.5008 0.5322 0.5607 0.4770 0.8491 0.8302 0.8239 0.8679
9 0.5002 0.4878 0.5227 0.5323 0.8679 0.8428 0.805 0.8176

10 0.5364 0.4879 0.5342 0.4641 0.8553 0.8616 0.8113 0.8868
Average 0.5110 0.4984 0.5285 0.4895 0.8528 0.8566 0.8264 0.8647

Min CE/Max Acc 0.4771 0.4726 0.5107 0.4625 0.8742 0.8742 0.8491 0.8868
variance 0.0186 0.0184 0.0143 0.0215 0.0126 0.0150 0.0136 0.0199

TABLE II. DATASET SPLIT

Positive
Samples

Negative
Samples Total

Training Set 191 287 478
Validation Set 80 80 160

Test Set 79 80 159
Total 350 447 797

TABLE III. PREDICTION EXPERIMENTAL RESULTS OF TPMN AND
MN-TPMN ON THE TEST SET

Times CE Acc
TPMN MN-TPMN TPMN MN-TPMN

1 0.4625 0.4746 0.8805 0.8994
2 0.4753 0.5361 0.8742 0.8113
3 0.5114 0.4742 0.8553 0.8742
4 0.4856 0.5126 0.8742 0.8239
5 0.4932 0.4924 0.8742 0.8553
6 0.4986 0.5043 0.8491 0.8742
7 0.4953 0.4776 0.8679 0.8805
8 0.4770 0.4979 0.8679 0.8679
9 0.5323 0.5148 0.8176 0.8428

10 0.4641 0.5646 0.8868 0.7925
Average 0.4895 0.5049 0.8647 0.8522

Min CE/Max Acc 0.4625 0.4742 0.8868 0.8994
variance 0.0215 0.0288 0.0199 0.0339

The final result is 0.6179, indicating a high level of
consistency (≥ 0.61 and < 0.8) in the labeling results be-
tween the two experts. This implies a highly unified standard
regarding whether the packages are defective. After removing
inconsistent images labeled by both experts, there are a total
of 350 images of non-defective packages and 447 images of
defective packages.

2) Dataset Split: The dataset is randomly split into training,
validation, and test sets with a ratio of 6:2:2, ensuring a
balanced distribution of positive and negative samples in
the validation and test sets to avoid data imbalance during
validation and testing. Details are shown in Table II.

B. Hyperparameter Setting

TPMN is implemented by TensorFlow 2.8.The GPU used
for training is the NVIDIA GeForce RTX 3090 24G. The
input size of the backbone is 224×224×3, and the input size of
the texture prior attention module is 224×224×1. The canny’s
upper threshold is 140 and its lower threshold is 80.

The chosen optimizer is Adam, with a learning rate of
0.001 and a decay of 0.002. The batch size is set to 128. Early
stopping is implemented with a patience of 10, monitored by
the cross entropy. The fully connected layers have 32 and 64
units, and the channels of multi-level feature fusion module
are set to 32. Label smoothing is applied with a coefficient of
0.2.

C. Experimental Results

The model evaluation metrics include cross entropy (CE)
and accuracy (Acc). Additionally, to better assess the model’s
performance, we will also separately consider metrics such
as average cross entropy, average accuracy, minimum cross
entropy, maximum accuracy, as well as the variance of cross
entropy and accuracy. We additionally designed the Backbone
of the TPMN based on MobileNet, known as MN-TPMN.
The model was trained and tested a total of 10 times. All
models were trained and tested in the cardboard-boxes dataset
for a total of 10 times, and predicted whether the package was
defective in the validation set.

The basic experimental prediction results, as shown in
Table.III, demonstrate that the TPMN performs exceptionally
well, exhibiting lower CE values and a higher average Acc.
Compared to MN-TPMN, TPMN has a 1.5% lower average
CE and a 1.2% higher average Acc. Each variance indicates
that TPMN shows better stability.

