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Abstract—Intensive care units commonly utilize mechanical
ventilators to treat patients with different medical conditions,
which are crucial for patient care and survival. ICU ventilators
have evolved through four distinct generations, each display-
ing unique features. Despite progress made since the 1940s,
contemporary designs are insufficient to meet the increasing
needs of patients and hospitals. Malfunctions in mechanical
ventilators pose significant dangers to patients, highlighting the
importance of focusing on their safety, security, precision, and
dependability. Our study aims to address the significant issue
at hand. Furthermore, the IoT industry has garnered significant
attention because of rapid progress in smart devices, sensors, and
actuators. The healthcare industry has seen a notable increase
in health data as a result of the growing utilization of IoT and
cloud computing technologies. To enhance growth, new models
and distributed data analytics strategies must be developed to
fully utilize the value of the vast datasets generated, including the
incorporation of embedded machine learning. The study focuses
on conducting Pareto and Failure Modes and Effects Analysis
(FMECA) on ventilators in a specific hospital’s ICU, specifically
those manufactured by the same company and unit. The analysis
aims to identify the most critical and failure-prone component.
Subsequently, we propose an IoT-focused framework for a pre-
dictive maintenance system implemented at the component level.
The architecture comprises a monitoring framework and a data
analytics module to predict potential system failures in advance,
enhancing overall reliability.

Keywords—Internet of things; predictive maintenance; embed-
ded Machine learning; data analytics; failure modes; mechanical
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I. INTRODUCTION

Nowadays, an average to large-sized hospital houses
around 10,000 different types of medical devices, and one
of the most pressing challenges for healthcare institutions
throughout the world is to guarantee the safety of these
devices and manage the risks connected with their use. Medical
devices are tools or machinery used to detect, monitor, treat, or
prevent illness or other disorders [1]. Providing health services
through the use of diagnostic and therapeutic technologies is an
essential component of health care, particularly in hospitals. In
addition to being necessary for safe and effective patient care,
medical equipment has a substantial impact on the income
and consequently the viability of healthcare institutions [2].
Their rapid advancement has considerably benefited the health

of individuals and society. This technological advancement
has increased patients’ survival in the face of sickness or
injury, as well as considerably improved their life quality
via improved diagnostic and therapy outcomes [3]. However,
without effective maintenance management, the delivery of
healthcare services to communities suffers dramatically. Med-
ical equipment maintenance management is critical to ensur-
ing that a machine performs by manufacturer specifications
and ensures the safety of patients and users [4]. Inadequate
maintenance of medical equipment causes downtime, reduces
device performance, and wastes costs and resources. As a
result, medical equipment requires both scheduled and un-
scheduled maintenance throughout its useful life and close
monitoring by healthcare administrators [5]. Hospitals should
ensure that medical equipment is kept in working order, is
safe, accurate, and reliable, and functions at the appropriate
level of performance successfully. Therefore, the ultimate goal
of maintenance is reliability and safety. It should always be
safe for both patients and users [6]. To that aim, the World
Health Organization (WHO) specifies a standard regulation
for periodic maintenance of medical devices that includes the
rate of failure of specific types of replaceable components
(e.g. batteries, valves, pumps, and seals) to assure device
dependability and safety [7].

Thanks to digitalization in the healthcare domain, the
generated health-related data have grown exponentially in the
past decades with the increasing use of the Internet of Things
(IoT) and cloud computing technologies in this field. As a
result of this digitalization, a large volume of data is generated
from these various IoT sources and information services.
This motivates the health business to create new models and
distributed data analytics approaches to maximize the value
of the generated data [8]. In addition to this, advancements
in information and communications technology, big data tech-
nologies, and analytics tools were the key elements in realizing
the transition from traditional maintenance approaches to pre-
dictive maintenance (PdM) [9]. The IoT sector has attracted
substantial interest due to the rapid pace of technical break-
throughs in smart device, sensor, and actuator technologies.
A multitude of these IoT devices can potentially generate
significant amounts of big-data streams which are not only too
voluminous but also too fast and complex to be processed and
stored using traditional data analytics approaches. Therefore,

www.ijacsa.thesai.org 932 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 2, 2024

predictive maintenance systems should be highly scalable,
resilient, and fault-tolerant to process and store big data in
an effective manner [10]. Through the use of information and
communication technologies, specifically intelligent devices
(such as IoT sensors, edge devices, and computing), data
collection has increased as a result of the incorporation of
autonomous and smart systems where data and advanced data
analytics (i.e., big data, artificial intelligence (AI) / Machine
Learning (ML)) can be used [11]. With this development, PdM
solutions, such as those for estimating remaining usable life,
detecting anomalies, and monitoring machine health (condi-
tion), also increased. PdM entails making optimum decisions
to sustain a system’s capacity and functioning by monitoring
its performance in real-time using huge data streams provided
by the system. The use of predictive maintenance approaches
enables us to reduce operational maintenance costs for medical
devices, enhance operational activity without breakdowns, and
thereby improve healthcare quality.

In other words, PdM is described as a set of procedures
used to assess the state of equipment and predict future
failures. These estimations are then utilized to schedule main-
tenance activities through smart scheduling of maintenance
procedures, which aids in preventing or at least minimizing the
impacts of unanticipated breakdowns. PdM requires employing
analytical tools to analyze machine-generated data to get
valuable insights. Further, create a machine learning (ML)
model using this data to forecast upcoming failures. Sensors
with limited data processing capabilities are used for data
collecting. Due to this, edge devices were developed and are
now capable of processing data, cleansing data, and many other
functions in addition to acting as sensors [12]. PdM techniques
are very similar to medical diagnostic techniques. A symptom
appears whenever a human body is experiencing a problem.
The information is provided by the nervous system; this is
the detection stage. Pathological tests are also performed if
necessary, to diagnose the problem. On this basis, appropriate
treatment is suggested. Similarly, defects in a machine always
produce a symptom in the form of vibration or some other
parameter. However, on machinery systems with human per-
ceptions, this may or may not be easily detected.

The rest of the paper is organized as follows; in Section
II, the maintenance strategies are described and the related
works are reviewed. Section III describes the functioning of the
mechanical ventilator. Section IV addresses the study case and
discusses the proposed architecture for predictive maintenance
in the big-data era. The opportunities and challenges of the
proposed architecture are discussed in Section V. We conclude
paper and give directions for future research in Section VI.

