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Abstract—Images captured under low lighting frequently
exhibit low brightness, low contrast, and a small grayscale.
These features can affect the individual’s view and severely
limit the performance of machine vision systems, particularly
when data annotation is involved. Hence, the issues motivate
this study to examine the effectiveness of advanced fuzzified
histogram equalization for image enhancement. A comparative
study was conducted based on the low lighting condition of iris
images to evaluate three image enhancement methods: Advanced
Fuzzified Histogram Equalization (AFHE), Contrast Limited
Adaptive Histogram Equalization (CLAHE), and Fuzzy Contrast
Enhancement (FCE) using the MIREIS dataset. The Gaussian
membership functions (GMF) were modified accordingly to sat-
isfy the suitable pixel intensity of the input iris images. The results
were compared using the peak signal-to-noise ratio (PSNR) value,
including the central processing unit (CPU) times. As a result,
the AFHE showed a better PSNR value at 76.02db with faster
CPU times at 4.04s compared to CLAHE and FCE. Although
the PSNR value of HE is slightly lower than CLAHE (0.3%) and
FCE (0.7%), AFHE improved the image’s quality and brightness,
which can help other researchers with the data annotation
process. The performance of the proposed methods was validated
by comparing them with state-of-the-art methods. The results
demonstrated that AFHE, CLAHE, and FCE exceeded other
HE, AHE, CLAHE, and hybrid HE using fuzzy approaches that
employed PSNR metrics.
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I. INTRODUCTION

The quality of the images significantly influences the
effectiveness of an iris recognition system. As such, it is
crucial to enhance the image quality, especially when dealing
with images captured in non-cooperative environments. The
non-cooperative environment images provide low-quality data
due to the rigidity condition during data acquisition [1]. The
near-infrared illumination needed for iris recognition systems
that allow for user identification additionally involves the
users’ cooperation to obtain a good-quality iris image, as these
devices are not user-friendly [2]. These requirements impose
an extra responsibility on the user to actively engage in the
recognition process.

Current studies focus on detecting the iris when an iris
image is acquired under varying lighting conditions and at
a long distance. Poor quality images, mainly low lighting,
reflection, occlusion, off-angle, and motion blur can further
decrease iris pattern performance [3]. Nevertheless, when the
distance between the iris and the device increases, the quality
of the iris image decreases, and more illumination is necessary.
Employing a visible light camera does not necessitate further

illumination because the captured images present color data
[4]. Iris recognition functionality can be integrated into an
existing device or reduced to comply with these features.

A study has been conducted using a database comprising
iris images captured at 4 to 8 meters with a high-resolution
visible camera. The database includes low lighting, rotation,
motion blur, and off-angle [5]. Another database contains an
iris with face images captured with a visible light camera
integrated into mobile devices [6]. The following processes
must be followed to improve the quality of iris images: ac-
quisition, enhancement, segmentation, feature extraction, and
recognition. Image enhancement refers to converting the image
intensity to create a new image and enhance the image quality.
The key objectives of image enhancement are improving
contrast, adjusting brightness, sharpening, color restoration,
and noise reduction.

Various studies have proposed new enhancement methods
based on histogram equalization (HE) [7], [8], [9], [10],
[11]. By increasing the image’s contrast through histogram
stretching, HE can enhance the image’s visual appeal [12]. The
gray grouping approach underpins histogram stretching, which
can be utilized for low-contrast and brightness images. It offers
several benefits, including the fact that it is both simple and
highly effective. While iris image enhancement technologies
are generally efficient [13], they can lead to over-enhancing of
the image if there is a prominent peak in the histogram [14].
In addition, HE tends to adjust the image’s average brightness
to the dynamic range’s midpoint. This limitation renders the
HE impractical in multiple technological applications.

This study is motivated by the crucial need for high-quality
images in iris recognition systems, especially in challenging
environments where image quality can be affected by factors
like low lighting, reflections, occlusion, off-angle capture, and
motion blur. Current methods frequently encounter challenges
in retaining performance in these conditions, requiring the
development of image enhancement methods to tackle these
issues. While previous studies have investigated image en-
hancement methods such as HE, limitations such as over-
enhancement and impractical brightness adjustments empha-
size further investigation into more effective image enhance-
ment methods for iris recognition systems.

