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Abstract—Multimodal sentiment analysis is a traditional text-
based sentiment analysis technique. However, the field of multi-
modal sentiment analysis still faces challenges such as inconsistent
cross-modal feature information, poor interaction capabilities,
and insufficient feature fusion. To address these issues, this
paper proposes a cross-modal sentiment model based on CLIP
image-text attention interaction. The model utilizes pre-trained
ResNet50 and RoBERTa to extract primary image-text features.
After contrastive learning with the CLIP model, it employs
a multi-head attention mechanism for cross-modal feature in-
teraction to enhance information exchange between different
modalities. Subsequently, a cross-modal gating module is used
to fuse feature networks, combining features at different levels
while controlling feature weights. The final output is fed into
a fully connected layer for sentiment recognition. Comparative
experiments are conducted on the publicly available datasets
MSVA-Single and MSVA-Multiple. The experimental results
demonstrate that our model achieved accuracy rates of 75.38%
and 73.95% , and F1-scores of 75.21% and 73.83% on the
mentioned datasets, respectively. This indicates that the proposed
approach exhibits higher generalization and robustness compared
to existing sentiment analysis models.

Keywords—Multi-modal; image-text interaction; multi-head at-
tention mechanism; sentiment analysis; cross-modal fusion

I. INTRODUCTION

2023 Global Digital Report [1] indicates that there are
currently 5.16 billion internet users and 4.76 billion social
media users worldwide, accounting for 59.4% of the global
population. The global social media user base has grown by
3.0% year-on-year, equivalent to 137 million people. With the
continuous flourishing development of social networks and
internet-enabled mobile devices, there is a growing diversity of
expressions for emotions or opinions on various topics posted
on social media and various website platforms. This evolution
has transitioned from initial text information to gradually
include multimodal information such as images, audio, and
videos. Consequently, utilizing multimodal feature information
for sentiment analysis has become one of the research hotspots
in recent years [2], and it has been successfully applied in
various potential applications, including decision-making [3],
personalized advertising [4], emotion retrieval [5][6], and other
domains.

Early sentiment analysis (SA) models mainly focused on
text, and manual features were usually designed using lim-
ited human knowledge. Text features can quickly summarize
subjective emotions, but cannot fully describe the highly
abstract nature of emotions. For single-modal approaches,
extreme cases such as irony often posed challenges in meeting

sentiment analysis needs. In recent years, the rise of deep
learning has provided powerful tools for Multimodal Sentiment
Analysis (MSA). MSA leverages massive multimodal data
generated on social media for integrated analysis, combining
various multimodal features. This approach not only enables a
more comprehensive understanding of user emotional expres-
sions but also effectively addresses limitations of single-modal
methods in handling complex emotions, ambiguity, or extreme
cases like irony [7].

However, there are still some shortcomings in multimodal
feature fusion methods. In early multimodal fusion methods,
they either simply concatenate the extracted multimodal fea-
tures [8] or roughly integrate relationships between images and
text on a horizontal feature level [9] to obtain concatenated
or linearly fused feature representations. These methods lack
in-depth exploration of the complex relationships between
multiple modal features. On the other hand, information loss,
redundancy, and noise among different modal features can
affect sentiment judgments. Effectively utilizing the complex
correlations between high-level abstract features and low-
level abstract features across modalities and improving method
fusion effectiveness pose significant challenges in the field of
multimodal analysis [10].

In order to solve the problem of multi-modal model fu-
sion, this paper proposes a Multimodal Sentiment Analysis
model, named CLIP-CA-CG, based on Contrastive Language-
Image Pretraining (CLIP) [11], cross-attention, and cross-
modal gating.The CLIP model maps text and images into
a shared embedding space, making related text descriptions
and image representations in this space closer, modeling at
fine-grained features, and the model uses contrastive learning
and pre-training. This method can learn feature representations
with good generalization capabilities and reduce computational
pressure and speed. Additionally, considering the comple-
mentary role of the contextual information of image text in
sentiment analysis, where the same word may cause different
emotions in different contexts, so this model integrates the
original cross-modal feature information through the self-
attention mechanism. This can extract high-level abstract fea-
tures while maximizing the fusion of environmental features,
which helps the model learn the correlation between differ-
ent modalities to more comprehensively explore multi-modal
emotions.