We also compared our method with other attention mech-
anism networks: AttNet, SENet [16], and DANet [24]. The
backbone network for these three models is ResNet-18, and
the other training parameters are kept consistent with our
training approach. AttNet is a spatial attention network that
we re-implemented based on ResNet-18 [16]. The results, as
shown in Table I, demonstrate that TPMN achieves optimal
performance in terms of both CE and Acc compared to other
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(a) Test Set 77th; Ground Truth Label:0 (b) Validation Set 92th; Ground Truth Label:1

(c) Validation Set 141th; Ground Truth Label:1 (d) Validation Set 141th; Ground Truth Label:0

Fig. 4. Visualization of the attention map of the convolutional layer. Each subfigure includes the original image in the first column, the heatmap of attention
from the convolutional layer extracted by GradCAM in the second column, and the overlay of the first two images in the third column.

TABLE IV. ABLATION STUDY

Backbone MFF TPA Average Min CE
Max Acc variance

CE
! 0.5220 0.4869 0.0226
! ! 0.4929 0.4837 0.0066
! ! ! 0.4895 0.4625 0.0215

Acc
! 0.8327 0.8553 0.0209
! ! 0.8528 0.8679 0.0122
! ! ! 0.8647 0.8868 0.0199

attention mechanism networks. The higher variance of 1.2%
is attributed to the complexity of texture patterns, leading to
frequent changes in attention weights. In summary, TPMN
exhibits substantial advantages in the logistics package defect
detection task, proving the efficacy of our designed Texture
Prior Attention Module.

D. Ablation Study

To demonstrate the effectiveness of each module of TPMN,
we conducted the following ablation studies: 1) The complete
network, TPMN; 1) backbone whitout the texture prior atten-
tion module (TPA) from our proposed model; 2) backbone
whitout the texture prior attention module(TPA) and the multi-
level feature fusion module (MFF). As shown in Table.IV ,
compared to the backbone, we can observe that the utilization
of MFF leds to an decrease in the average CE from 0.522 to
0.489, and a increase in the average ACC from 0.832 to 0.852.
Considering the optimal values the model can achieve, the
maximum accuracy increase by 1.26%. Furthermore, compared

Fig. 5. PR curves from ablation experiments.

to the backbone, the combined use of TPA and MFF shows a
significant decrease of 5% in the average CE, and decrease
of 2.3% int the minimum CE. Meanwhile, Backbone-only
model exhibits a pattern where its average ACC is 2.01%
lower than backbone without TPA and 3.2% lower than the
complete network. This indicates that, with the TPA and MFF,
the model’s average performance is much better than both
backbone and backbone without TPA. Experiments prove the
effectiveness of the two modules we designed.

The P-R curves for the three models on the validation set
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TABLE V. FEW-SHOT LEARNING EXPERIMENT

Model Size of Training Set
All 200 100 50 20 10

CE
Backbone 0.4869 0.5837 0.6043 0.6627 0.8467 0.8332

Backbone+MFF 0.4837 0.5694 0.5522 0.6180 0.7193 0.7607
Backbone+MFF+TPA 0.4625 0.4896 0.5363 0.5872 0.752 0.6612

Acc
Backbone 0.8553 0.7610 0.7673 0.6918 0.6352 0.5723

Backbone+MFF 0.8679 0.8302 0.7925 0.7421 0.6667 0.5912
Backbone+MFF+TPA 0.8868 0.8616 0.8365 0.7484 0.6667 0.7044

Fig. 6. Visualization of texture feature extraction.

are shown in Fig. 5, providing a preliminary insight into the
workings of the two main modules. In situations where high
precision is emphasized, the TPMN performs relatively worse
compared to backbone with MFF, potentially misclassifying
more intact packages as defective. Nevertheless, when Recall
is greater than 0.85, TPMN outperforms the other control
group, and backbone with MFF performs better than backbone-
only model when Recall is greater than 0.7. This indicates
that the TPMN is highly sensitive to defective packages. The
texture prior attention module highlights the importance of
texture, yielding better results for packages with rich textures.
However, when the packages are non-defect, the model is less
affected by effective textures, leading the attention towards
patterns and text on the packages, which interferes with model
training.

E. Visual Analysis

We first visualized the extraction of prior information from
texture features. Then, we conducted a visual analysis of the
impact of the prior attention map on the model training.