The paper is structured as follows: Section II discusses
the state-of-the-art image enhancement for iris recognition,
and Section III presents a comprehensive explanation of the
fuzzification process of advanced fuzzified histogram equaliza-
tion (AFHE), contrast limited adaptive histogram equalization
(CLAHE), and Fuzzy contrast enhancement (FCE). Section IV
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provides the experimental data and analysis, while Section V
concludes this paper.

II. RELATED WORKS

Previous studies on iris image enhancement used images
acquired from low lighting and NIR illumination to tackle
image over-enhancing and brightness problems. A study in
[12] employed HE to improve the visibility of iris images
captured under low lighting conditions, aiming to determine
the borders of the pupil area. This approach accomplished
redistributing pixel intensities. Hence, the darkly pigmented
iris reduced the HE outcome due to the low contrast ratio
between the iris and pupil.

Maheshan et al. [15] employed HE and CLAHE methods
for analyzing fuzzy sclera. In this study, HE aims to find
the frequency of dark colors, which typically covers a range
of zero to fifty pixels. Conversely, the CLAHE establishes a
limit on contrast that provides a proportional adjustment of
white balance for the image. Hassan et al. [1] conducted a
comprehensive study on HE, CLAHE, and HE for iris images
at varied distances and in visible wavelength illuminations.
The study aims to improve iris segmentation and recognition
performances.

A study in [16] introduced the CLAHE approach to en-
hance the performance of iris recognition in low contrast
or low illumination conditions. It is an improved version of
the adaptive histogram equalization (AHE) method initially
developed by Zuiderveld [17]. This technique reduces potential
noises in the image while enhancing contrast in grayscale
images. A study in [18] presented an image enhancement
method using HE to increase the quality of iris images for
rubeosis iridis disease. The processes were divided into three
image groups: low, medium, and high. The best results for
the low contrast group enhanced by 50%; however, it can be
reduced by 50% in the high contrast group.

An advanced recognition system in [19] proposed a Con-
volutional Neural Network (CNN) with HE and CLAHE to
efficiently enhance and detect COVID-19 diseases in chest X-
ray images. AlKhalid in [20] proposed the same model; CNN
combined with HE and CLAHE using COVID-19 chest X-
ray images for data expansion, transformation, and enhance-
ment. Two layers of HE are applied to seven layers of data
transformation; however, the study begins with a conceptual
hashing algorithm to eliminate duplicate images. A study in
[21] introduced CNN with HE and CLAHE to produce high-
contrast tooth X-ray images. The proposed method created
high-intensity data to visualize the tooth features, including
the infection, inflammation, and nerve.

In study [22], Xiong et al. proposed a chaotic Pareto
sparrow search algorithm (CPSSA) with CLAHE for iris
augmentation. The CPSSA algorithm utilizes population-based
iteration to search for specific clipping thresholds that meet the
specified criteria, resulting in CLAHE generating a collection
of iris images. A study in [23] applied HE and AHE to compare
with Canny edge detection. The AHE aims to determine the iris
patterns with high-contrast images. The Canny edge detection
combined with HE produced a sharper, more structured image
with less noise. On the other hand, the Canny edge detection
method with AHE introduced more noise in the final images.

However, these images exhibit more robust features than those
obtained using conventional HE.

The enhancement method proposed by Chang et al. [24]
eliminates the specular reflections from the iris image by
applying the preprocessing method to the input image in three
stages. The initial phase was applying the Gaussian filter
method with a sigma value of 0.9. The second stage involved
converting the ocular images from grayscale to binary using
a threshold value of 0.18. Finally, the binary iris image was
exposed to a Gaussian filter with a sigma value of 2, followed
by a median filter to enhance the image’s smoothness.