II. BACKGROUND AND RELATED WORKS

A. Background

In light of the technological advances in the medical field,
medical equipment has become widely used in all aspects
of health care, including prevention, screening, diagnosis,
monitoring, and therapeutics, as well as rehabilitation. It is now
nearly impossible to provide health care without them. Med-
ical equipment, unlike other types of healthcare technologies
(such as drugs, implants, and disposable products), requires
maintenance (both scheduled and unscheduled) throughout its

useful life. Inadequate and improper maintenance and safety
procedures have always been the leading cause of major
incidents frequently involving patients that result in serious
injuries or deaths.

Maintenance can be defined as the function of keeping a
machine, or system (whether simple or complex) in working
order by using it properly, repairing broken parts or com-
ponents, or replacing some of the broken parts so that it
is available and fit for the intended purpose whenever the
need arises. A maintenance strategy is a methodical approach
to device upkeep that includes actions like ”identification,
investigations, and execution of many repairs, replace, and
inspect decisions”. According to [13] a maintenance strategy
includes a set of policies and actions that are used to “retain” or
“restore” equipment as well as the decision support system in
which maintenance activities are planned. As the sophistication
and cost of medical equipment have increased, so has the
complexity and cost of its maintenance over the last few
decades.

Maintenance philosophy has always evolved in pari-passu
with the ever-changing technological innovations in designing
simple machines and equipment that have now metamorphosed
into complex, sophisticated, and indispensable systems. Main-
tenance strategies have evolved gradually, and the process is
still ongoing. Over the last two decades, maintenance strategies
and reliability engineering techniques have been significantly
improved, and they have been successfully applied in many in-
dustries to improve the performance of equipment maintenance
and management. Maintenance strategies can be categorized as
first, second, third, and recent generations, as depicted in Fig.
1.

Corrective maintenance (CM) [14] is a reactive mainte-
nance policy that is applied following a machine malfunction.
The following sentence serves as the foundation for the concept
of corrective maintenance: Fix it when it breaks. CM is
classified as first generation as it was the standard practice
until the 1960s when preventive maintenance (PM) concepts
emerged and gained public recognition.

PM [15] categorized as second generation, entails inspect-
ing and maintaining equipment while it is in operation to
reduce the likelihood of a breakdown. Preventive maintenance
can be scheduled in advance (time-based schedule) or as
needed (usage-based schedule). While this strategy reduces
failures thus improving equipment efficiency, reducing down-
time, and extending the life of your equipment by ensuring
it is always in good working order. The issue with the PM
strategy is that it can be excessively proactive. Because you
are following a standard timetable, you can schedule a part
replacement well in advance of when it is required. This will
increase the cost of maintenance.

Condition-based maintenance (CBM) [16] classified as
third generation, emerged in the second half of the 1980s
as a result of sensor and condition monitoring technology
development. To reduce unnecessary scheduled tasks, this
strategy limits the number of times maintenance activities
are initiated to when there is clear evidence of deterioration.
Monitoring the condition of the equipment and performing
necessary maintenance are all part of CBM. When com-
pared to preventive maintenance, there is no need to be
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concerned about performing condition-based maintenance too
soon. When something goes wrong but before it stops working,
sensors notify you that maintenance is required at the optimal
time. Condition-based maintenance is also known as condition-
based monitoring because it requires regular monitoring of
your equipment. The major drawback is that you can’t plan
for maintenance because you won’t realize you need it until
the changes happen.

The concept of prognostics, which deals with fault predic-
tion before it occurs, was recently introduced to the proactive
maintenance community in recent years. In this context, PdM
[17] is a CBM policy that incorporates prognostics into its
decision-making process. As a result, PdM contains more
information about asset degradation, such as the remaining
useful life (RUL). PdM represents the recent generation of
maintenance philosophies.

Fig. 1. Evolution through time of maintenance strategies.

B. Related Works

Several articles in the literature propose a system archi-
tecture for predictive maintenance in the healthcare domain.
Two different architectures for PdM systems were proposed in
2013. D. Andriţoi, C. Luca, C. Corciovă, and R. Ciorap, have
developed a novel application with a robust evaluative facility.
Using the medical equipment maintenance records stored in
this application’s database, a mathematical model for predic-
tive maintenance can be developed [18]. A second method was
proposed by M. Ullrich, K. Ten Hagen, and J. Lässig, who
described a new approach for categorizing maintenance visits
according to PdM [19]. To enhance medical device decision-
making, the following study [20] details a comprehensive
PdM management system that makes use of Information and
Communication Technologies (ICT) and predictive analysis
tools. This paper [21] proposes the following guidelines for a
PdM model: It is important to 1) conduct daily QA treatment;
2) transfer and automatically interrogate the resulting log
files; 3) analyze daily operating and performance values using
statistical process control (SPC) once baselines are established;
4) determine if any alarms have been triggered; and 5) notify
facility and system service engineers. A significant part of
this research involved the development of software modules
to automate the interrogation of trajectory log files, perform
the SPC evaluation, and display the results in a graphical
dashboard interface.

In 2018, [22] and [8] outline a PdM architecture for
medical devices that makes use of modern big data, cloud,
and IoT technologies. The following work [23] also delves
into the challenge of healthcare organizations’ maintenance
by examining an autonomous integrity monitoring approach
for devices that transmit massive amounts of real-time data

via the Internet of Things. By combining an integrity moni-
toring framework with a data analytics module, the proposed
architecture provides full visibility into medical devices and
permits the anticipation of future problems.

In [24] a theoretical design employing Internet of Things
technology is proposed. Furthermore, infrared cameras, such
as those used for infrared thermal imaging, which have the in-
credible capacity to observe things that conventional diagnostic
instruments cannot, are proposed as an effective tool for PdM
strategy in the following paper [25]. Finally, [26] proposes
a methodology that takes into account data sets, features,
evaluation strategies, prediction strategies, ML algorithms, and
performance evaluation.