The remainder of the paper is structured as follows: Sec-
tion II will review related research on sentiment analysis of
unimodal and multimodal models, Section III will provide the
methods proposed in this study, Section IV will introduce the
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experimental analysis and discussion, and finally, conclusion
and future works are provided on Section V.

II. RELATED WORK

A. Single-modal Sentiment Analysis

1) Text sentiment analysis: In the past, conventional tech-
niques for text sentiment analysis primarily utilized dictionary
methods [12]. In this approach, the sentiment scores of in-
dividual words within the text are combined based on pre-
defined values. Text sentiment classification methods can be
roughly divided into two categories, namely dictionary based
models and machine learning models. Hu et al. [13] predicted
the semantic analysis orientation of opinion sentences by using
adjectives as prior positive or negative polarity. Taboada et al.
[14] introduce a dictionary-based method called the Semantic
Orientation Calculator (SO-CAL), which not only utilizes
word dictionaries annotated with semantic orientations but also
incorporates reinforcement and negation factors. Barbosa et al.
[15] proposed a two-step sentiment classification method for
Twitter messages using online tags as training data.

With the evolution of machine learning, Pang et al. [16]
are the first to introduce machine learning methods into text
sentiment classification, including Naive Bayes (NB) [17],
Support Vector Machine (SVM) [18], and Maximum Entropy
Classifier. However, machine learning performance heavily
relies on the quality and quantity of the training set. Inspired by
the success in the field of Natural Language Processing (NLP),
Kim et al. [19] first apply Convolutional Neural Networks
(CNN) in text sentiment classification. Tai et al. [20] con-
sidered the complex structure of text features and introduced
Tree LSTM for sentence sentiment classification. Tang et al.
[17] first combined CNN and LSTM to obtain text sentence
representations, and then used recursive neural networks to
encode their intrinsic connections [21]. Researchers also adopt
various neural network models for sentiment analysis, such as
hierarchical attention network model (HAN) to select impor-
tant feature information [22] and facial expression recognition
network based on enhanced attention [23].

As large models gain prominence, word embeddings and
pre-trained models have seen significant success in sentiment
analysis. Word2Vec [24] maps semantically similar words
to similar vector spaces, while GloVe [25] derives semantic
relationships between words based on global co-occurrence.
ELMo [26] introduces context-aware embeddings, allowing
word representations to vary based on their specific contexts
within sentences. The emergence of BERT [27] further propels
the development of sentiment analysis. Built on self-attention
mechanisms, BERT captures long-range dependencies and
contextual information more effectively. This context-sensitive
representation enables BERT to achieve outstanding perfor-
mance in sentiment analysis tasks, particularly excelling in
handling complex sentence structures and context-dependent
sentiment expressions.

2) Visual sentiment analysis: Visual sentiment analysis has
undergone significant development. In the early stages, image
sentiment analysis involved inferring emotions from low-level
features. For example, Machajdik et al. [28] predict emotions
by extracting features such as texture and color. Borth et al.
[29] used the SentiBank model to identify adjective noun pairs

(ANP) and extract visual semantic information.Yuan et al.
[30] proposed an image sentiment method that utilizes 102
intermediate visual attributes to make the classification results
more interpretable.

In recent years, with the continuous advancement of deep
learning, researchers have explored the coordination of image
color and content in relation to emotional expression. Yang et
al. [31] developed a multi task framework to optimize visual
emotion models by considering mixed images of multiple
emotions. Ruan et al. [32], for instance, employ CNN networks
to extract both content and color features from images. By
introducing attention mechanisms and sequence convolution,
they adeptly model the correlations between content and color
features. To delve deeper into the semantic associations among
visual emotion regions, Zhang et al. [33] utilize a fully
convolutional neural network for image saliency detection.
The CNN selection strategy is employed for filtering, and
ultimately, Transformer encoders [34] are used to analyze
the correlations between different emotion regions, thereby
obtaining a comprehensive emotional output.