A study in [25] utilized fuzzy membership weighted func-
tions to analyze image pixel values. With a triangle function,
the fuzzy average and fuzzy median filters outperform the other
four fuzzy filters in terms of filtering performance. Without
using deep learning, these fuzzy techniques were employed to
improve images. For instance, a one-pixel attack on an image
can significantly change the prediction’s outcome [26]. The
resilience of neural networks can be enhanced by utilizing the
fuzzified image enhancement in deep learning.

Orujov et al. [27] developed a contour detection algorithm
using Mamdani (Type-2) fuzzy rules for blood vessel detec-
tion in retinal fundus images. It utilizes green channel data,
Contrast-Limited Adaptive Histogram Equalization (CLAHE),
and a median filter for background exclusion. The method
achieved accuracies of 0.865, 0.939, and 0.950 on STARE,
DRIVE, and ChaseDB datasets, respectively, demonstrating
flexibility and comparable performance to existing methods,
with potential for dynamic rule formulation in image process-
ing systems.

Another study in [28] applied fuzzy average, fuzzy me-
dian, and Gaussian filters to preprocess iris images that had
reflections on glasses and were occluded by eyelids and
eyelashes. This preprocessing aimed to improve the out-of-
bounds areas, enhance the noise ratios, and sharpen the edges
of the iris images. However, the success rate remained poor,
prompting the employment of morphological operations and
other alternative preprocessing approaches.

This study proposed advanced fuzzified histogram equal-
ization (AFHE) based on the modified Gaussian member
functions to enhance the quality of low-lighting iris images,
facilitating the data annotation process. The quality assessment
of low-lighting iris images is evaluated based on the Peak
Signal-to-Noise Ratio (PSNR) while optimizing the central
processing unit (CPU) time. The proposed methods were
compared with state-of-the-art methods to benchmark and
validate the performance.

III. MATERIALS AND METHOD

This section discusses the materials used to implement the
image enhancement methods. Fig. 1 illustrates the enhance-
ment process that begins with data collection for iris images.
The original image retains its dimensions without performing
image resizing. The iris images are subjected to the image
enhancement methods AFHE, CLAHE, and FCE, with equal
distribution of intensities. Finally, the iris images are trained to
achieve the PSNR values based on the implemented methods.
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Fig. 1. Image enhancement system flow for AFHE, CLAHE, and FCE.

A. Dataset

This study employs 24 iris images from the Mobile Iris-
Eye Computer Vision (MIREIS) dataset to test the image
enhancement techniques for low lighting conditions as pre-
sented in Fig. 2. The iris images were captured using an
iPhone 13 in early 2023 at the Universiti Teknologi Malaysia,
Kuala Lumpur. The dataset focuses on the iris occlusions,
motion blur, reflection, visible illuminations, and low-lighting
conditions. Therefore, it is available for only several images
in low-lighting conditions. The iris images are in standard
exposure and RGB color space with the dimension of 2316
× 3088.

Fig. 2. Sample iris images from MIREIS dataset.

B. Fuzzification

Image enhancement with fuzzification involves the trans-
formation of gray-level intensities of an image onto a fuzzy
plane using membership functions. In addition to mapping the
fuzzy plane back to the grayscale intensities of the images,
the membership functions are changed to improve contrast.
Increasing the weight of the gray levels closest to the image’s
mean gray level over those further from it aims to produce an
image with higher contrast than the original.

Theoretically, fuzzy set theory provides a fresh perspective
on image interpretation. An image with dimensions of size
pixels and L distinct gray levels may be conceptualized as an
array of fuzzy singletons. Each singleton represents a pixel,
and its membership value indicates its brightness relative to a
set of brightness levels, I = 0, 1, 2, . . . L − 1 [29]. Eq. (1)
presents the fuzzy theory utilized in image enhancement,
where Ixy denotes the pixel intensity, (x, y), while µxy denotes
its corresponding membership value.

FT =

X⋃
x=1

Y⋃
y=1

µxy

Ixy
withµxy ⊆ [0, 1] (1)

The three phases of fuzzy image processing are mem-
bership functions, fuzzification, fuzzy inference system, and

defuzzification. Fuzzification involves providing an image with
one or more membership values based on intriguing fea-
tures, such as sharpening, edginess, brightness, and similarity.
Following the image transformation into fuzzification, the
membership values are modified using an appropriate fuzzy
method.