III. MECHANICAL VENTILATOR

A. Evolution of Mechanical Ventilator

A mechanical ventilator is a device that facilitates or
replaces spontaneous breathing, it aids in respiration or takes
breaths for the patient. Mechanical ventilation is lifesaving
when natural breathing is ineffective or has ceased. The
patient’s ventilation is increased by the ventilator, which
fills their lungs with oxygen or air and oxygen. Mechanical
ventilators have made significant advancements since their
introduction, in addition to their use in the intensive care
unit (ICU), Mechanical ventilators have many applications
inside and outside of hospitals. Ventilators are crucial in the
management of patients undergoing general anesthesia inside
the operating room, in patients’ homes for extended treat-
ment, and the transporting vehicles. This was accomplished
by combining advances in our understanding of respiratory
physiology, pathophysiology, and clinical patient management
with technological advancements in mechanical, electronic,
and biomedical engineering. New devices and an increasing
number of ventilation modes and strategies are introduced to
improve outcomes, patient–ventilator interactions, and patient
care in the present day. The primary indication for mechani-
cal ventilation is difficulty in the patient’s ventilation and/or
oxygenation due to any respiratory or other condition. The
objectives of mechanical ventilation are to provide adequate
oxygen to patients with a limited vital capacity, to treat
ventilatory failure, to reduce dyspnea, and to allow breathing
muscles to relax. There are two types of ventilation: Positive
pressure ventilation (PPV) involves forcing air into the lungs
through the airways, while negative pressure ventilation (NPV)
involves drawing air into the lungs.

The use of assisted ventilation dates back to biblical times.
In the early 1800s, however, mechanical ventilators in the
form of NPV first appeared. The negative-pressure ventilator
was the standard method of providing respiratory support
throughout the latter half of the 19th century and the first
half of the 20th. These devices were capable of applying
alternating subatmospheric pressure around the body and were
used to restore ventilation in patients by expanding the chest
wall. The initial description of a negative pressure ventilator
involved a full-body ventilator. In 1838, the ”tank ventilator”
was described for the first time by the Scottish physician
John Dalziel. It consisted of an airtight box in which the
patient was held in a seated position. By manually pumping
air into and out of the container, negative pressure was created.
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Sauerbrach even created a negative-pressure operating chamber
in 1904. Except for the head, the patient’s body was maintained
within the chamber. Numerous other types of negative-pressure
chambers, such as the ”raincoat” and the ”chest cuirass,” were
developed and used with varying degrees of success over time.

In the 1960s, however, there was a shift away from
negative-pressure ventilation due to several factors. For ex-
ample, access to the patient was limited, and ”tank shock”
was a recurring problem with full-body ventilators. How-
ever, mechanical ventilation became widespread only after
the introduction of positive-pressure ventilation during the
resurgence of poliomyelitis in the 1950s. This global pandemic
has limited the availability of cabinet ventilators. To overcome
this challenge, Bjorn Ibsen, a Danish anesthesiologist, utilized
a modified anesthetic circuit with a squeezed bag to provide
intermittent positive pressure ventilation (IPPV).This demon-
strated a dramatic reduction in mortality in patients manually
ventilated via tracheostomy led to the development of the
intensive care unit.

In 1940, the first positive-pressure mechanical ventilators
became commercially available. Even though they possessed a
high level of sophistication, they could only deliver a predeter-
mined tidal volume at a given respiratory rate (volume-control
ventilation mode) and had no or very limited monitoring
capabilities for ventilation variables.

The field of respiratory physiology had already established
its foundations and was expanding rapidly at the time. In
1903, Dixon and Brodie introduced the application of mathe-
matical modeling to describe the relationships between flow
and pressure, which marked the beginning of the mechan-
ics of breathing. They modeled the lung as resistance and
compliance. In 1946, Rahn et al. presented pressure–volume
diagrams of the lung and thorax as well as the concept of
relaxation curves, laying the groundwork for the development
of respiratory energetics. These and other studies provided the
physiological foundation that led to the clinical application of
positive-pressure ventilation.

Beginning in the early 1970s, ventilators began incorporat-
ing more advanced monitoring of flow and pressure variables
due to advances in electronics. Improvements in monitoring
also permitted the use of real-time variables to control the
action of the machine, with the intermittent mandatory venti-
lation mode paving the way for the development of assisted
mechanical ventilation as a means to wean patients from
volume-controlled ventilation.

Beginning in the early 1980s, the introduction of micro-
processors in mechanical ventilators led to the introduction
of improved technologies for monitoring ventilation and lung
conditions, as well as the introduction of new, advanced
ventilation modes.

From the original ventilators of the 1940s to the present
day, there have been four generations of ICU ventilators, each
with features distinct from the previous generation.

B. Operation Principle of Mechanical Ventilator

Mechanical ventilation (MV) functions by applying a pos-
itive pressure breath and is dependent on the airway system’s
compliance and resistance. During spontaneous inspiration,

the lung expands as transpulmonary pressure (P) is primarily
generated by the inspiratory muscles’ negative pleural pressure.
During controlled mechanical ventilation, on the other hand,
a positive airway pressure forces gas into the lungs, resulting
in a positive P. The tidal volume (VT) is the volume of air
that enters or leaves the lungs during each respiratory cycle.
Physiologically, VT is dependent on a person’s height and
gender and ranges from 8 to 10 mL/kg of ideal body weight.
Multiple modes of MV delivery exist, including mandatory
mode and assisted mode. In the assisted mode, the patient’s
inspiratory effort activates the MV to deliver the breath, while
P is the product of negative pleural pressure and positive
alveolar pressure. The most prevalent modes of MV include:
Volume-limited assist control ventilation (VAC), Pressure-
limited assist control ventilation (PAC), and Synchronized
intermittent mandatory ventilation with pressure support ven-
tilation (SIMV-PSV).

Once a ventilation strategy has been determined, it should
be administered to the patient in the most precise manner
possible. To accomplish this, the machine must accurately
detect all variables that define the breathing pattern and adapt
its action in real-time. Modern ventilators accomplish this
by combining sophisticated data processing algorithms with
cutting-edge actuators, sensors, and digital electronics.

Fig. 2. Representative illustration of the mechanical ventilator functioning.

