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Abstract—In the Internet of Things (IoT) security, anoma-
lies due to attacks or device malfunctions can have serious
consequences in our daily lives. Previous solutions have been
struggling with high rates of false alarms and missing many actual
anomalies. They also take a long time to detect anomalies even if
they successfully detect anomalies. To overcome the limitations,
this paper proposes a novel anomaly detection system, named IoT
Malfunction Extraction Observer (IMEO), that utilizes semantics
and correlation information for smart homes. Given IoT devices
installed at home, IMEO creates virtual correlations based on
semantic information such as applications, device types, relation-
ships, and installation locations. The generated correlations are
validated and improved using event logs extracted from smart
home applications. The finally extracted correlations are then
used to simulate the normal behaviors of the smart home. Any
discrepancy between the actual state of a device and the simulated
state is reported as abnormal while comparing correlations and
event logs. IMEO also utilizes the observation that malfunctions
of IoT devices occur repeatedly. An anomaly database is created
and used so that repetitive malfunctions are quickly detected,
which eventually reduces processing time. This paper builds
a smart home testbed on a real-world residential house and
deploys IoT devices. Six different types of anomalies are analyzed,
synthesized, and injected to the testbed, with which IMEO’s
detection performance is evaluated and compared with the
state-of-the-art correlation-only detection method. Experimental
results demonstrate that the proposed method achieves higher
performance of detection accuracy with faster processing time.

Keywords—Security; anomaly detection; semantics; Internet of
Things; attack

I. INTRODUCTION

The rapid growth of Internet of Things (IoT) has enjoyed
a wide variety of applications. According to a market report,
the global number of connected IoT devices is expected to
grow to up to 16.7 billion endpoints by the end of 2023 [1].
It also reports that this number will grow by 16% annually to
reach 29.7 billion by 2027. IoT devices are increasingly being
integrated through IoT platforms such as SmartThings [2] and
Homekit [3]. This allows users to connect to IoT devices from
different vendors using smart applications, thus providing great
convenience for IoT heterogeneity.

With the development of IoT applications (this paper is
specifically focused on smart homes), there are also growing
security and safety concerns [4]. Various causes, including
attacks, device errors, malfunctions, and misconfigurations, can
cause anomalies in IoT and eventually lead to unexpected
(and often unfavorable) outcomes. IoT anomalies have intrinsic
properties, and followings show some examples of anomalies
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and consequences in smart homes. First, IoT devices can
extend cyberspace attacks to the physical world. For instance,
a “close the water valve” command can be blocked by an
attacker, resulting in flooding of the room. Second, it is very
often that the malfunction of the device is rarely noticed until
a specific result occurs. An electronic heater that has received
a “too cold” command from a smart home application can
cause a fire due to the relay switch not being able to turn
off the heater. Third, when IoT devices are connected to each
other via automation, abnormal behaviors of one device can
cause unwanted behaviors of other devices, which exacerbates
the effects of the anomaly. For instance, a smart door lock
that is automatically unlocked only when there are residents,
is released due to false events by a human presence sensor.

To address these concerns, many previous research on
anomaly detection utilize data mining techniques that profile
normal behaviors of a system and report off-profile events as
anomalies. These works generally accept event logs as inputs
without fully considering semantics of each event that can
actually be obtained from smart apps, device types, and device
functions. There are three limitations to be considered in this
approach. First, the logic in some smart apps is too complex
to be accurately extracted, which may cause incorrect normal
operations and malfunctions. Say, a smart app logic generates
an event pattern, “If two motion sensors in a living room
both do not detect movement, turn off the smart plug after
30 minutes”. It is difficult to mind this when considering the
30-minute delay and the “AND” logic between two sensors.
Therefore, it may not be possilbe to detect the anomaly, “a
smart plug fails to turn off”. Second, it is often difficult to
interpret the learning results, making it difficult to explain
them and thus confusing to users. Third, when configurations
are changed, learning results are not updated quickly. A long
retraining process is required to adapt to the changes, and a
lot of false alarms occur before retraining is finished.

An intuitive approach to improve the accuracy of anomaly
detection is to incorporate semantic information such as de-
vice types, installation locations, relationships, and automation
logic. However, there are many technical challenges to be
resolved to realize the approach. 1) Typical mining techniques
accept event logs as inputs; however, representing a variety of
semantic information in the form of event logs has not been
studied. 2) Patterns extracted from event logs may conflict
with those of system behavior derived from smart home
applications; identifying and resolving these conflicts are not
easy. 3) It is unknown how to update a system profiling
effectively when a smart home application changes.

To overcome the challenges, this paper proposes IoT Mal-
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function Extraction Observer (IMEO), a new anomaly detec-
tion system for smart home applications. Technically, it con-
structs correlations by using semantic information, explaining
how a device’s states and events correlate with those in another
device, and verifies them by using event logs as evidence.
Given the correlations, IMEO simulates normal behaviors
and compares the simulated states to those in a real world
via contextual and consequential checkings. It then reports
anomalies if finding inconsistencies in comparison. Because
the correlations become explainable along with the semantics
in IMEO, they can help resolve conflicts with smart home
applications. Thanks to the explainability, the correlations can
be updated with the changes of the smart home application.
This paper implements a prototype of IMEO and builds a real-
world smart home testbed consisting of three rooms. Then,
experiments are conducted, and the results show that IMEO
can reach a high precision of 99.33% and a recall of 95.35%,
demostrating better performance than a prior method.