Defuzzification signifies a retransformation of the mem-
bership values into the gray-level plane. The grayscale levels
must be blurred for the image histogram’s location to handle
grayscale uncertainty. It indicates that each gray level is given
a certain degree of membership based on where it falls on
the histogram. High membership values are generally given
to bright pixels, and low membership values are assigned to
black pixels.

C. Defuzzification

Contrary to fuzzification, image defuzzification converts a
fuzzy image back into crisp values. The inverse transformation
in Eq. (2) is calculated to produce the enhanced image,
I ′(x, y), where T ′ represents the original inverse transfor-
mation, T , while I ′(x, y), represents the gray-level of the
enhanced image.

I ′(x, y) = T ′(I(x, y)) = (

X⋃
x=1

Y⋃
y=1

I(x, y)× (L− 1) (2)

D. Fuzzy Inference System

The fuzzy inference system comprises an expert’s knowl-
edge base, consisting of IF-THEN rules. The compositional
rule establishes the mapping between fuzzy inputs and outputs,
as presented in Fig. 3. The rules set in the proposed algorithms
are as follows,

1) IF input is Very Dark THEN output is Extremely
Dark

2) IF input is Dark THEN output is Very Dark
3) IF input is Slightly Dark THEN output is Dark
4) IF input is Slightly Bright THEN output is Bright
5) IF input is Bright THEN output is Very Bright
6) IF input is Very Bright THEN output is Extremely

Bright

Fig. 3. The fuzzy inference system for this study.

This study involves eight rules for iris image enhancement,
such as Extremely Dark (ED), Very Dark (VD), Dark (Da),
Slightly Dark (SD), Slightly Bright (SB), Bright (Br), Very
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Bright (VB), and Extremely Bright (EB). Fig. 4 illustrates the
gray levels space derived from the membership functions for
iris image enhancement. The rules are developed using the
fuzzy sets specified in the gray levels ranging from [-50, 305]
to [0, 255].

Fig. 4. The gray levels space based on the fuzzy sets.

E. Modified Gaussian Membership Functions

GMF comprises fuzzification, rule-based enhancement, and
defuzzification. GMF quantifies the level to which pixel inten-
sities belong to different iris regions. It transforms the initial
data into a Gaussian distribution. The membership decreases
as input values move further from the midpoint in positive and
negative directions. The midpoint of the normal distribution,
which is assigned to one, offers an optimal condition for the
set.

Membership in the set decreases for input values, beginning
at the midpoint and continuing until it diverges significantly
from the optimal condition. At this point, it is deemed outside
the set and is assigned zeros. The GMF can be computed in
Eq. (3), where x is the input value of the GMF for set A, σ is
the standard deviation, and c denotes the mean of the Gaussian
function.

µA(x;σ, c) = exp
−(x− c)2

2σ2
(3)

Following the fuzzification process, each intensity level, A,
is assigned a corresponding fuzzy membership value µ(A) in
the image. The attribute, such as bright or dark, is correlated
with the intensity. The modification of GMF involves fine-
tuning the fuzzy membership values assigned to each intensity
level in the image. This modification enhances the image by
increasing lighting on specific elements.

A function, f(µ(A)), is selected to modify the member-
ship values. This function varies according to the type of
enhancement required. The modification function is applied
to an individual’s membership value. The modified value of
intensity A, denoted as f(µ(A)), is obtained by applying a
function f on the original membership value µ(i). The function
f(µ(A)) affects membership values. An enhancement function
can be:

f(µ(A)) = µ(A)γ (4)

The parameter γ determines the features of the enhance-
ment:

• When γ is less than 1, the function extends the range
of membership values, increasing contrast.

• When γ is greater than 1, the function compresses the
membership values, reducing the contrast of specific
intensity ranges.

Upon implementing this modification, the image’s his-
togram receives a significant reshaping. The reshaping process
is defined by fuzzy logic concepts and is characterized by a
higher level of detail than conventional HE. The final stage
in the procedure (distinct from the modification phase but
essential for achieving the improvement) involves pairing these
modified membership values with the corresponding pixel
intensities.