Fig. 2 depicts a representative illustration of the mechanical
ventilator functioning, with the operation principle including:

1) Pneumatic unit: The pressure source provides the en-
ergy necessary to overcome the elastic and resistive load
imposed by the patient’s respiratory system and is used to
reduce the patient’s work of breathing. The pressurized air is
mixed with the appropriate amount of oxygen by the blender
and delivered to the patient through fast valves that modulate
the amount of gas flowing into and out of the patient. In some
modern ventilators, instead of using valves, a fast-response,
brushless-driven turbine functions as a variable pressurized air
source, making the device independent of centralized medical
compressed air distribution while still delivering excellent
performance.

2) Sensors: In contemporary mechanical ventilators, all
relevant ventilation parameters like pressure, flow, and
FiO2(The fraction of oxygen in the inspired air or gas that
is being provided from a ventilator) are measured by sen-
sors that provide information to the control unit so that the
valves/turbines can be adjusted in real time to deliver the
desired ventilation mode.
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IV. STUDY CASE : CARESCAPE R860

A. Objective

The ICU ventilator is characterized by its long-term use.
Indeed, it must be able to act continuously on the same
patient for multiple days. Any ICU ventilator malfunction
has the potential to be catastrophic and fatal for patients.
Despite the presence of alarm systems, continuous monitoring
is required to minimize machine-related errors. Therefore, this
study aims to propose an IoT-based architecture for predictive
maintenance of the CARESCAPE R860 ICU ventilators.

The primary objective of our architecture surpasses the
limitations of a single healthcare facility. The objective of
this study is to establish the potential for widespread imple-
mentation of the suggested approach on CARESCAPE R860
ICU ventilators within a wide range of healthcare institu-
tions. To establish a comprehensive and adaptable predictive
maintenance (PdM) system, our objective is to develop a
flexible framework that can effectively accommodate diverse
hospital structures. This endeavor is driven by the goal of
establishing a centralized approach that effectively harmonizes
with a multitude of healthcare settings.

This study was conducted on a collection of CARESCAPE
R860 ICU ventilators located in various medical centers.

B. General Description of the CARESCAPE R860

The CARESCAPE R860 is a sophisticated ICU ventila-
tor that integrates modern technology with a user-friendly
interface, as shown in Fig. 3. The icons in the interface
reflect customizable depictions of historical patterns, patient
status, and clinical decision assistance for future patient needs.
The ventilator includes a display, ventilator unit, trolley with
optional AC plug, optional EVair compressor, and module bay
with optional gas module.

Users have complete control over the system setting due
to the wide range of performance options provided. This com-
prehensive ventilator system includes breathing, monitoring,
and the ability to connect with central monitoring systems.
The user-friendly touch screen allows quick and easy access
to information and operations, catering to adult, pediatric, and
neonatal patients.

Fig. 3. Overview of the ICU ventilator.

1) Screen user interface: The interactive panel screen
displays the patient’s and ventilator’s current status. Even
during normal ventilation, all modes, controller, alarm, and
monitoring windows are accessible directly from the main
screen. The menu, the menu for the current patient, alarm
management, and the user’s favorite procedures are grouped
at the top of the screen in the user interface. The status of the
patient (the airway pressure bar) and the workspace/monitoring
area are located in the center of the display. At the bottom of
the screen are the navigation bar, message areas, battery status,
standby button, and shortcut keys.

2) Ventilation unit: The ventilation unit is located on the
front of the ICU ventilator, below the screen user interface,
and is equipped with all the necessary ports for connecting
the various breathing circuit accessories.

3) Pneumatic circuit: The pneumatic circuit of the venti-
lator provides patient gases from compressed air and oxygen
sources. Two distinct inspiratory channels (air and O2) are
incorporated into the system to provide dynamic O2 percentage
mixing control.

4) Electronic circuit: The electronic unit contains the vari-
ous electronic circuits used to control and adjust the pneumatic
system, the monitoring represented by the ventilator’s alarm
set, and the machine user interface.

C. Pareto Analysis for the CARESCAPE R860

The ABC method or Pareto analysis permits the analysis of
the most significant malfunctions. It enables us to assert that
20% of the causes are accountable for 80% of the problems
encountered and, as a result, to analyze all of the problems in
order to formulate an appropriate response.

In our case, we have performed a Pareto analysis on
different CARESCAPE R860 ventilators from the same unit.
This method will allow us to identify the CARESCAPE R860
component that is most failing.

The Pareto analysis is accomplished by following the steps
outlined below:

• Step 1: Sort the failures according to the number of
failures in descending order

• Step 2: Determine the percentage

• Step 3: Determine the cumulative percentage

• Step 4: Draw the curve and identify the three zones:
A, B, C

Fig. 4 depicts the outcomes of the Pareto analysis of a
CARESCAPE R860. The curve illustrates a convexity with the
selection of three zones; each zone contains a certain number
of components in proportion to the significance of their total
number of breakdowns; the following are the three zones that
I discovered:

1) Zone A: Highest risk area. 80% of the risks originate
from the five following components and processes:

⇒ Changing the air block

⇒ Changing the backup batteries
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Fig. 4. Pareto analysis of a CARESCAPE R860.

⇒ Changing the exhalation valve

⇒ Changing the flow sensor

This means that we will be concentrating our solution-
finding efforts on these parts, as their failure would have the
most severe consequences.

2) Zone B: Medium risk area. 15% of the risks are caused
by the following five parts or procedures:

⇒ Changing the PMB

⇒ Changing the VMB card

⇒ Changing the paramagnetic cell

⇒ Circuits verification

⇒ Changing the carrier board

3) Zone C: Low risk area. 5% of the risks are caused by
the following parts or procedures:

⇒ Changing the filters

⇒ Calibration of the paramagnetic cell

⇒ Changing the VCD oxygen and/or air

⇒ Calibration of the sensors

⇒ Changing the software

After conducting this analysis on the different
CARESCAPE R860, it has revealed that all ICU ventilators
have the same pneumatic block issue.

D. Develop a Failure Mode and Effects Analysis for the
CARESCAPE R860

To conduct this investigation, we also performed a Failure
Mode and Effects Analysis (FMEA), also known as a Failure
Mode, Effects, and Criticality Analysis (FMECA), on the
selected equipment. The FMECA is a technique for predictive
analysis that estimates the risks of failure and their effects
on the equipment’s proper operation and then implements
the necessary corrective actions. Its primary objective is to
maximize availability. This analysis will allow us to determine

Fig. 5. FMECA analysis of the system.

which component of the machine is the most critical and
malfunctioning in our scenario.