The rest of the paper is organized as follows. Section II
summarizes possible anomalies that can occur in IoT environ-
ment. Section III reviews research works on anomaly detection
for IoT. Section IV introduces a reference architecture for an
IoT system and defines a threat model in the architecture. In
Section V, three correlation channels and the representation of
correlations are described. We present the proposed system in
Section VI. Our testbed is implemented and experimented in
Section VII, which is followed by evaluation in Section VIII.
Finally, Section IX concludes the paper.

II. ANOMALIES IN IOT

Previous works have reported that IoT devices are often
unreliable and vulnerable to malicious attacks [5], [6], [7].
This section discusses anomalies in IoT caused by devices’
malfunctions and attacks.

A. Malfunctions in IoT Devices

In general, IoT devices communicate with an IoT platform;
they report any event records and receive command messages
to/from the platform. This subsection categorizes malfunctions
in terms of them.

1) Events: There are two types of causes related to event
records. (i) Faulty event refers to devices’ reporting incorrect
values. This is mainly attributed to a device defect or physical
inteference. For instance, a door knocking sensor goes active
and then inactive without reason [8], and a motion detector sees
motions in an empty room and turns on lights [9]. (ii) Event
loss or delay represents that event records are not reported to
the platform (or any server) in a timely manner. For instance,
status updates from presence sensors have been reported to
suffer from long delays [10]. This may cause significant delays
in executing related automation when after a resident leaves
home. If the update is lost, an automation rule may fail to lock
a door while away.

2) Commands: There are cases inducing malfuntions on
devices. (iii) Bogus command refers to a phenomenon called
“poltergeist” frequently reported on a user forum [11]. For
instance, users reported that lights or sensors turned on in the
middle of the night. It is said that this phenomenon occurred
in an office where no one was present or in the hallway of

a house where everyone was sleeping. They also reported
that a heater connected to an air conditioner suddenly reacted
and turned on. (iv) Command failure represents that the IoT
platform issues a command that is not executed on an IoT
device. A physical problem or cyber problem may cause this.
The physical problem is mainly attributed to a malfunction of
an IoT device. For instance, if an electrical relay inside a smart
plug is broken, it may prevent the plug from cutting off the
power supply. The platform recognizes that the plug is turned
off, though. The cyber problem includes unstable network
connections and system crashes that prevent commands from
being executed.

B. Attacks on IoT Devices

This subsection identifies potential vulnerabilities on IoT
devices and discovers five different types of IoT attacks.

(i) Fake event is an event maliciously generated by an
attacker. This can trigger an IoT device to behave unexpectedly,
which can lead to unfavorable consequences [12]. For example,
when the attacker injects an event indicating the presence of a
fake person, a door lock is unlocked. (ii) Event interception by
an attack can intercept and discard event records. For instance,
the attack blocks the wireless connections of window and door
sensors so that they stop sending event records, which can
lead to a home security system fails to alarm [13]. (iii) Fake
command is injected by by an attacker into an IoT device
[14]. Say, smart speakers and smart switches may accept fake
commands from a local network without authenticating sources
[15], [16]. (iv) Command interception. An attacker can also
intercept commands and prevent them from being delivered to
IoT devices [17]. (v) Compromised device. An attack can gain
access to an IoT device and perform the following attacks. In
a “stealthy command”, the attacker takes control of a device
to execute commands and prevents corresponding feedback
events from being sent in order to remain covert [18]. This
is similar to the fake command, except that no feedback
events are sent. “Denial of Execution” means that when a
valid command is sent to the device, it does not execute the
command and sends back a feedback event reporting that the
command was executed.

C. Repeated Malfunctions of IoT Device

A user forum notes that users are frequently having trou-
ble with malfunctions of specific IoT devices; devices that
malfunctioned once malfunction repeatedly after that or cause
other problems. For instance, a sensor once disconnected from
a network once experienced multiple network disconnections
over several days. As such, repeated malfunctions of the device
can cause difficulties in operating the automation involved or
problems that incorrectly trigger other actuators.

III. RELATED WORKS

With the advancement of IoT devices and the advent of
home automation applications, security and privacy issues
are attracting great attention. However, most research has
focused on detecting threats, attacks, and malicious codes
rather than IoT malfunctions. For example, HomeGuard [19]
presents the first systematic classification of threats caused
by interference between different automated applications, such
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as automation collisions, serial execution, and loop trigger-
ing. The authors propose a method to detect these threats
using SMT (Satisfiability Modulo Theories) Solver, where it
performs symbol execution to extract automation rules from
an application. PFirewall [20] is a study that recognizes the
continuous inflow of excessive IoT device data into an IoT
automation platform. It protects users’ personal information
from the platform by minimizing data without changing the
IoT device or platform. HoMonit [21] focuses on detecting
smart home applications that are malfunctioning, unlike this
work on detecting anomalies of IoT devices. Given a physical
event, Orpheus [22] automates system call tracking and then
checks for attacks via comparison. However, it is not possible
to detect anomalies such as fake events and event intercepts.

Many previous studies allow anomaly detection systems
to learn the normal behavior of smart homes from historical
data. For example, SMART [23] trains activity classifiers for
multiple users based on different subsets of sensor readings,
and further trains another classifier that takes a vector of
activity classification results as input to detect sensor failures.
DICE [24] checks contexts in smart homes to detect anomalies
during state transition.

Traditional mining-based solutions are not clear how they
can accurately learn complex behaviors in smart homes. The
main difference between these conventional anomaly detection
systems and this work is that IMEO extracts various semantic
information such as device types, device relationships, and
smart home applications and injects the information into min-
ing processes. IMEO is not only more accurate in detection,
but each detected anomaly can be interpreted as violating the
correlation, so it can be explained by itself.