F. Image Enhancement Methods

Image enhancement can be crucial due to poor image
quality, including lighting, noise, high brightness or darkness
levels, lack of sharpness, and blurriness. The image enhance-
ment methods may reduce the analysis process that involves
comprehensive image extraction. A low-quality image has
distortions, such as an image that is not visible due to low
lighting.

1) Advanced fuzzified histogram equalization: AFHE is an
advanced approach used in image processing to boost bright-
ness and improve the level of detail in images. The advanced
version of the conventional HE method incorporates ideas
of fuzzy logic. AFHE enables a more refined and situation-
specific modification of image brightness in comparison to
conventional HE. By transforming the original image into a
uniform histogram, AFHE effectively improves the image’s
contrast. AFHE produces a significant global enhancement but
may diminish the image’s local details.

The AFHE provides the relationship in gray level and its
corresponding frequency, which produces a gray image G(i)
as expressed in Eq. (5).

G(i) =
ni

TN
, i = 0, 1, ..., L− 1 (5)

Let i represent the image’s gray level, ni be the number of
pixels comprising gray level, and TN denotes the total number
of pixels in the image. The histogram represents the probability
distribution function of i. Eq. (6) expresses the HE, which can
be accomplished based on G(i).

hk = Tf(r) = (L− 1)

k∑
i=0

G(i) (6)

Let the mapping function, Tf(r), be denoted as hk, and
transform each pixel value k from the input image to hk.
L denotes the gray level of an output image. The histogram
can receive a more even image intensity distribution with this
modification. As a result, regions with lower local contrast can
achieve higher contrast without compromising global contrast.
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2) Contrast limited adaptive histogram equalization:
CLAHE is a method for enhancing local contrast in an image.
The image is acquired locally by forming some symmetrical
grids, referred to as the region size. Three markers identify the
image’s regional structure: the corner region (CR) designates
the areas in the image’s corner, the border region (BR) desig-
nates the areas around the image that keeps the CR, and the
inner region (IR) designates the remaining areas in the center.

CLAHE, which involves placing a boundary value on the
histogram, can be used to solve the issue of excessive contrast
enhancement. This limit value, which indicates a histogram’s
maximum height, is the clip limit. Eq. (7) defines how to
compute a histogram’s clip limit.

β =
T

L
(1 +

α

100
Smax) (7)

Let T denotes the pixel count of each block, and L
indicates the block’s gray level. While α is the clip factor
and Smax is the maximum slope.

3) Fuzzy contrast enhancement: The FCE aims to create
dark pixels that are darker and bright pixels that are brighter
to improve the image. Eq. (8) computes the FCE.

F ← h(x) +
∑
x

∑
y

µF (x,y)′ (8)

The FCE is an integer series, denoted as h(x), where x
ranges from 0 to L − 1. In this context, h(x) represents the
frequency at which gray levels within x occur. The fuzzy
histogram is constructed by viewing the gray value f(x, y) as
a fuzzy number µF (x,y)′ . While µF (x,y) represents the fuzzy
membership function. Fuzzy logic is more adept at managing
values’ imprecision than traditional crisp values. Thus, it yields
a smooth histogram.

G. Performance Measurement

PSNR is a quantitative indicator that reflects how much
an image’s quality was reduced throughout the compression
or processing processes. It measures the ratio between the
maximum signal value and the amount of noise in the image
using decibels (dB). This study employed PSNR to compare
the quality differences between the original and enhanced
images. Image quality is evaluated based on the PSNR value,
which a higher PSNR value indicates a high-quality image.

The mean-squared error (MSE) is initially computed in
Eq. (9) to obtain the PSNR, where I1 is the enhanced iris
image, I2 is the original iris image, and X and Y are the
numbers of rows and column in the input iris image.

MSE =

∑
X×Y [I

′(x, y)− I(x, y)]2

X × Y
(9)

Eq. (10) calculates the PSNR value, where Z represents the
maximum variation in the data type of the input iris image. Z
equals one if the input image is a double-precision floating-
point; otherwise, Z is 255.