B. Multimodal Sentiment Analysis

In the field of multimodal research, psychologists have
confirmed that emotions are primarily influenced by the joint
effects of multimodal data, with visual-text emotional features
being particularly prominent. The same piece of text pairs with
different images may elicit completely opposite emotions. In
early multimodal sentiment analysis, researchers concatenate,
added, or weighted shallow features. Cao et al. [35], for ex-
ample, analyze cross-media sentiment analysis through visual
and textual methods. Yu et al. [36] use a pre-trained CNN
model to extract feature representations and ultimately fused
textual features for sentiment classification.Zhao et al. [37]
proposed an image text consistency driven method that utilizes
text features, social features, low-level and intermediate visual
features, and image text similarity.

As deep learning continues to evolve, mid-term model
fusion and late-stage decision fusion methods are showing
remarkable success. Yang et al. [38] achieve good results by
stacking and gradually pairing different feature vectors on
datasets like CMU-MOSI. Poria et al. [39] detail an approach
using Long Short-Term Memory (LSTM) networks to cap-
ture interdependencies and relationships between utterances in
multimodal sentiment prediction. Huang et al. [40] proposed
a Deep Multimodal Attention Fusion (DMAF) method, which
utilizes both intermediate and post fusion, combining unimodal
features and internal cross modal correlations to improve
accuracy. Liu et al. [41] introduce a shared memory attention
mechanism, capturing interactions between two modalities and
their impact on sentiment using similar features.

In recent years, multimodal tasks have made significant
progress, benefiting from the latest developments in visual
language models. Cheema et al. [42] apply CLIP in multimodal
sentiment analysis, demonstrating its potential as a powerful
baseline for emotion prediction tasks in tweets. Arevalo et al.
[43] propose the Gated Multimodal Unit (GMU) model, which
controls the influence of input modalities on unit activation
levels for data fusion. Gupta et al. [44] introduce a Collabora-
tive Attention Model based on RoBERTa and FiLMed ResNet,
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addressing the issue of visual-text inconsistency through joint
attention mechanisms.

Although multi-modality has made certain progress in
emotional tasks, there is still much room for improvement in
image-text feature interaction. Most existing methods simply
connect features extracted from different modalities, or simply
learn The relationship between images and text leads to bias in
complex tasks. Considering the complex relationship between
the two modalities and the efficiency of the model, we use a
pre-trained model to extract feature networks while capturing
the potential alignment between image regions and text words,
and finally consider the complementary role of individual
modalities in emotion prediction. , situational features are also
integrated into our network.

III. METHODS

This paper proposes a cross-modal sentiment model, CLIP-
CA-CG, based on CLIP image-text attention interaction, as
illustrated in Fig. 1. The model architecture consists mainly
of a feature extraction layer, an interaction attention layer, a
gating fusion layer, and a regression layer. The feature extrac-
tion module utilizes existing methods for extracting features
from images and text, producing feature vectors for each
and a fused feature vector. The interaction attention module
enhances the feature representation of images and text based on
a multi-head attention mechanism, further exploring consistent
emotional features in the image-text pairs. The gating fusion
module aligns high-level abstract image-text features, fuses
global concrete features, and introduces an adaptive cross-
selective block to determine how much interaction information
each component should transmit. Finally, sentiment is com-
prehensively predicted through a multi-layer perceptron and a
Softmax regression layer.