IV. THREAT MODEL

A. IoT System Architecture for Smart Homes

IoT devices in smart homes are increasingly integrated
through IoT platforms for seamless automation. IoT integration
platforms such as SmartThings, OpenHAB, and Amazon Alexa
support automation programs. Although these platforms can
handle numerous IoT devices, they are summarized as a small
number of abstract devices. For instance, smart lights, regard-
less of their brands, shapes, sizes, or wireless technologies, are
equally abstracted as light. Each abstract device has events and
commands associated with it.

This paper considers SmartThings, one of the leading
IoT integration platforms, for a system architecture for smart
homes as it supports rich automation logic. A typical Smart-
Things deployment, as shown in Fig. 1, has a cloud-centric ar-
chitecture consisting of four layers. At the top is SmartThings
Cloud. It is a cloud where smart apps run and interact with
abstracted functions. The cloud uses various communication
techniques such as Wi-Fi, Zigbee, and ZWave to communicate
with IoT devices through the network connection layer. IoT
devices can be divided into cyber and physical parts. The
cyber part manages the interface for humans and connects
communication between the cloud and the physical part, while
the physical part performs its functions in the physical world.
For instance, the Philips’ Hue smart bulb consists of a physical
part of an LED bulb and a cyber part of a microcontroller with
a built-in wireless component.

Fig. 1. IoT System architecture for smart homes; SmartThings.

Terms used in the SmartThings are briefly described in
the following. An IoT device has one or more instrumental
capabilities that are classified as actuators or sensors. Each
capability defines one or more attributes. For instance, a
smart plug device has a “switch” attribute and optionally a
“power” attribute. The state (value) of each attribute is stored
in the cloud and updated by events transmitted from the IoT
device. For instance, a multi-purpose sensor has a capability
of “contact sensor”, and the cloud changes the state of its
attribute “contact” from “open” to “closed” when it receives
an event “contact closed” from the sensor. In the case of an
actuator, SmartThings ensures that the state of the its attribute
is udpated by a feedback event transmitted by the IoT device
after a command is executed by the actuator.

B. Threat Model

This paper focuses on detecting malfunctions and attacks in
IoT devices described in the previous section and on reporting
repeated malfunctions immediately. It is also noted that IMEO
is able to detect attacks that violate correlations. Attackers who
know the correlations can avoid our detection by constructing
an attack that does not violate the correlations.

Our threat model assumes that the IoT platform is not
compromised. As with other anomaly detection tasks, we
assume that there is no or few anomalies during training.
No malicious or conflicting rules in installed smart home
applications are also assumed. It is predicted that the average
household could have more than 500 IoT devices in the near
future [25]. Therefore, considering dense deployments, we
propose to leverage scenarios where IoT devices have one or
more other devices nearby to interact with and leverage this
to detect abnormal physical behavior of the devices.

V. CORRELATIONS

IoT devices instrumented in the same home may be inter-
related in the form of simultaneous or temporally related events
[26], [27], [28], [29]. These correlations can occur due to
the execution of application, physical interactions, or user
activities. This section investigates causes of these correlations
and classifies them into three channels as shown in Fig. 2. It
also defines their representations.
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Fig. 2. Three correlation channels for IoT devices.

A. Correlation Channels

1) Application channel: Smart home applications directly
cause correlations between triggers and actions as pro-
grammed. But, it also induces some additional correlations
implicitly. For instance, in the SmartThings application, each
automation rule implies a correlation worth verifying.

2) Physical channel: Two devices can be interrelated via
certain physical properties. First, when an actuator takes an
action it changes a physical property, which can be detected
by a nearby sensor. For instance, an illuminance sensor can
be affected by a nearby smart light turning on or off. Second,
different sensors can be affected by the same physical event,
creating temporally correlated IoT events. For instance, a door
opening inevitably involves movement of the door, which cap-
tures an acceleration sensor and a contact sensor installed on
the door, causing corresponding events to occur sequentially.
As IoT device types increase, physical channel correlations can
be widely observed across a variety of physical characteristics
such as lighting, power, sound, and temperature.

3) User activity channel: A user activity gives rise to
changes on a device, and the states of devices also reflects
user activities. Thus, the user activity channel can lead to
correlations between devices. For instance, when a TV is
turned on it means that a user is nearby, and the motion
sensor must detect it. When a user returns home, there must
be continuity in events such as “person presence” showing the
user’s movements and “contact sensor open” showing a front
door opening.

B. Representation of Correlations

This paper represents an event and a state. Let denote
E

α(A)
a an event reporting that the attribute α of device A

should change to value a and S
β(B)
b a state indicating that

the attribute β of device B has value b. Based on them, it
defines two types of correlations as below.

1) Event-to-Event (E2E) correlation: represents that an
event should be followed by another. For instance, E2E cor-
relation ⟨Emotion(A)

active → E
switch(B)
on ⟩, given motion sensors A

and light B, indicates that an active event Emotion(A)
active should

be followed by another event Eswitch(B)
on .

2) Event-to-State (E2S) correlation: represents that an
event occurring means that a state is true. For instance,
E2S correlation ⟨Epower(Plug)

high → S
switch(heater)
on ⟩ indicates

that the state S
switch(heater)
on should be true, when an event

E
power(Plug)
high occurs.

3) State-to-Event (S2E) correlation: represents that an
event occurs only when a state satisfies a true condition.
For instance, S2E correlation ⟨Silluminance

>60 → Esmartplug
off ⟩

indicates that the event Esmartplug
off occurs only when the state

Silluminance
>60 becomes true.