PSNR = 10 log10
Z2

MSE
(10)

IV. RESULT AND DISCUSSION

All experiments used Google Colaboratory to analyze the
iris image enhancement methods: AFHE, CLAHE, and FCE.
PSNR, a prevalent metric for assessing image quality, was em-
ployed to evaluate the efficacy of the iris image enhancement
methods. This study also measures the total CPU times for
each method to determine which image enhancement method
works faster for 24 iris images. The relationship between the
PSNR value and the CPU times shows the effectiveness of the
image enhancement methods. Therefore, it can identify which
image enhancement method works best for iris images.

Fig. 5. The input and output intensity for M = 64, M = 96, M = 128,
M = 160, and M = 192.

Fig. 5 shows the input and output intensities of 24 iris
images to map the gray level. The range of the pixel intensity
value is 64 for minimum input pixel intensity to 192 for
maximum input pixel intensity. The gray level for the output
pixel intensity increases for intensity values of 64, 96, and
128 at the middle of the block, while the intensity values of
160 and 192 slightly decrease but remain constant to enhance
the image’s brightness. The results highlight how the image
enhancement methods improve the visibility and contrast of
iris images, thereby rendering them more appropriate for iris
recognition systems used in non-cooperative environments.
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Fig. 6. The relationship between modified gaussian membership function, M and the pixel intensity based on the modified membership functions.

The fuzzy rule sets according to the IF-THEN rule were
modified based on the input image. The maximum M used
for iris images is six, while the minimum M is two. Fig. 6
demonstrates the relationship between the modified Gaussian
membership functions and the pixel intensity based on the
value in the selected membership functions, M . The image’s
brightness decreases and darkens when M equals 64. In addi-
tion, the pixel intensity also shows high contrast. The image
becomes extremely bright when M = 192, with a maximum
intensity between 192 and 255, respectively. Therefore, the
image can contrast less to the M = 64. However, the high
and low contrast is balanced when M is 128. The mid-range
of the pixel intensity between 0 and 255 made the image not
too dark and bright.

The analysis of the AFHE, CLAHE, and FCE depicted
in Fig. 7 demonstrates that the image quality of AFHE
outperforms those of CLAHE and FCE. The original images
exhibit low lighting; hence, the enhanced images using AFHE
preserves brightness better with low contrast. The AFHE could
help the data annotation process for iris segmentation. CLAHE

marginally brightens the image compared to AFHE; however,
some areas continue to have high contrast, which makes
the image slightly dark. Nevertheless, FCE demonstrates a
significant difference in brightness levels, resulting in a darker
appearance in some images. Some images merely enhance a
low gray level, retaining the image in poor lighting.

Table I shows the experiment result of image enhancement
methods (AFHE, CLAHE, and FCE) based on the PSNR.
Enhanced image quality corresponds to a higher PSNR value.
FCE has a higher PSNR value of 76.48db and longer CPU
times at 13.9s. To be compared with AFHE, AFHE indicates
the lowest PSNR value at 76.02db with faster CPU times at
4.04s. Although the PSNR value of HE is lower than CLAHE
and FCE, it demonstrates better image quality, as depicted in
Fig. 7, with faster CPU times.

AFHE enables more refined contrast enhancement, which is
particularly beneficial in images with complex lighting settings
or situations where simple histogram equalization can result
in severe or insufficient enhancement. Fuzzy logic regulates
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Fig. 7. Iris image enhancement results using AFHE, CLAHE, and FCE based on the low lighting conditions of original images.

TABLE I. COMPARISON OF IRIS IMAGE ENHANCEMENT METHODS WITH
THE PSNR VALUE

Enhancement Methods PSNR (dB) CPU Time (s)
AFHE 76.02 4.04

CLAHE 76.23 4.9
FCE 76.48 13.9

the enhancement, which helps retain details better and prevent
errors frequently created by aggressive methods. Implementing
fuzzy sets and rules enhances the method’s adaptability to
various image types and expected outcomes. Therefore, it can
be concluded that AFHE is the best iris image enhancement
method, followed by CLAHE and FCE, respectively, because
AFHE preserves more brightness and provides a significant
iris image quality.