The FMEA method is based on a multi-step process as
shown in Fig. 5. The different steps are described as follows:

1) Identify possible failures and their effects: This step
involves identifying all potential failure modes, determining
the effects of each, and searching for their most probable
causes.

2) Determine Gravity (G): The gravity G represents the
severity of the effects of a failure. G is rated on a scale from 0
to 4, with 0 being the least severe and 4 being the most severe.

3) Determine the occurrence frequency (F): The frequency
of occurrence F represents the failure occurrence frequency.
This frequency represents the probability of the failure mode
occurring in conjunction with the failure cause. F is rated on
a scale from 0 to 4, where 0 represents the probability that a
failure is practically impossible to occur and 4 represents the
certainty of a failure occurring.

4) Failure detection (D): Detection mode D refers to the
likelihood that a user will detect the occurrence of a failure.
Detectability is a crucial component. Failure to predict a failure
will increase the likelihood that the system will shut down.
D is rated on a scale from 0 to 4, where 0 indicates the
presence of sensors capable of detecting the onset of a failure
and 4 indicates that the malfunction is undetectable or that its
location requires extensive knowledge.

5) The criticality evaluation (C): Criticality is a quantita-
tive evaluation of risk based on the combination of the three
previously mentioned factors:

⇒ The frequency with which the mode-cause pair occurs.

⇒ The severity of the effect.

⇒ The possibility of employing detection methods.

Calculated using the formula C = G×F×D, it is intended
to assess the risk associated with equipment functionality.

We have divided criticality into four categories:

→ Level A: Negligible criticality
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→ Level B: Medium criticality

→ Level C: High criticality

→ Level D: Very high criticality

Fig. 6. Criticality Rate Diagram based on the number of failures.

After identifying the various potential failures that the
ICU ventilators may encounter during their operation, we
analyzed and investigated the effects of these failures on the
CARESCAPE R860’s proper operation, the user, the patient,
and the environment. We then determined for each failure
the three previously mentioned parameters, namely severity,
occurrence frequency, and mode of detection, in order to
calculate the criticality of each failure. Fig. 6 illustrates the
results of the FMECA analysis.

With a criticality of C=18, we can conclude that the pneu-
matic block is the ICU ventilator’s most critical component.
If the pneumatic block fails, this can directly result in an
outage of our ventilators, which can alter the patient’s course
of treatment or be fatal.

E. Proposed Architecture

Following our primary objective of achieving central-
ization, the architectural framework we have developed is
intricately connected with the knowledge acquired through
our extensive research. The present investigation was carried
out with a specific emphasis on intensive care unit (ICU)
ventilators, with particular attention given to the CARESCAPE
R860 model. The study was conducted within a single hospital
unit, aiming to achieve a comprehensive comprehension of the
challenges associated with this particular model. The present
study employed the Pareto and Failure Modes and Effects
Analysis (FMECA) methodologies to conduct an analysis,
thereby facilitating the identification of the critical parameters
and components that exhibit a higher susceptibility to failure.

Patients are put in an intolerable position of risk when
their mechanical ventilators malfunction, so ensuring the safety
of these devices is crucial [27]. It is more cost-effective to
perform preventative maintenance on the mechanical venti-
lators rather than repair work on them. An organization or
a person with expertise in technical installations is required
to perform continuous monitoring and maintenance on the

air unit that serves as the source of air for both the ICU
service and the neonatology service. The performance of the
installation is something that must be guaranteed, which is why
maintenance is performed. The following are the components
of maintenance:

→ Ensure that optimal filtration is maintained at all times
by performing follow-up and monitoring of filtration. Regu-
larly dispose of and replace filters.

→ Perform routine maintenance on the motor-fan assembly
in order to ensure consistent flow rates.

→ Ensure that power plants are kept clean in order to
preserve the quality of the air.

→ Ensure that all of the electrical, regulatory, and safety
equipment is in proper working order (antifreeze thermostat,
smoke detection, etc.)

It is necessary to ensure that the maintenance actions
implemented have been properly carried out. As a result, the
system ought to be monitored in a manner that is both sustain-
able and capable of ensuring that the ventilators continue to
function normally without exhibiting any signs of performance
degradation. As a result, we propose incorporating a humidity
monitoring system at the chain level of the medical air filtration
process. Consequently, we propose an IoT-based architecture
for predictive maintenance that collects and processes a mas-
sive data stream from several CARESCAPE R860 in real-time.

Our proposed structure comprises four layers (Fig. 7):

Fig. 7. Proposed architecture for the CARESCAPE R860.

1) The first layer: The first layer is the input layer. It
is composed of a humidity and temperature sensor known
as DHT22 which is an inexpensive digital temperature and
humidity sensor. Using a capacitive humidity sensor and a
thermistor, it monitors airflow and outputs a digital signal on
the data pin. It sends information every two seconds. The
DTH22 will be installed in the air filtration chain of the
machine in order to monitor the performance of the pneumatic
block. The data, which consists of the measured humidity
levels at a variety of time intervals, will be transmitted to the
fog through the Constrained Application Protocol (CoAP) by
utilizing the ESP32 microcontroller as a gateway.