4) Coditional (AND) correlation: represents that events
and states are combined with conditions using the ∧ sym-
bol. For instance, a correlatin ⟨EMotion

active ∧ SPresence
present →

E
Switch(Light)
on ⟩ represents that an event EMotion

active , only when
a state SPresence

present is true, should be followed by another event
E

Switch(Light)
on .

VI. PROPOSED SYSTEM: IMEO

This section proposes a novel anomaly detection system,
named IoT Malfunction Extraction Observer. Fig. 3 demon-
strates an overall architecture of the proposed system, and
the followings describe operation steps. IMEO first generates
correlations regarding three channels hypothetically by using a
smart home application and Natural Language Process (NLP)
techniques. We note that SmartThing is used for our appli-
cation. It also receives event logs from the application that
are then used to verify the correlations. Only correlations that
have passed verification are used to detect anomalies. Upon
receiving event logs in real time, it checks them through
verified correlations. When an event log does not match
correlations, it reports the event as an anomaly. IMEO reuses
the detection results for better performance. It saves details of
identified anomalies and maintains an anomaly history. Upon
reoccurring the same malfunction, it can detect the anomaly
directly from the history, instead of performing the correlation
matching process.

Fig. 3. System architecture of the proposed IMEO system.

A. Analyzing Semantics

The semantic analysis module first extracts semantics
from the smart home application and then converts them to
correlations (of application channels). To capture semantics,
it investigates automation logics and related configurations,
such as a temperature threshold in an air conditioner, in the
application. For instance, given a semantic telling “Turn off
the smart plug when illuminance is greater than 60,” an E2E
correlation ⟨Eilluminance

>60 → Esmartplug
off ⟩ is generated. This

can also be represented by an S2E correlation ⟨Silluminance
>60 →
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Esmartplug
off ⟩. It is noted, however, that the S2E correlation does

not guarantee to be true necessarily and has to be verified in
the following step.

B. Mining Correlations

There are many pattern mining methods, but few achieve
both good usability and high accuracy in the context of
smart home applications. Supervised mining methods are more
accurate, but often require well-annotated data sets or user
interventions. Unsupervised mining methods can be applied to
unannotated data, but they are less accurate.

To overcome limitations of existing methods, this paper
proposes a semantic-based mining method. Semantic infor-
mation includes device type and installation location, which
can be obtained from a smart home application. Based on
this semantic information, IMEO generates virtual correlations
corresponding to physical channels and user activity channels.
Each virtual correlation is then independently verified. This
paper assumes that there will be no or very few anomalies in
the training phase, as with other anomaly detection tasks.

1) Processing event logs: It is necessary to preprocess
event logs for two reasons as follows. First, repetitive sensor
readings introduce noise into raw event log data. For instance,
some power meters periodically report similar but slightly fluc-
tuating measurements. Second, numerical readings of a device
cannot be incorporated into logical calculations. Therefore,
our preprocessing module eliminates duplicated records and
transforms numerical data to binary information. To this end,
the module applies the Jenks natural breaks algorithm [30]
to the remaining readings and classify them as low or high.
Then, it looks at the events for a given attribute on each device
and removes events that do not continuously change state.
Finally, two temporally adjacent events for the same attribute
of the device have opposite values. However, our measurement
observed that there were values whose differences were too
small to be binarized using the Jenks natural breaks algorithm.
So, these values were all added up to find the average value.
Based on this, a value was classified into low if it was lower
than the average value, and classified into high if it was greater
than the average value .

2) Generating virtual correlation: In addition to E2S cor-
relations generated from the application channels, correlations
can be generated with other semantic information such as
device attributes and relationships between attributes in the
physical and user activity channels. To this end, semantic
information is utilized to construct a table displaying correlated
attribute pairs, and then each pair is filled with devices with
matching attributes to create a correlation.

For physical channel correlations, IMEO sets up seven
physical properties (illuminance, sound, temperature, humid-
ity, vibration, power, and air quality) related to IoT devices
in smart home environment. An NLP technique is used to
determine whether the attributes of two IoT devices can be
associated through physical properties. To obtain IoT abstract
attributes, we refer to the description from the SmartThings de-
veloper site [31]. In order to objectively evaluate the relevance
between attributes and physical properties, Google’s word2vec
model [32] is used to calculate the semantic similarity score
between each word in the list and the physical properties.

Then, this score is used as the correlation score between the
physical property and attribute. The top 10 attributes with the
highest scores for each physical property are considered to be
interrelated through the corresponding physical properties.

Attributes that represent users’ characteristics can be ex-
pressed as presence and motion. Since IoT devices are always
influenced by users, it is natually assumed that all attributes
related to each physical properties in the physical channel are
related to users. User activity channel correlations are formed
by considering that each physical property has a correlation
with presence and motion.

Eventually, IMEO can find attribute pairs considered to
be correlated with each other, from which it is possible to
identify all the attributes of IoT devices installed in a smart
home environment. Given a pair of two correlated attributes
α and β on device A and B, respectively, IMEO generates
four E2E correlations ⟨Eα(A)

a → E
β(B)
b ⟩, ⟨Eα(A)

a′ → E
β(B)
b ⟩,

⟨Eα(A)
a → E

β(B)
b′ ⟩, ⟨Eα(A)

a′ → E
β(B)
b′ ⟩, and four E2S cor-

relations ⟨Eα(A)
a → S

β(B)
b ⟩, ⟨Eα(A)

a′ → S
β(B)
b ⟩, ⟨Eα(A)

a →
S
β(B)
b′ ⟩, ⟨Eα(A)

a′ → S
β(B)
b′ ⟩. Symmetrically, eight correleations

can also be generated with events on β(B) leading the corre-
lations.