A. Image-Text Feature Extraction

The original input of the model consists of two modalities:
text and image. For the raw textual data, a set of textual data
T can be represented as n words forming T = [T1, T2, ..., Tn],
where n represents the maximum length of the sequence. Con-
sidering the need for a more comprehensive understanding of
context and capturing bidirectional language relationships, this
paper utilizes the pre-trained RoBERTa (Robustly optimized
BERT approach) model to encode the text sequence T. The
advantage of the RoBERTa model lies in further optimizing
the BERT model by adjusting training tasks, datasets, learning
rates, etc. Additionally, unlike BERT, RoBERTa does not add
special token embeddings at the beginning and end of the input
text, enhancing the generalization of text feature extraction.
The textual data is embedded into vectors FT−RoBERTa by
the RoBERTa model, where each word is represented in the
vector space.

FT−RoBERTa = [f1, f2, ..., fx, ..., fN ] ⊆ Rd×N (1)

In the equation: fx represents the contextual semantic
feature of the x-th word, d is the output dimension of the
RoBERTa model (768), and N is the maximum length of the
RoBERTa model’s word encoding.

Then, to summarize the contextual information in the sen-
tence, a Bidirectional Gated Recurrent Unit (Bi-GRU) [45] is

employed. The combination of RoBERTa and Bi-GRU ensures
the learning of text semantics while preserving multi-granular,
multi-level information extraction from the text. The vector
FT−RoBERTa is passed through the Bi-GRU gated units to
further extract and generate the feature hx.

hx = [
−−−→
GRU(fx)⊕

←−−−
GRU(fx)] ⊆ Rd (2)

In the equation: hx is the feature extracted from fx through
Bi-GRU,

−−−→
GRU(fx) denotes obtaining the forward hidden state

information, and
←−−−
GRU(fx) represents acquiring the backward

hidden state information. Finally, the average of the bidirec-
tional hidden state information, hx, is obtained, yielding the
ultimate textual semantic feature FT .

FT = [h1, h2, ..., hN ] ∈ Rd×N (3)

For image features, ResNet introduces a residual network
structure, addressing the issue of gradient vanishing that arises
with increasing network depth. Moreover, deeper network
structures can handle images under different sizes, angles,
and lighting conditions. In this paper, pre-trained ResNet50
is used for feature extraction. Simultaneously, each original
image is cropped to 224×224×3 as input for ResNet50. After
convolution and pooling, the image feature FIn is obtained.
Finally, aligning visual feature FIn and textual feature FT
through a perceptron results in the ultimate image feature FI .

FI = Linear(FIn) (4)

After obtaining the original visual and textual features,
this paper further utilizes Contrastive Language-Image Pre-
training (CLIP) to integrate image and text features, thereby
establishing a close connection between them. The core idea of
CLIP involves using contrastive learning to represent images
and text in a shared embedding space. It maximizes the
cosine similarity of paired image and text embeddings while
minimizing the cosine similarity of unpaired image and text
embeddings. This ultimately brings related images and text
closer in this shared space. The original visual-text features,
after passing through the CLIP model, result in the fused
feature FIT .

FIT = CLIP (FI)⊙ CLIP (FT ) (5)

B. Multi-Head Attention Mechanism

Multi-Head Attention (MHA) is an extended form of the
self-attention mechanism initially introduced in the Trans-
former model. The core idea is to use multiple distinct attention
heads, allowing the model to learn various attention patterns
in parallel, with each head focusing on different parts of
the sequence. Subsequently, by concatenating the outputs of
these heads and projecting them through a linear layer, the
final output of multi-head attention is generated. The input to
the self-attention mechanism consists of key vectors, query
vectors, and value vectors. The mechanism calculates the
similarity between query and key vectors, applies a Softmax
operation to obtain attention weights for weighted summation,
resulting in the final self-attention output as expressed in
Formula (6).

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (6)
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Fig. 1. Overall architecture diagram of the model.

In the equation: Q represents the query matrix, K represents
the key matrix, V represents the value matrix, and dk is the
dimensionality of the query vectors. Multi-Head Attention is
an operation that stacks multiple self-attention mechanisms to
focus on different representations of information at different
positions.