The comparison with state-of-the-art methods is crucial
for validating the effectiveness and benchmarking the perfor-
mance of the proposed image enhancement techniques, namely
AFHE, CLAHE, and FCE. Using PSNR as a measure evaluates
the accuracy of the image enhancement in terms of pixel-
level fidelity. The proposed approaches achieved higher PSNR
values than existing state-of-the-art methods [1], [18], [23],
as shown in Table II, indicating that AFHE, CLAHE, and
FCE preserve image quality and reduce distortion throughout
the enhancement process. PSNR is commonly employed to
evaluate methods such as HE, CLAHE, and FCE that modify
image brightness; however, it may not adequately measure
perceptual quality or task performance. This limitation is
highlighted by the accuracy results of previous studies in [15],
[28], which demonstrate superior performance compared to
AFHE, CLAHE, AHE, and FCE in terms of accuracy.

As different metrics may capture various aspects of image
quality and utility, this inconsistency highlights the significance
of employing multiple evaluation metrics to comprehensively
evaluate the performance of image enhancement methods.
Hence, while PSNR can indicate better pixel-level accuracy,
accuracy metrics further explain enhanced images’ percep-
tual quality and efficiency for specific applications. Further

TABLE II. COMPARISON WITH STATE-OF-THE-ART METHODS

Author Method Evaluation Metric Result

[15] HE-FCM
CLAHE-FCM Accuracy 0.86

0.91

[1]
HE

AHE
CLAHE

PSNR
14.725
14.148
17.459

[18] HE MSE
PSNR

18.25
28.87

[23] HE
AHE PSNR 16.76

16.95

[28]

Gaussian
Triangular fuzzy average
Triangular fuzzy median

HE
CLAHE

Accuracy

89.2
87.4
88.4
83.4
84.8

This study
AFHE

CLAHE
FCE

PSNR
76.02
76.23
76.48

research could explore the development of comprehensive
evaluation frameworks that consider a range of metrics to
provide a more holistic assessment of image enhancement
methods. Additionally, investigating the factors contributing to
inconsistency between PSNR and accuracy metrics could yield
valuable information for further improving the performance of
image enhancement methods, ultimately enhancing their utility
in practical applications.

V. CONCLUSION

This study presented fuzzified image enhancement meth-
ods, AFHE, CLAHE, and FCE, to enhance the quality of iris
images, specifically for data annotation. The iris images in
the MIREIS dataset provide some images with low lighting
conditions, creating a challenging process during data annota-
tion. Based on the input iris images, the Gaussian membership
functions were modified to the suitable intensity value. The
GMF followed the rule set in the fuzzy inference system
for the fuzzification and defuzzification process. The AFHE
is the best fuzzified image enhancement method compared
to CLAHE and FCE based on the PSNR value and CPU
times. The findings of this study can assist other researchers in
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data annotation, particularly in non-cooperative environments
when iris images contain low lighting conditions. This study
only employed image enhancement methods to modify the
iris image’s contrast and lighting. However, these approaches
cannot reduce the presence of reflections in the iris image.

VI. FUTURE WORK

Further work can be focused on extending the study to
include reflections in iris images, which were not adequately
reduced by the image enhancement methods. Studies could
focus on developing methods to precisely reduce or eliminate
reflections in iris images captured in non-cooperative environ-
ments with low lighting. Further improving the effectiveness
of the AFHE, CLAHE, and FCE approaches in data annotation
tasks might be examining their ability to work with iris images
at different distances and angles. This could offer significant
data concerning the methods’ robustness and efficacy in vari-
ous conditions.

Moreover, combining several image enhancement methods
or employing machine learning for modifying parameters
adaptively might improve the effectiveness and flexibility of
image enhancement methods. The effectiveness and applica-
tion of AFHE, CLAHE, and FCE in iris image enhancement
would be further advanced by addressing these issues and
investigating these potentials for enhancement. It can support
the improvement of iris recognition systems in non-cooperative
environments.
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