1) Visualization of Texture Extraction: We conducted an
analysis of the effectiveness of the Texture Prior-Attention
Module in extracting texture features. In Fig. 6, after Canny
edge detection, the texture edges of the corrugated cardboard
were successfully extracted, but the nearby texture information

was not included. The final Prior Attention Map, obtained
through convolution and average pooling, expands the attention
range along the texture edges, thereby accommodating richer
texture information. Through the local perceptiveness of con-
volution and the information integration of average pooling,
the expansion of the attention range on the texture can be
achieved.

2) Visual Analysis of Model Effectiveness: To provide
additional evidence of the effectiveness of our approach, we
conduct visual analysis on both the backbone-only model
and the complete TPMN model. We analyze the model and
classification results from the perspective of original images
and convolutional layer attention. The attention map of the
convolutional layer is obtained using the GradCAM [34] ap-
plied to the model’s output and its last convolutional layer. Fig.
4a Fig. 4b and Fig. 4c demonstrate the advantages of the two
main modules. TPMN can more accurately locate and focus
on edge features, leading to accurate predictions. Without the
two modules, backbone can only make predictions by broadly
attending to various regions of the image, making it difficult
to achieve the same performance. Fig. 4d, illustrates another
extreme. When there are clear patterns or text on non-defect
packages, the performance of the TPMN tends to decline. Due
to the attention mechanism, the model’s attention is forced to
concentrate on information unrelated to the defect of package,
resulting in prediction errors.

F. Few-Shot Learning Experiment

This section aims to investigate whether the model can
maintain excellent performance with a reduced amount of
data. Five sets of experiments were designed, each trained
on different-sized training sets, and their final performance
was measured. Despite variations in training set sizes, all
datasets were processed using the data augmentation methods
mentioned earlier.

The experimental results are shown in Table V. Regardless
of the dataset size, TPMN has the highest Acc among all mod-
els, and CE also reaches the lowest in all five experiments. This
indicates that the TPMN is able to maintain great performance
even under conditions of limited data.

Attention mechanisms based models on often require larger
datasets for training [35]. However, the TPMN excels on
smaller datasets, because our designed prior attention and
multi-level feature fusion methods effectively extract low-level
texture features and Fusion multi-level features.

www.ijacsa.thesai.org 841 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

V. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a novel approach named the
Texture Prior-Aware Multi-Level Feature Fusion Network to
address the challenges in surface defect detection for cor-
rugated cardboard boxes used in the logistics industry. Our
method integrates a multi-level feature fusion technique that
preserves and utilizes information from different semantic
levels, overcoming the limitations of traditional Convolutional
Neural Network (CNN)-based methods, which often suffer
from the loss of local information and insufficient semantic de-
tails. The introduction of a prior attention mechanism enables
the neural network to focus on extracting low-level texture
features from the images in the early stages. The TPMN model,
being model-agnostic, effectively extracts and fuses low-level
texture features while comprehensively perceiving multiscale
image information.

We conducted extensive experiments on our newly con-
tributed Cardboard-Boxes-Dataset, which comprises 1210 im-
ages of packages. The results consistently demonstrated the
superior performance of the TPMN model in precise defect
classification and localization compared to traditional methods.
The integration of ResNet-18, multi-scale feature fusion, and
a prior attention mechanism proved effective in addressing
the challenges unique to the logistics industry, where courier
parcels, especially those made of corrugated cardboard, can
exhibit varying defect sizes and structural complexities.

In the Future, there are several promising directions for
further research and enhancement of TPMN. Firstly, expanding
the dataset by incorporating diverse samples under varying
environmental conditions would strengthen the model’s ro-
bustness and generalization capabilities. Additionally, extend-
ing the application of the TPMN model to detect defects
in different packaging materials commonly encountered in
logistics, such as plastic or composite materials, could enhance
its versatility. Exploring optimization strategies for real-time
deployment, considering computational efficiency and resource
constraints, is crucial for practical implementation in logistics
settings. Integration with robotic systems for automated surface
defect detection in logistics warehouses represents a potential
avenue to improve efficiency and reduce manual intervention.
In summary, the TPMN model lays a foundation for effective
surface defect detection, and future research endeavors can
capitalize on these insights to address evolving challenges in
the dynamic logistics industry.
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