MHA(Q,K, V ) = Concat(head1, ..., headh)W
O (7)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (8)

In the equation: headi represents the calculation of the
i-th attention head, WQ

i , WK
i ,WV

i are the weight matrices
for linear mappings, and WO is the weight matrix for the
linear mapping of the output. Multi-Head Attention typically
includes h attention heads, each with independent weights. The
schematic diagram of the multi-head attention mechanism used
in this paper is shown in Fig. 2.

By utilizing the image-text features from CLIP, we can
obtain more comprehensive global information. In this study,
we choose the fusion feature FIT as the main modality for
multi-head attention, while visual feature FI and text feature
FT serve as secondary modality inputs. The main modality
learns the sequential information of the secondary modality
and ultimately improves the convergence speed and expressive
capability of the model through forward propagation. The final
output yields feature vectors Fimage−IT and Ftext−IT .

Fimage−IT = LayerNorm(FI +MHA(QI ,K, V )) (9)

Ftext−IT = LayerNorm(FT +MHA(QT ,K, V )) (10)

Fig. 2. Principle diagram of multi-head attention mechanism.
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C. Cross-modal Gating Fusion

The cross-modal joint feature vector is generated through
the interaction and fusion of features from two modalities. It
allows vector features to pass fragmentary messages across
both modalities for cross-modal interaction. However, in prac-
tice, there are still issues such as information redundancy, loss,
noise, and region misalignment. To overcome these drawbacks
and fully utilize the complementary information of modality
correlations contained in the joint features, this paper further
proposes a cross-modal gating fusion module. This module
adaptively controls the fusion strength through model training
to obtain multi-modal fusion features by concatenating them.
Considering the significant role of environmental information
in sentiment analysis, where the same object may evoke
different emotions in various text or visual contexts, it is
essential to supplement the fusion with the original image and
text features. The structure of the cross-modal gating fusion is
illustrated in Fig. 3.

Fig. 3. Cross-modal gated fusion structure diagram.

Firstly, the feature vectors Fimage−IT and Ftext−IT ob-
tained through multi-head attention are concatenated to achieve
the weight adjustment of joint features. This preserves ef-
fectively correlated information in the features, ultimately
obtaining the complementary information feature FVT from
both, as shown in Formula (11).

FV T = [Fimage−IT , Ftext−IT ] (11)

To balance obtaining superior global feature information
and the output from higher layers, the output obtained from the
features FV T and the globally extracted features FIT by CLIP
are used as inputs for fusion. After concatenation and non-
linear transformation, the final mixed visual-textual feature
information Fmix is obtained.

Fmix = σ(Concat(FIT , FV T ), Norm(FIT , FV T )) (12)

In the equation, the σ function represents the fusion of con-
catenated visual-textual features and non-linearly transformed

visual-textual features through trainable parameters. Finally,
considering the complementary role of contextual information,
we combine the single-modal contextual information feature
with the mixed feature Fmix, and ultimately generate the final
feature F through an MLP.

F1 = MLP (FI ⊕ Fmix) (13)

F2 = MLP (FT ⊕ Fmix) (14)

F = λF1 + (1− λ)F2 (15)

In the equation, λ represents the concatenation operation,
which is used to control the balance between aggregating
visual and textual features.

D. Multimodal Sentiment Classification

The ultimate goal of sentiment analysis is to accurately
classify the emotions expressed in multimodal data, such as
Positive, Neutral, Negative, etc. To achieve this, the mul-
timodal fusion feature F obtained through the multi-head
attention and fusion module is fed into a fully connected
layer and a Softmax layer, ultimately producing a probability
distribution y for possible sentiment labels.

y = Softmax(Linear(F )) (16)

In the equation: The Linear network represents the fully
connected layer, and the classification results are obtained
through Softmax. For model training, this paper utilizes the
Adam optimizer to train the model, minimizing the cross-
entropy loss.

IV. EXPERIMENTAL ANALYSIS

A. Datasets

In this study, to validate the sentiment analysis performance
of the CLIP-CA-CG model, we utilize two publicly available
datasets, MVSA-Single and MVSA-Multi, established by Niu
et al. [46]. These datasets are collected from the popular social
media platform Twitter. The MVSA-Single dataset comprises
5129 pairs of images and text, while the MVSA-Multi dataset
includes 196,000 pairs of images and text. The MVSA project
provides standardized benchmarks, representing a significant
development in the multimodal domain. The data is labeled
with sentiment polarity, including positive, neutral, and nega-
tive emotions.