2) The second layer: The second layer within our Predic-
tive Maintenance (PdM) framework is an essential element
referred to as the fog computing layer. The present layer
is strategically situated in the intermediary position between
the peripheral devices, specifically the ventilators equipped
with DHT22 sensors that are deployed across various hospital
services, and the centralized cloud server. The principal aim of
integrating the fog computing layer is to augment the efficacy,
responsiveness, and scalability of our predictive maintenance
system.
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a) Centralized data processing and filtering: In the
context of fog computing, the data coming from the distributed
ventilators is gathered, subjected to real-time processing, and
subsequently filtered. The adoption of a decentralized approach
in information processing has been shown to have significant
benefits in terms of reducing latency and facilitating prompt
analysis of critical information within local networks. This
approach effectively minimizes the dependence on distant
cloud servers for immediate decision-making purposes.

b) Local anomaly detection and classification: The
utilization of fog computing technology facilitates the im-
plementation of localized anomaly detection and classifica-
tion algorithms, thereby facilitating the rapid identification
of potential issues that are unique to each ventilator system.
The presence of localized intelligence plays a crucial role
in effectively addressing immediate concerns and mitigating
the negative impacts of faults on patient care. The fog layer
functions as a discerning filter, selectively transmitting solely
pertinent and practicable data to the central cloud server.

c) Bandwidth optimization: In light of the limitations
imposed by bandwidth constraints and the unpredictable nature
of network conditions, the fog layer exhibits intelligent behav-
ior in order to optimize the transmission of data. The proposed
system effectively employs a filtering mechanism to eliminate
redundant or non-critical information, thereby significantly re-
ducing the overall volume of data that necessitates transmission
to the cloud. The optimization of system efficiency is not only
observed but also found to be positively correlated with cost
savings in the context of data transfer and storage.

d) Edge machine learning for quick decision-making:
The utilization of machine learning models implemented at
the fog layer significantly contributes to the facilitating of
localized decision-making processes. These models are trained
on historical data and regularly updated to promptly detect pat-
terns and trends related to potential malfunctions in ventilators.
The significance of localized intelligence becomes especially
apparent in situations necessitating prompt intervention to
prevent detrimental impacts on patient well-being.

e) Scalability and interoperability: The integration of
ventilators from various hospital services is facilitated by
the fog computing layer, ensuring a seamless and efficient
process. The proposed solution offers a scalable and interoper-
able framework, thereby enabling the predictive maintenance
system to effectively adapt to diverse ventilator models and
configurations. The establishment of interoperability within the
healthcare sector is of the highest priority to facilitate extensive
acceptance and utilization across diverse healthcare facilities.

f) Centralization objective: The primary objective of
incorporating fog computing within our predictive mainte-
nance architecture is to establish a centralized framework for
managing predictive maintenance operations associated with a
diverse range of ventilators sourced from multiple services and
hospitals. The process of centralization facilitates the efficient
management of operations, and maintenance of algorithms, and
offers a comprehensive assessment of ventilator performance
within the hospital network.

In this study, we propose a novel approach to enhance the
utilization of computing resources and facilitate effective coor-
dination of predictive maintenance operations by implementing

a centralized management system through the fog. The fog
computing paradigm is leveraged to achieve these objectives.
By adopting this approach, we aim to optimize the allocation
and utilization of computing resources, thereby improving the
overall efficiency of predictive maintenance operations. This
approach additionally facilitates the comprehensive observa-
tion of failure patterns, rates of maintenance, and operational
efficacy, thereby presenting a comprehensive methodology for
the management of crucial equipment.

3) The third layer: The cloud computing layer plays a cru-
cial role in our Internet of Things (IoT) predictive maintenance
architecture by serving as the fundamental infrastructure for
centralized data storage, processing, and analytics. Per our
objective of attaining thorough centralization, this particular
layer assumes a crucial function in the consolidation and
administration of the extensive volume of data produced by the
predictive maintenance system for CARESCAPE R860 ICU
ventilators.

The cloud infrastructure is designed to efficiently handle
real-time data streams originating from a multitude of ven-
tilators distributed across diverse healthcare institutions. The
primary objective of this infrastructure is to ensure a seamless
and uninterrupted flow of data, encompassing reception, stor-
age, and processing operations. By capitalizing on the built-
in scalability and flexibility offered by cloud computing, our
proposed architecture guarantees the adaptability of the system
to accommodate diverse data volumes and computational de-
mands. The necessity of scalability in healthcare environments
is of utmost importance, as it addresses the inherent dynamism
of such settings by effectively accommodating variations in
patient load and ventilator usage.

The cloud-based analytics module within our architectural
framework incorporates cutting-edge algorithms and machine
learning models to conduct a comprehensive analysis of the
gathered data. It aims to investigate the identification of
patterns, anomalies, and potential failure indicators within the
specific setting at hand.

Furthermore, the presence of the cloud layer enables the
convenient and efficient retrieval of essential maintenance
insights from remote locations. In this study, we investigate the
ability of authorized personnel, regardless of their geographical
location, to securely access real-time analytics, performance
trends, and predictive alerts.

In the context of security, our cloud-based architecture
implements an extensive range of measures that strengthen
the safety of patient data and guarantee adherence to health-
care regulations. The implementation of encryption protocols,
access controls, and secure communication channels is cru-
cial in safeguarding sensitive information that is transmitted
and stored within cloud environments. These measures are
designed to mitigate potential risks and threats to the confiden-
tiality, integrity, and availability of data. By employing robust
encryption protocols, data is transformed into an unreadable
format, thereby preventing unauthorized access and ensuring
that only authorized individuals can decipher the information.

The present study aims to investigate the utilization of
cloud computing capabilities in the architecture for predictive
maintenance of CARESCAPE R860 ICU ventilators. By lever-
aging these capabilities, the proposed architecture not only
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facilitates the centralization of data processing and analysis
but also establishes a platform that is scalable, secure, and
accessible.

4) The fourth layer: The fourth layer is the output or
interface for technicians. The system indicates when humidity
levels approach a dangerous threshold and alerts the technician
to perform preventative maintenance before machine failure.
Initially, we will implement supervised machine learning;
the technician will report malfunctions to better train the
algorithm through reactive decision-making. Then, proceed to
semi-supervised machine learning, followed by unsupervised
machine learning. The effectiveness of these methods for fault
classification, anomaly detection, and real-time prediction will
then be evaluated.

a) The getaway: By utilizing the ESP32 microcon-
troller as the gateway, we can effectively bridge the CoAP
communication between the DHT22 sensor and the cloud
server for predictive maintenance of the CARESCAPE R860
ventilator. Its built-in Wi-Fi, processing power, MicroPython
support, community backing, and cost-effectiveness make it an
excellent choice for this IoT application. The ESP32 ensures
smooth data transmission, preprocessing, and security features,
providing a reliable and efficient gateway solution for your
predictive maintenance architecture.