Fig. 4. Anomaly detection process with three examples.

C. Detecting Anomalies

IMEO detects anomalies via two checking processes; con-
textual check and consequential check. The contextual check
determines anomalies with E2S correlations. Suppose there
is a correlation that a switch is on only when a motion
sensor is active as shown in Fig. 4(b). Upon detecting the
switch is off when the sensor is active, IMEO finds that this
violates the correlation and determines to be an anomaly. The
consequential check sees whether the next event occurs within
60 seconds when the preceding event of an E2E correlation
occurs. If the next event occurs within the time boundary,
the correlation is judged to be correct. For instance, Fig. 4(a)
shows a correlation telling that an event “a contact sensor is
on” should be followed by another event “a motion sensor is
on”. IMEO considers it normal if the motion sensor changes
to on within 60 seconds after the contact sensor is turned on.
It determines it to be abnormal if the motion sensor does not
turn on within 60 seconds.
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IMEO also performs a fast anomaly detection process. This
is based on the feature, which has been frequently reported
in user forums, that IoT devices malfunction repeatedly once
malfunctioned. IMEO makes use of the feature to speed up
the detection process while not sacrificing detection accuracy
performance. Upon detecting an anomaly (i.e., a mismatch
between an event log and correlation(s)), the anomaly detection
module records a pair of event log, correlation(s) in a database
of anomaly history. When the same malfunction occurs later,
the module searches for the database and immediately de-
termines if the event is abnormal before going through the
checking processes. Once identified as anomaly this time,
the resulting pair data is also recorded in the database. The
number of repeated occurrence for each record is also saved
in the database. Once sorted efficiently, this information can
help accelerate the search process. Considering the repetition
property of IoT devices, the fast anomaly detection process is
expected to reduce detection time meaningfully.

VII. EXPERIMENTAL SETUP

In order to evaluate the proposed IMEO system, we have
built a real-world testbed as shown Fig. 5. Data was collected
for three weeks to obtain event logs of IoT devices required
for training and for one week for testing. We have applied
correlations verified through the collected data to every events,
from which the performance of IMEO is evaluated.

Fig. 5. Deployment layout of IoT devices.

A. Preliminary

1) Testbed: We have deployed IoT devices in a testbed of
a private house consisting of three rooms and used Samsung
SmartThings as an application. There are four residents in
the testbed; one undergraduate student and three ordinary
family members (two women and one man) who go to work
during the day and returns home at night. None of them had
any experience of using a smart home automation system.
Residents are allowed to set automation of their interests that

is fulfilled by IoT devices compatible with our smart home
application. They are also given enough time to get used to
the installed automation system before collecting data.

TABLE I. A LIST OF IOT DEVICES DEPLOYED IN THE TESTBED

Device name Attributes Deployment Abbr.
Motion Sensor (SmartThings) motion on wall M

Multi Sensor (SiHAS) motion, illuminance,
humidity, temperature

on wall MS

Contact Sensor (SmartThings) contact, acceleration on doors C
Smart Button (SmartThings) room control unit on wall PS
Smart Plug (SmartThings) switch, power as light lamp P

2) IoT devices: Our testbed are deployed with five different
types of IoT devices. Fig. 5 illustrates a deployment layout of
devices, and Table I describes details of the devices including
abbreviations. The motion sensor (denoted as M) is placed
in the living room to detect the presence and motion of
residents. The multi-function sensor (denoted as MS) is an
IoT device that can detect human movements and perform a
variety of roles, including detection of illumination, humidity,
and temperature. The contact sensor (denoted as C) is able
to detect the opening and closing of the front door. It can be
used as a factor to determine whether residents are inside the
house. The smart button (denoted as PS) is able to control the
operation of smart devices in the testbed by unit. It can also
check the temperature of the testbed. The smart plug (denoted
as P) is a power plug used to control electrical devices.

TABLE II. AUTOMATION RULES EXTRACTED FROM THE APPLICATION

Index Automation rules
R1 If (illuminance <30), then smart plug (on).
R2 If (illuminance >400), then smart plug (off).
R3 If C (opened) and MS (detected) for 15 minutes, then TV (on).
R4 If C (opened) and MS (undetected) for 20 minutes, then TV (off).
R5 If C (opened) and M (undetected) for 15 minutes, then P (off).
R6 If PS (pressed), then toggle TV
R7 If PS (double pressed), then toggle P.
R8 If PS (held), then turn off TV, air conditioner and P.
R9 If (illuminance <5), then TV (off).

3) Automation rules: We have extracted nine automation
rules from the installed smart home application in the form of
“automation operation if conditions arise”. The extracted rules
of the test bed are listed in Table II.