For a fair comparative study, we conduct preprocessing on
both datasets. During this process, we remove cases where
there is emotional inconsistency between the image and text
labels, such as one label being positive (or negative) while
the other is neutral. Such cases are considered as having
a positive (or negative) sentiment label. The resulting new
datasets are denoted as the revised MVSA-Single dataset and
revised MVSA-Multi dataset, as shown in Table I.
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TABLE I. MVSA-SINGLE AND MVSA-MULTI DATASETS

Dataset Positive Neutral Negative Total

MSVA-Single 2683 470 1358 4511

MSVA-Multiple 11318 4408 1298 17024

B. Implementation Details

In the experiments, we randomly divide the new datasets
into training, validation, and test sets, with a data split ratio
of 8:1:1. Regarding the experimental environment and param-
eters, the proposed model is implemented using Python 3.7,
developed in the PyTorch 1.9.0 framework, and executed on
CUDA 12.0. To eliminate external influences, all experiments
are conducted on a server with 64GB of memory and an
NVIDIA GeForce RTX 4090 GPU.

In terms of hyperparameter configuration for the model,
this experiment employs the cross-entropy loss function and
mean squared error loss function for computing the loss of
classification and regression tasks, respectively. Adam is uti-
lized as the optimizer for the CLIP-CA-CG model, initialized
with a learning rate of 0.0001, executed over 100 epochs, with
a 10-fold reduction in learning rate every 10 epochs, and a
weight decay of 1e-5. For visual encoding,we utilize the pre-
trained ResNet50 to extract image features, taking as input
pre-processed image information in the form of a 224×224×3
matrix. In text encoding, we employ pre-trained RoBERTa
for extracting text features, where the dimensionality of the
extracted word vectors is 768, and subsequently align them
for input into the model network. Given the disparate sample
sizes in the two datasets, the batch size is set to 64 for the
MVSA-Single dataset and 128 for the MVSA-Multi dataset.
The initial hyperparameter settings are configured as shown in
Table II.

TABLE II. EXPERIMENTAL PARAMETER ENVIRONMENT

Parameter Value

Batch size 64 / 128

Learning rate 0.0001

Optimizer Adam

Dropout 0.3

Epochs 100

Text dimension 768

Finally, to validate the model’s effectiveness, comparative
experiments are conducted, wherein the proposed model is
compared with other mainstream single-modal and multi-
modal fusion experiments. Performance evaluation metrics
include accuracy and F1−score (F1), calculated as follows.

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

F1 =
2× P ×R

P +R
(19)

Acc =
TP + TN

TP + TN + FP + FN
(20)

In the equation: TP represents true positive, TN represents
true negative, FP represents false positive, FN represents false
negative, P represents precision, and R represents recall.

C. Model Comparison Experiment

In this study, we compare the proposed model with the
following benchmark models in terms of accuracy and F1
score. SentiBank and SentiStrength [47] models rely solely
on traditional statistical features and are unable to effectively
extract key intrinsic features from both images and text,
resulting in lower accuracy. Compared to other models, CNN-
Multi [48] extracts text and image features separately using
two individual CNNs. Benefiting from the powerful feature
extraction capability of deep neural networks, this enhances
the expressiveness of emotions, and the final prediction is
made by connecting these features. The DNN-LR model
[49] adopts transfer learning by using pretrained models and
utilizes logistic regression for decision analysis. The Co-
Memory model [9], introducing a fusion module in sentiment
analysis, promotes feature connections between modalities.
The MVAN model [38] enhances the semantic image-text
features by employing a memory network module on the basis
of a multi-view attention network, further improving dataset
accuracy. The CLMLF model [50] utilizes contrastive learning
to enhance the representation capability of image-text features,
fostering relationships between images and text, thus improv-
ing model accuracy. The ITIN model [51] introduces cross-
modal alignment operations and an adaptive cross-modal gate
fusion module, significantly improving accuracy in sentiment
analysis tasks.