b) Communication: CoAP’s lightweight design and
RESTful architecture make it an optimal choice for resource-
constrained IoT environments, such as healthcare. By seam-
lessly enabling communication between the DHT22 sensor and
the cloud server, CoAP efficiently transmits crucial environ-
mental data, including temperature and humidity, in real time.
This real-time data monitoring empowers prompt detection of
anomalies and proactive measures for predictive maintenance.
The simplicity and elegance of CoAP facilitate straightforward
implementation, while its broad community support offers a
rich array of libraries, tutorials, and resources, easing de-
velopment efforts. CoAP is an indispensable tool in this
context, showcasing its efficacy in bridging the gap between
resource-constrained sensors and cloud-based infrastructure,
elevating predictive maintenance capabilities, and enhancing
patient safety in healthcare settings. To facilitate accurate
and reliable data acquisition from the DHT22 sensor, we
meticulously implemented a data retrieval method utilizing
the MicroPython environment on the ESP32 microcontroller.
A critical step in this process involved the installation of the
”Adafruit DHT” library, a reputable external library developed
by Adafruit Industries. Leveraging the advanced features and
robust error-handling mechanisms inherent to the ”Adafruit
DHT” library, we ensured a seamless data acquisition process
from the DHT22 sensor. Installing the ”Adafruit DHT” library
involved utilizing the ”ampy” tool, a commonly used utility in
the MicroPython ecosystem. This tool enabled us to efficiently
copy the ”Adafruit dht” library to the ESP32 board, allowing
it to interact with the DHT22 sensor effectively.

The library installation process was methodically executed
by adhering to proper software engineering practices and
following established protocols. Subsequently, we crafted a
specialized data retrieval function within our MicroPython
script. This function, designed to interact with the DHT22 sen-
sor, effectively accurately retrieved temperature and humidity
data. Utilizing the GPIO pins and communication interfaces of

the ESP32, the data retrieval function measured environmental
parameters from the DHT22 sensor. The successful execution
of the data retrieval method on the ESP32 microcontroller
facilitated the collection of vital environmental data from
the DHT22 sensor. The retrieved temperature and humidity
data were foundational inputs for our predictive maintenance
model, enhancing the CARESCAPE R860 ventilator’s opera-
tional efficiency and patient safety. The data transfer process
from the microcontroller to the cloud through CoAP in our IoT-
based predictive maintenance architecture involves a system-
atic and efficient approach. Following the successful retrieval
of environmental data from the DHT22 sensor, the ESP32
microcontroller, armed with the ”Adafruit DHT” library, acts
as the intermediary gateway to facilitate seamless communi-
cation between the sensor and the cloud infrastructure. Upon
data retrieval, the ESP32 microcontroller employs the CoAP
protocol to package the acquired temperature and humidity
data into CoAP messages, adhering to the lightweight and
RESTful principles of CoAP. With the help of the built-in
Wi-Fi capabilities, the ESP32 initiates a secure communi-
cation link to the cloud server, where the CoAP messages
are transmitted. The CoAP server on the cloud, configured
to host specific resources corresponding to the sensor data
types, promptly receives the incoming CoAP messages. Using
CoAP’s resource observation feature, the cloud server continu-
ously monitors the environmental data in real-time, facilitating
immediate responsiveness to fluctuations in temperature and
humidity levels. CoAP’s Datagram Transport Layer Security
(DTLS) extension is employed to ensure data integrity and
privacy during transmission, safeguarding sensitive operational
data from potential threats. The implementation of CoAP over
DTLS provides robust security critical to the protection of
patient information and the preservation of data integrity. Once
the CoAP messages reach the cloud server, the data is pro-
cessed, analyzed, and stored for further predictive maintenance
operations. Cloud-based algorithms and analytics are employed
to detect anomalies, predict potential equipment issues, and
facilitate proactive maintenance actions, thus enhancing the
CARESCAPE R860 ventilator’s operational efficiency and
reducing the risk of unplanned breakdowns. The system will
continuously adjust a threshold based on the detected humidity
levels that led to the failure of the ICU ventilators (Fig. 7).

The Predictive Maintenance Process for the CARESCAPE
R860 involves a dynamic system that modifies a threshold
based on observed humidity levels, as shown in Fig. 8.
This adaptive technique is based on observations where high
humidity levels were a key factor in the malfunction of ICU
ventilators. The predictive maintenance technology enhances
the reliability and performance of the CARESCAPE R860
ventilators by continuously monitoring and adjusting settings
to proactively address possible faults.

F. Practical Deployment: Node-RED within the Proposed
Architecture Framework

In this simulation (Fig. 9), we simulate the transmission
of environmental data from a simulated DHT22 sensor to the
cloud for processing and visualization via a secure communi-
cation method. It is important to highlight that this simulation
is intended to act as a conceptual visualization to aid in
understanding the proposed architecture. There is currently no
active data flow; instead, it represents the projected data travel.
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Fig. 8. Predictive maintenance process for the CARESCAPE R860.

A simulated DHT22 sensor injects data, a security function
applies protection measures, CoAP communication from the
ESP32 microcontroller, and fog processing layer operations
are all part of the sequence. Following that, the encrypted
data is processed in the cloud, where it is subjected to further
processing before being stored. A Debug node is strategically
situated to monitor in real-time, whereas a Dashboard node is
the endpoint for seeing processed data.

It is critical to note that, while this simulation assists in
the conceptualization of the architecture, the real data flow
implementation is part of our planned future projects.

V. DISCUSSION

When developing our predictive maintenance architecture,
we chose this specific framework based on important factors.
The focus was on centralization, aiming to create a cohesive
system to effectively handle predictive maintenance opera-
tions for various ventilators, with a specific emphasis on the
CARESCAPE R860 model. Thorough research was conducted
on the details of this particular model in a hospital unit, with
a focus on key parameters that are prone to failure. This
thorough approach guided the architectural design to create
a customized solution for the issues related to ICU ventilators.
To overcome current constraints, our design incorporates a
humidity monitoring system into the chain level of the medical
air filtration process. This new feature improves the capa-
bility to identify and address potential problems associated
with humidity, a crucial factor highlighted in past cases of
ICU ventilator malfunctions. Utilizing IoT-based predictive
maintenance allows us to gather real-time data from various
CARESCAPE R860 ventilators, providing a comprehensive
and flexible method for monitoring equipment.