4) Ethical concerns: All participants are fully aware of
installed devices and the application. Experiments did not use
sensitive devices such as cameras or microphones. All the
data collected was considered as sensitive personal identifi-
cation information and thus was removed immediately after
experiments. For testing purposes, anomalies are generated
intentionally and injected into the event log (see Section
VII-C). To avoid safety issues, the injected anomalies did not
target safety-sensitive devices. We notified participants that
there might be some deviation from existing automated rules,
but did not disclose the details of the anomalies (e.g. device
and time). In addition, participants were advised to maintain
a normal lifestyle and not panic if abnormalities were found.
The purpose of maintaining their lifestyle habits is to avoid
biasing their behavioral during experiments. Details of injected
anomalies were presented to participants after testing.
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TABLE III. A PARTIAL LIST OF VERIFIED CORRELATIONS OBTAINED
FROM THE TESTBED

ID Correlation

C1 ⟨Eilluminance(MS)
<30 → Epower(P)

on ⟩
C2 ⟨Eilluminance(MS)

>400 → E
power(P)

off
⟩

C3 ⟨Econtact(C)
open ∧ E

motion(M)

detect
→ ETV

on ⟩
C4 ⟨Econtact(C)

open ∧ E
motion(M)

undetect
→ ETV

off ⟩
C5 ⟨Econtact(C)

open ∧ E
motion(M)

detect
→ E

switch(P )

off
⟩

C6 ⟨Ehumidity(MS)
<40 → S

contact(C)

close
⟩

C7 ⟨Ehumidity(MS)
>60 → S

contact(C)

close
⟩

C8 ⟨Eacceleration(C)
on → E

motion(MS)

detect
⟩

C9 ⟨Econtact(C)
open → E

motion(M)

detect
⟩

C10 ⟨Emotion(M)

detect
→ Econtact(C)

open ⟩
C11 ⟨Emotion(MS)

active
→ Eswitch(P)

on ⟩
C12 ⟨Eacceleration(C)

active
→ E

contact(C)

closed
⟩

C13 ⟨Eilluminance(MS)
<5 → E

power(TV )

off
⟩

C14 ⟨Ebutton(B)

held
→ Eairconditioner

off ⟩
C15 ⟨Ebutton(B)

held
→ E

power(TV )

off
⟩

C16 ⟨Ebutton(B)

held
→ E

switch(P)

off
⟩

C17 ⟨Epower(P)

low
→ S

switch(P)

off
⟩

C18 ⟨Epower(P)

high
→ Sswitch(P)

on ⟩
C19 ⟨Eswitch(P)

on → E
power(P)

high
⟩

C20 ⟨Emotion(M)

detect
∧ Econtact(C)

open → E
contact(C)

close
⟩

C21 ⟨Econtact(C)
open ∧ E

motion(M)

undetect
→ E

switch(P)

off
⟩

C22 ⟨Emotion(MS)

detect
→ Sswitch(P)

on ⟩
C23 ⟨Emotion(MS)

undetect
→ S

switch(P)

off
⟩

C24 ⟨Emotion(MS)

detect
→ S

contact(P)

closed
⟩

B. Training for Testing

1) Training IMEO: In the testbed, 14 E2E correlations are
generated from the automation rules. Additionally, it generates
10 E2S correlations in the application channel, 749 correlations
in the physical channel, and 417 correlations in the user activity
channel, for a total of 1,176 correlations. Then, they are ver-
ified using 20,002 event logs collected during the three-week
training phase. A total of 96 correlations passed the verfication
test. Table III lists portions of the verfied correlations.

2) Findings: Belows share some interesting obervations
from the testbed.

O1. While C is a contact sensor, it has an additional
correlation, C12= ⟨Eaccelation(C)

acitve → E
contact(C)
closed ⟩. This im-

plies that an event Eaccelation(C)
acitve is followed by another event

E
contact(C)
closed , explaining that a front door (C) usually closes

immediately after it opens.

O2. The E2S correlation C18 indicates that the power of
P is high only when P is on.

O3. The smart plug P turns a light on and off. Each time P
is turned on, the power usage increases (see C19 in the table).

O4. Physical and user activity channel correlations cannot
be obtained without mining because they are not included in
the application. On the other hand, there are correlations that
can be easily extracted from the application but are difficult
to mine. For instance, it is difficult to mine correlations that
involve delays accurately, but their relations can be derived
from rules like R3, R4, and R5.

3) Baseline: This research selects a correlation-only detec-
tion method [33], [34], [35] as a baseline approach, because
it has been widely used for anomaly detection and is a well-
established for mining correlations and rules. It is noted that
IMEO is also based on correlation mining. For comparison,
the correlation-only method is performed on the same data
collected from our testbed.

TABLE IV. A LIST OF ANOMALIES SELECTED AND SIMULATED

Index Anomaly type Anomaly Creation Method
A1 Faulty/Fake events To insert events into the data set
A2 Event loss/Interception To remove events from the data set
A3 Bogus/Fake commands To toggle from a bogus application

A4
Command failures(cyber)/

Command interception To cut off devices’ power supply

A5 Command failures(physical) To cover bulbs with a paper
A6 Command failures(physical) To unplug connected appliances

C. Generating Anomalies

To evaluate IMEO, six anomalies are simulated on the
testbed as listed in Table IV. Because the same anomaly often
occurs in IoT devices when malfunctions occur, six represen-
tative abnormalities are selected. To this end, we refer to the
attacks from the literatures investigating IoT attacks and mal-
functions frequently discussed in the Samsung SmartThings
community. In order to simulate IoT devices as abnormal
cases, event logs collected during the three-week training phase
are arbitrarily modified. We also disrupt the automation rules,
and resulting event logs are used to detect malfunctions. Tests
are conducted multiple times for each malfunction. If an IoT
attack has the same impact as a malfunction on event logs,
we group and simulate it as one case. For instance, since
faulty events due to sensor malfunctions and fake events due
to attacks have the same impact, a total of 100 MS motion
events are grouped and simulated by randomly injecting them
into the test event log (see A1 in Table IV).

1) Faulty / Fake events: Events of devices such as motion
sensors, presence sensors, and contact sensors are known to
be unreliable, so we insert them to simulate the faulty/fake
events.