TABLE III. COMPARATIVE EXPERIMENTS OF SEVERAL MODELS

Model
MVSA-S MVSA-M

Accuracy (%) F1 (%) Accuracy (%) F1 (%)

SentiBank&SentiStrength 52.05 50.08 65.62 55.36

CNN-Multi 61.20 58.35 66.39 64.19

DNN-LR 61.42 61.03 67.86 66.33

Co-Memory 70.51 70.01 69.92 69.83

MVAN 72.98 72.98 72.36 72.30

CLMLF 75.33 73.46 72.00 69.83

ITIN 75.19 74.97 73.52 73.49

CLIP-CA-CG (Ours) 75.38 75.21 73.95 73.83

As indicated in Table III, the proposed CLIP-CA-CG model
achieves the best performance compared to other benchmark
models on both the MVSA-S and MVSA-M datasets. This
suggests that our model can effectively exploit the correlations
between different modalities. Additionally, by preprocessing
the model, we can effectively reduce the difficulty of model
training. Finally, the model considers the adjustment of weights
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based on joint features between modalities and environmental
features, thus achieving more accurate sentiment classification.

Compared to the SentiBank and SentiStrength models, both
SentiBank and SentiStrength models exhibit inferior overall
performance. This is attributed to the conventional feature
statistics often failing to comprehensively encapsulate the
intrinsic features of multimodal information, leading to missing
or erroneous feature information inputted into the model,
consequently resulting in inaccurate model predictions.

The CNN-Multi, DNN-LR, and Co-Memory models all
utilize deep learning for feature extraction, which facilitates
the extraction of data features. It is noteworthy that the Co-
Memory model introduces a fusion module into sentiment
analysis, resulting in a significant improvement in model
accuracy. This suggests that effectively integrating image and
text features is a viable approach for enhancing the accuracy
of multimodal sentiment analysis. Although this approach
can learn invariant or specific representations across multiple
modalities, it also brings about issues such as excessively
redundant feature representations, thereby affecting the effec-
tiveness of fused features.

The MVAN, CLMLF, and ITIN models all incorporate
attention mechanisms, which, as observed from the results,
further enhance model performance. This indicates that atten-
tion mechanisms can focus on more valuable and contributory
features. Additionally, considering issues such as feature fusion
across modalities and feature redundancy, methods such as
contrastive learning and adaptive cross-modal gating fusion
have also, to some extent, improved model performance.

Building upon the strengths and weaknesses of baseline
models, the proposed CLIP-CA-CG model first enhances the
representation capability of image-text data by leveraging pre-
trained vision and language models along with contrastive
learning techniques. Concurrently, it incorporates a multi-head
attention mechanism to capture and express image-text features
at a finer granularity. Finally, by exploiting the interaction
between images and text, the model utilizes a fusion inter-
action module to extract both global and focal features of
image-text features. These features are complemented with
environmental features for more accurate sentiment prediction.
Experimental results demonstrate superior performance across
public datasets.

D. Ablation Experiment

To validate the performance improvement of each module
in multimodal sentiment analysis, we conduct a series of exper-
iments focusing on image and text feature extraction methods,
feature fusion methods, etc., to verify the effectiveness of
the CLIP-CA-CG model. The details of the model ablation
experiments are explained below.

• Vonly and Tonly: Represent the evaluation of sentiment
analysis using only the visual modality and only the
text modality, respectively.

• CLIP-CA-CG w/o Clip: Remove the Clip image-text
contrastive model from the complete model, eliminate
further feature extraction and fusion, and directly
input the preliminary extracted image features and text
features into the multi-head attention module.

• CLIP-CA-CG w/o CA: Remove the multi-head atten-
tion mechanism from the complete model, and directly
input the obtained joint features along with the image
and text features into the fusion module.