The suggested design for predictive maintenance of
CARESCAPE R860 ICU ventilators is notable in the field of
related studies for its thorough and inventive approach that
combines IoT, fog computing, and cloud computing technolo-
gies. Standing out in the realm of predictive maintenance
in healthcare, this architecture boasts a well-defined four-
layer structure that covers centralized management, humidity
monitoring, and real-time analytics. It is worth mentioning that

the integration of adaptive threshold techniques for proactive
maintenance, focus on local processing via the fog computing
layer, and the use of machine learning models all play a role in
its distinctiveness. This study presents a more comprehensive
and innovative approach to enhancing the safety, reliability,
and performance of critical medical equipment in healthcare
settings, building upon previous research.

VI. ADVANTAGES AND CHALLENGES

The proposed IoT architecture represents a significant
advancement in healthcare, employing predictive analytics to
improve the management of mechanical ventilators. Utilizing
extensive data analysis, the proposed framework holds the
potential to enhance the quality and effectiveness of healthcare
services by addressing the challenges posed by equipment
malfunctions. This is vital for ensuring the well-being of
patients and optimizing organizational expenses.

This architecture uses a centralized data approach to con-
solidate information from multiple CARESCAPE R860 venti-
lators, allowing for unified analysis and proactive maintenance
strategies. The incorporation of IoT technology guarantees the
ability to monitor in real time, facilitates effective communi-
cation, and enhances the dependability of the system. Intu-
itive interfaces and comprehensive training enable healthcare
professionals to effectively analyze machine learning insights,
enhancing the efficiency of the predictive maintenance model.

The architecture offers a versatile solution that can be
applied to various hospital settings, showcasing its strengths
in scalability and adaptability. This novel approach effectively
streamlines predictive maintenance, optimizes workflows, and
enhances patient safety, thereby contributing to the advance-
ment of healthcare services.

However, due to their complex infrastructures and pro-
gramming models, emerging data technologies necessitate a
high level of data science and IT domain expertise in order
to be utilized and installed. This is the main challenge of the
proposed framework. This may impede the adoption of big
data technologies in the healthcare industry.

The successful deployment of a system of this nature
necessitates addressing not only the technical challenges but
also the ethical implications that arise. The issues regarding
the preservation of patient confidentiality, acquisition of in-
formed consent, and the conscientious utilization of health-
related information. The delicate balance between maximizing
the advantages of predictive analytics and safeguarding the
confidentiality of sensitive patient data necessitates diligent
contemplation and adherence to ethical principles.

The issue of security presents itself as a significant chal-
lenge within the context of implementing the suggested archi-
tectural framework. The system deals with the management
of sensitive health data, emphasizing the necessity of imple-
menting robust security measures to effectively protect against
unauthorized access, data breaches, and potential misuse. The
preservation of patient data integrity and confidentiality is
of utmost importance to achieve optimal performance and
widespread adoption of the predictive maintenance system [9].

The utilization of embedded systems presents a set of
obstacles, particularly within the realm of healthcare envi-
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Fig. 9. Visual diagram of Node-RED implementation.

ronments, wherein the crucial role of reliability and real-
time responsiveness is evident. The successful integration and
ongoing maintenance of embedded systems in the context of
ventilators necessitates a meticulous and methodical approach
to guarantee seamless functionality and reduce any potential
disruptions to healthcare services.

The human factor is a challenging aspect that requires
careful analysis and attention when implementing predictive
maintenance systems. In healthcare, healthcare professionals
and staff must acquire the necessary knowledge and skills
to effectively use and understand the data generated by the
predictive maintenance system. This is essential for ensuring
high-stakes patient care.

One notable facet of this challenge is the necessity for
healthcare personnel to have knowledge and skills in machine
learning for this to succeed [8]. Healthcare professionals need
to have a thorough understanding of the machine learning
algorithms used in the predictive maintenance system to accu-
rately interpret the predictions and recommendations provided
by the model. This knowledge enables them to differentiate
between typical system functioning and possible irregularities,
facilitating prompt and well-informed decision-making.

Moreover, Healthcare personnel need a thorough under-
standing of how the predictive maintenance system works. Un-
derstanding a system requires knowledge of both its technical
components and its operational intricacies. Training programs
should provide healthcare professionals with a comprehensive
understanding of the functioning of the system, including
its data inputs and the underlying logic used for making
predictions.

In addition to their expertise in machine learning, health-
care personnel need to have a comprehensive understanding
of the healthcare system and how it integrates with existing
hospital workflows. This comprehension guarantees a seamless
cooperation between predictive maintenance technology and
the everyday functions of healthcare environments. It facilitates
the integration of system insights into healthcare professionals’

decision-making.

It is important to consider the concerns and preferences
of healthcare workers. Effective communication, thorough
training, and continuous support are crucial for establishing
confidence and trust in predictive maintenance technology.
Healthcare professionals should be knowledgeable and con-
fident in using technology to improve patient care and make
maintenance processes more efficient.

The complex nature of introducing AI and IoT technolo-
gies in healthcare is underscored by a range of challenges,
including technical complexity, ethical considerations, security,
embedded systems integration, and the human factor. The
successful resolution of these obstacles is of utmost importance
to fully unlock the capabilities of predictive maintenance
systems and guarantee their beneficial effects on patient care
and operational efficacy.

VII. CONCLUSION

This article presented a real-time monitoring architecture
for inspecting and maintaining ICU ventilators in several
healthcare organizations. Since the quality and quantities of
medical devices in hospitals have increased, traditional mainte-
nance techniques could have been more efficient and practical.
The proposed architecture enables biomedical engineers or
technicians to monitor the outcomes of data analysis, the
predicted health status of ICU ventilators, and maintenance
schedules in real time through device notifications and live
charts. Consequently, the occurrence of a significant event
on the selected devices can be detected and communicated
to interested parties in real time. This architecture uses big
data and IoT technologies to identify any component wear
or breakage and monitor the status of these ventilators. It is
founded on the monitoring and surveillance of the pneumatic
block. Implementing an intelligent humidity detection system
is optimal, as humidity monitoring significantly contributes
to product quality. Sufficiently dry and only compressed air
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can reduce the risk of corrosion and condensation, equipment
failures, and poor product quality.

As for our future projects, we aim to achieve a system-wide
predictive maintenance system by implementing an integrity
monitoring framework.
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