2) Event loss / Interception: To simulate this, we randomly
remove events on some devices from the test event log.
We primarily select devices for which users have reported
discomfort with event loss, such as multi-function sensors,
contact sensors, and motion sensors.

3) Bogus / Fake commands: Users have frequently reported
inconvenience that both smart lights and plugs have been
unexpectedly turned on or off. To simulate these, a bogus
application has been developed, that IMEO does not know
about, and arbitrary commands to the appplication turn the
smart plug on and off randomly.
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4) Command failures (cyber) and Command interception:
Our experiments simulate command errors and command
interceptions in the cyber part of the smart plug. To this end,
we make the power of target devices disconnected so that
they are unable to respond to any commands. Experiments
are conducted several times a day on each target device.

5) Command failures (physical): Command failures in
the physical part are simulated in the multi-function sensor
(illuminance) and the smart plug. The multi-function sensor is
covered by blackout curtains, and appliances are physically
unplugged from smart plugs. Two deivces still respond to
commands with feedback events, but these commands have no
physical effect. For each device, experiments are conducted
several times a day.

VIII. PERFORMANCE EVALUATION

This section evaluates the performance of IMEO, the pro-
posed anomaly detection system for IoT devices. First, it shows
how correctly the proposed method can detect anomalies.
Then, IMEO’s performance is compared with the baseline
approach (correlation-only detection method, COD) described
in Section VII-B, which is followed by demonstration of
overall performance in both methods. The last part evaluates
the processing time of IMEO.

A. Evaluation Metrics

For evaulation, this paper uses the following metrics. Given
the context of anomaly detection, accuracy is the ratio of event
logs reported correctly (true anomalies and true normal events)
to the entire events. Precision indicates the ratio of correctly
detected anomalies to those reported to be abnormal (i.e.,
percentage of anomaly detection that is correct), and recall
indicates the ratio of correctly detected anomalies to all the
anomalies (i.e., percentage of anomalies that can be detected).
F1 score is the harmonic mean of the precision and recall and
represents the detection accuracy considering an imbalanced
event situation where there are a relatively small number of
anomaly events or vice versa.

Accuracy =
TruePositive+ TrueNegative

All Events

Precision =
TruePositive

True Positive+ False Positive

Recall =
TruePositive

TruePositive+ FalseNegative

F1Score = 2× Precision×Recall

Precision+Recall

B. Results of Anomaly Detection

Table V summarizes detection results of IMEO across
six different anomaly types described in Section VII-C. For
three out of six types, IMEO successfully detects all events.
The following detection examples illustrate how IMEO detects
anomalies.

Detection 1. When entering the house, a resident is de-
tected by the contact sensor C attached to the front door,
which should be followed by a motion-active event of M in

TABLE V. DETECTION RESULTS OF IMEO ACROSS 6 DIFFERENT TYPES
OF ANOMALY EVENTS

Anomaly
Index

# of
instances Precision Recall Correlation(s)

violated
A1 100 98.97% 94.12% C22
A2 100 100% 100% C12
A3 100 97.02% 98% C12, C19
A4 100 100% 100% C11, C12
A5 30 100% 80% C1, C2
A6 100 100% 100% C17, C18

the living room. However, as the motion-active event of M
becomes an faulty/fake event, the user activity E2E correlation
⟨Econtact(C)

open → E
motion(M)
detect ⟩ is violated and an anomaly is

detected.

Detection 2. When a resident leaves home, the motion sen-
sor M in the living room is detected, and the contact sensor M
attached to the front door must be detected immediately. Then,
the front door is expected to be closed. However, as a malfunc-
tion occurs in which the event is lost or intercepted, it violates
the correlation ⟨Emotion(M)

detect ∧ E
contact(C)
open → E

contact(C)
closed ⟩,

and an anomaly is detected.

Detection 3. The smart plug P shall be off when the illumi-
nation sensor in MS exceeds a certain threshold by automation
rules R1 and R2. Conversely, if the illuminance is lower than
a certain criterion, the plug P should be on. However, the
smart home application changes its behavior by ghost/fake
commands. An anomaly is detected in violation of the E2S
correlation ⟨Eilluminance(MS)

low → S
switch(P)
off ⟩ generated by the

automation rule.

Detection 4. The smart plug P should behave appropriately
according to automation rules related to the illuminance sensor
MS. Due to command failure (cyber)/command interception,
power supply to the smart plug is temporarily cut off. Conse-
quently, the E2S correlation ⟨Eilluminance(MS)

low → S
switch(P)
off ⟩

is violated, resulting in the omission of all instances in this
case.

Detection 5. Due to the blackout curtain, the illuminance
value in the multi-function sensor MS is detected as low or
zero. Thus, E2S correlations related to the illuminance events
are detected as violation (anomalies A5). But, 6 instances are
missing because the living room is brightened by natural light
when anomalies occurr. In additon, as appliances connected
to the smart plug P are broken (simulated by physically
unplugging power cables), there is no operation at all on the
plug. Therefore, events associated with A6 are detected as
malfunction.

For Detection 1, 3, and 5, some instances are missing,
which should be attributed to the incompleteness of the sim-
ulations injecting malfunctions. For example, six instances in
Detection 1 are missing because fake motion-active events of
M are injected during the time when real motion sensors (M)
are logged as event logs. Similarly, two missed instances of
Detection 3 are resulted from manipulating the smart plug P
with a bogus application that is not allowed for the smart
home application. Although malfunction is detected, there is
a delay time until it is recorded in the event log because they
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are randomly manipulated operation states. For example, IoT
devices turn on or off themselves by random bogus commands.
However, there were cases in which the immediately preceding
state of off is recorded although a device is on. In Detection 5,
six instances are missing because the living room is brightened
by natural light when anomalies occur.