• CLIP-CA-CG w/o CG: Remove the cross-modal in-
teraction fusion module from the complete model. In-
stead, use a simple concatenation method to combine
multimodal data and process the fused features with
an encoder.

TABLE IV. ABLATION EXPERIMENTS ON MSVA-SINGLE DATASET

Model Accuracy (%) F1 (%)

V only 63.04 62.76

T only 71.87 71.19

CLIP-CA-CG w/o Clip 73.65 73.36

CLIP-CA-CG w/o CA 72.15 71.56

CLIP-CA-CG w/o CG 72.41 71.98

CLIP-CA-CG (Ours) 75.38 75.21

According to the experimental settings, we conduct abla-
tion experiments on the MSVA-Single dataset. As shown in
Table IV, proposed CLIP-CA-CG model performs the best, and
the absence of any modality or module results in a decrease
in model performance. The Vonly and Tonly models, which
extract features and make sentiment judgments using only a
single modality, have the lowest accuracy compared to other
experiments. The accuracy of the text model is 71.87, while the
accuracy of the image model is only 63.04. This indicates that
in the field of sentiment analysis, text has a stronger expressive
capability than images. Additionally, incorporating multimodal
features can complement information, improving the perfor-
mance of sentiment analysis models. This provides a solid
foundation for subsequent multimodal fusion experiments.

CLIP-CA-CG w/o Clip, CLIP-CA-CG w/o CA, and CLIP-
CA-CG w/o CG models respectively remove the Clip con-
trastive learning module, the multi-head interaction attention
module, and the gate fusion module. The experimental results
show that the removal of these three modules led to varying
degrees of performance degradation in all evaluation metrics.
This indicates that these three modules have a promoting effect
on the proposed CLIP-CA-CG model.

Specifically, the CLIP-CA-CG w/o Clip model, lacking
the utilization of the CLIP pre-trained model, suffers from
partial information interaction loss in the early feature ex-
traction, affecting the model’s feature fusion to some extent.
The CLIP-CA-CG w/o CA model, due to the removal of
the attention mechanism, hinders the effective capture of
complex relationships between images and text. It fails to
extract information components between modalities, making
it challenging to ensure the model’s robustness at a fine-
grained level. The CLIP-CA-CG w/o CG model, obtaining
fusion features through direct concatenation, often experiences
information loss, redundancy, and noise, leading to a reduction
in model accuracy.
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V. CONCLUSION

Addressing the challenges of insufficient inter-modal infor-
mation, information redundancy, and low effectiveness of fused
features in existing multi-modal sentiment analysis, this paper
proposes a cross-modal sentiment model, CLIP-CA-CG. The
paper first elaborates on the overall architecture of the CLIP-
CA-CG model. This model utilizes pre-trained RoBERTa and
ResNet50 models to extract textual and visual features. Sub-
sequently, the obtained features are further processed through
CLIP contrastive learning to acquire deeper-level features. The
model then employs multi-head attention mechanisms and
cross-modal fusion modules for global feature, fine-grained
feature, and contextual feature extraction, ultimately the con-
trol feature weights are input to the fully connected layer
for sentiment analysis. In the experimental setup, this paper
conducts comparative experiments and ablation experiments
with several commonly used multi-modal sentiment analysis
models on the public datasets MSVA-Single and MSVA-
Multiple. The experimental results show that the accuracy of
the CLIP-CA-CG model reaches 75.38% and 73.95%, and the
F1 score reaches 75.21% and 73.83%, respectively, validating
the generalization and robustness of the CLIP-CA-CG model.

The paper also has some limitations. Due to constraints
on data resources, we did not further validate the robust-
ness of the model using other publicly available datasets.
Additionally, only two modalities, namely image features and
text features, were utilized for experimentation, which might
lead to misjudgment in complex scenarios. In future research,
we intend to incorporate more modalities to form a more
sophisticated multi-modal sentiment analysis model, aiming to
further improve the accuracy and generalization of sentiment
analysis.
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