TABLE VI. ANOMALY DETECTION RESULTS OF TWO METHODS

Anomaly Correlation-only (COD) IMEO
Index Precision Recall Precision Recall
A1 98.36 % 95.6 % 98.97 % 94.12 %
A2 91.11 % 82.79 % 100 % 100 %
A3 100 % 100 % 97.02 % 98 %
A4 100 % 100 % 100 % 100 %
A5 100 % 66.67 % 100 % 80 %
A6 100 % 100 % 100 % 100 %

TABLE VII. COMPARISON OF OVERALL PERFORMANCE

Method Precision Recall F1 score Accuracy
IMEO 99.33% 95.35% 0.97 99.98%
COD 97.83% 94.12% 0.95 99.32%

C. Performance Comparison

As summarized in Table VI, IMEO achieves better perfor-
mance in 5 types. In A2 (faulty and fake events), especially,
precision and recall increase from 91.11% and 82.79% to
100% in both. And recall in A5 (physical command failures)
increases from 66.67% to 80%. COD can detect E2E, E2S
correlation violations in smart home applications, but 17.22%
events are lost for anomalies with event interception. In A3
(bogus and fake commands), however, there are small perfor-
mance degradation.

Table VII compares overall performance of anomaly de-
tection with two methods. IMEO has an average detection
precision of 99.33% and a recall of 95.35% across 6 different
types of anomaly events, while COD has 97.83% and 94.12%,
respectively. It is noted that two methods show similar results
in accuracy: 99.98% with IMEO and 99.32% with COD.
However, IMEO performs better than COD with respect to the
F1 score. This implies that IMEO is able to detect anomalies
well even in a real-world smart home environment where
malfunctions and/or attacks could occur rarely.

D. Fast Anomaly Detection

We believe that it is critical to reduce anomaly detection
time using correlation data for increasing the security of
smart home automation. Once detecting an anomaly, in this
sense, IMEO memorizes a detection record as described in
Section VI-C. When the same malfunction occurs later, it can
immediately determine if the event is abnormal by searching

TABLE VIII. PROCESSING TIME TO DETECT ANOMALIES

Correlation only (COD) IMEO
Processing time 44m 07s 27m 46s

for the record history. On the other hand, if the future mal-
function is not the same as the history, additional comparisons
are made in IMEO, which is likely to take more time. Thus,
our experimentation study also measures how long it takes
to detect anomalies when using the baseline method and the
proposed method. As compared in Table VIII, IMEO takes
1,666 seconds while COD takes 2,647 seconds on average.
This shows that the fast anomaly detection process in IMEO
can improve performance by 58.9%.

IX. CONCLUSION AND DISCUSSION

As IoT devices are integrated and combined with the
physical environment, anomalies in them can have serious con-
sequences in our daily lives. Previous solutions that only used
a data mining technology to detect anomalies have been strug-
gling with high rates of false alarms and missing many actual
anomalies. It also takes a long time to detect anomalies even if
they correctly detect anomalies. To overcome the limitations,
this paper proposed an anomaly detection system, named IoT
Malfunction Extraction Observer, that made use of semantic
information at smart homes such as smart home applications,
configurations, device types, and installation locations. IMEO
used event logs to detect malfunctions to take advantage of
semantic information from different channels (smart home
applications, physical activities, and user activities). It also
provided an easier and faster way to detect frequently repeated
malfunctions. These allowed for more reliable malfunction
detection. We developed and deloyed the proposed method
in a real-world testbed. Experiments were conducted with
various abnormal instances, and the results demonstrated that
the proposed method achieved higher performance of detection
accuracy with faster processing time.

A. Discussion

The evaluation results are very promising, but we consider
IMEO as the first step in the anomaly detection using semantic
information in smart homes. IMEO has some limitations that
we are trying to address in the future.

First, correlations due to user activity channels are useful
for detecting anomalies, but false events can occur if there is
a deviation in user activity. Such cases rarely occur, but we
found them during evaluation. Some events generated events
that were irrelevant to the correlation when a user encountered
an abnormal situation (e.g., a state with an open front door).
One day, for instance, a person wants to read in his or her
living room, so he or she turns on the extra light, not the
living room light, to increase the illumination. If this rarely
happens during the experiments, malfunctions can occur. The
key question is how to constantly update correlations to adapt
to changes in IoT devices and user activities.

Next, IMEO can only compare and experiment with cor-
relations that result in forward and backward events within
a short interval. Correlations that require long intervals, such
as the relationship between turning on the air conditioner and
temperature events, cannot be detected yet.

Third, the physical constraints of IoT devices are problems
to be solved. For example, some IoT devices may be placed
relatively far away, and physical channel correlations between
them may be very small. One way to solve this problem is
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to explore the correlations across the entire home rather than
separate rooms, which will lead to more correlations between
IoT devices. The opposite can also be considered. Recently, the
size of houses has decreased, and more and more IoT devices
are being installed in the houses. In this case, the redundancy
of the correlations can be strong and this information needs to
be interpreted differently.

Last, an attacker who knows correlation, that is, semantic-
based detection, can construct an attack that does not violate
correlation to avoid detection. The study of robustness to
this type of attack will be an interesting topic. The key to
IMEO execution is that it imposes additional constraints on the
attacker. In the correlation channel, each attribute is included
in at least four correlations. Attacking the device without
violating the correlation is a barrier for the attacker.
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