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Abstract—This research investigates the problem of assigning
pre-scheduled trips to multiple drones to collect hazardous waste
from different sites in the minimum time. Each drone is subject
to essential restrictions: maximum flying capacity and recharge
operation. The goal is to assign the trips to the drones so that
the waste is collected in the minimum time. This is done if the
total flying time is equally distributed among the drones. An
algorithm was developed to solve the problem. The algorithm
is based on two main ideas: sort the trips according to a given
priority rule and assign the current trip to the first available
drone. Three different priority rules have been tested: Shortest
Flying Time, Longest Flying Time, and Median Flying Time.
Two recharging conditions are maintained: recharging needed
time and recharging full duration. By applying each priority
rule and each recharging condition, we generate a six versions of
the algorithm. The six versions of the proposed algorithm were
implemented in Java programming language.The results were
analyzed and compared proving that the Longest Flying Time
priority rule surpasses the other two rules. Moreover, recharging
a drone just enough for taking the next trip proved to be better
than fully recharging it.

Keywords—Drones; trip assignment; priority rules; flying ca-
pacity; load balance

I. INTRODUCTION

The Vehicle Routing Problem (VRP) is an important prob-
lem discussing the process of finding the optimal routes for
a single or multiple vehicles, to perform a certain task or
service. VRPs have been extended for numerous of prob-
lems. Most recently, VRPs using a single or multiple drones
also called Unmanned Aerial Vehicles (UAVs) have spread
widely. Those varied to truck-drone, truck-multi-drone, and
multi-truck-multi-drone problems to achieve precise goals and
maintaining a set of constraints. The author in [1] presented
the vehicle routing problem with drones (VRPD) as a design
of the combination of truck-drone routes and timetables to
serve a group of customers with specific requirements and
time limitations. The applications of VRPD or as called,
Drone Routing Problems (DRPs) received a massive amount
of attention from different fields and concerned parties. Media
has shown interest in drones equipped with cameras to cover
stories in different areas [2], commerce companies have been
intrigued with last-Mile delivery using UAVs for speeding
the process and lowering shipping costs [3], scientists for
great discoveries [4], medical staff for urgent transportation of
equipment [5], program developers and even the entertainment
sector for mesmerizing drones shows. Environmentalists have

utilized drones for addressing great problems threatening our
earth, affecting humans and all living creatures [6]. Special-
ized VRPs regarding critical environmental issues such as
CO2e emission, air pollution and global warming are called
Green Vehicle Routing Problems (G-VRPs). Hazardous waste
is another serious problem that puts us in danger by the
minute. Taking advantage of the VRPD and G-VRP, our
study highlights the formation of a hazardous waste collection
plan, where waste is collected in the minimum time possible
using multiple drones (MTMD). The authors in [7] proved
the strongly NP-hardness of the problem and proposed a 2-
phase approach and a linear program to solve it using a single
Unmanned Aerial Vehicle. In their research, a set of efficient
trips have been produced for each solved instance. Each trip is
a path that starts from a depot site, visits some other sites to
collect the maximum waste in the minimum time, respecting
the drone flying and waste capacities before returning back to
the depot for charging and some minor maintenance. In the
current research, we adopt those datasets of generated trips
and extend the study using multiple drones. The motivation
behind this research was mainly to propose efficient algorithms
that will allow an optimal or near-optimal use of the flying
and weight capacities of a fleet of drones in order to collect
hazardous waste in a shortest time from many sites. This
research studies a new Drone Routing Problem (DRP) using m
drones. Constraints related to the flying capacity and recharge
duration of each drone are set. The aim of the study is to
assign pre-generated tours in [7] so that completion time of
the last drone is minimum. To solve this problem, the authors
proposed priority rules-based algorithm. These rules have the
purpose of sorting the trips prior distribution among the drones.
The algorithm allows a maximum use of each drone’s charge
without exceeding the flying capacity. An experimental study
using benchmarks was conducted to compare the efficiency of
the proposed algorithm for each priority rule.

The remaining of the paper is structured as follows. In
Section II, the literature review highlights the related and
relevant areas of the research. The methodology used for
conducting the research is detailed in Section III. Next, the
experimental results and discussion are explained in Section
IV followed by the conclusion and future work.

II. LITERATURE REVIEW

New Vehicle Routing Problems (VRPs) studies have been
intensively emerging in the last few decades, especially those
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using Unmanned Aerial Vehicles (UAVs). The author in [8]
acknowledged that the interest in the use of drones in various
applications has grown significantly in recent years. Accom-
panied with specific constraints, limitations and several goals,
VRPs are becoming progressively challenging. Most com-
monly, Different approaches to solve Drone Routing Problems
(DRPs) have been proposed for last-Mile delivery. Moreover,
transportation of medical equipment as in [9], collection of
waste, surveillance, search and rescue missions and even forest
monitoring to detect fire as presented in [10]. The author
in [11] stated that similar to the traditional vehicle routing
problem, the vehicle routing problem with drones (VRPD)
involves the use of drones in addition to trucks for delivery.
When trucks and drones are routed together, the challenge
is substantially more complex and distinct from traditional
vehicle routing problems.

Most DRPs were organized to truck-drone routing prob-
lems, as [12] demonstrated how incorporating truck-drone
tandems into transportation systems can enhance delivery
speed while also allowing the fleet size to be reduced without
impacting delivery times or adding to truck drivers’ work-
load. The author in [13] presented and solved a truck-drone
hybrid routing problem with time-dependent road travel time
(TDHRP-TDRTT) to resolve the truck-drone cooperative issue.
TDHRP-TDRTT was solved using an iterative local search
heuristic method. Whereas, in [14], they thought of several
drones, each with a different set of capabilities, such as speed
and battery life, are transported by and sent out from the
truck, working together to satisfy customers. The truck must
wait until each drone returns and numerous drones can all be
dispatched at once. The proposed model was given the name
heterogeneous drone-truck routing problem (HDTRP), and a
formulation of the problem using mixed-integer programming
was provided.

Likewise, A parallel Drone Scheduling Traveling Salesman
Problem was solved in [15]. In this approach, deliveries are
divided between a truck and one or more drones. The truck
goes on a tour from the depot, but the drones can only go
back and forth. The goal is to finish as soon as possible.
The problem was expanded by taking into account many
vehicles. A hybrid metaheuristic, as well as a Mixed Integer
Linear Programming formulation and a simple branch-and-
cut algorithm, were also presented as solutions. In addition,
A mixed-integer linear programming (MILP) model for the
multi-trip Capacitated Arc Routing Problem was proposed in
[16] to reduce the overall cost of waste collection (CARP).

Logically, the algorithms developed in solving the prob-
lems varied. A widely known algorithm is the neighborhood
search. In [17], an Adaptive Large Neighborhood Search meta-
heuristic for the vehicle routing problem with drones (VRPD)
was proposed, following minimum time and cost constraints,
using multiple trucks. They developed a mathematical model
to create a problem close to the Flying Sidekick Traveling
Salesman Problem to optimize huge instances. Nevertheless,
a tabu search heuristic algorithm in [18] proposed a new
neighborhood generation process for a distribution company, to
transport commodities from a single depot to multiple dealers.
And a hybrid genetic algorithm was studied in [19] combining
sweep and genetic algorithms in an enhanced approach. Both
are recognized algorithms to solve the VRPD in the literature.

Other important algorithms are those whose called nature
based. An ant colony optimization (ACO) technique was
developed to solve the NP-hard VRPs with drones in [20].
The studies showed that the suggested ACO algorithm can
solve the VRDP efficiently for diverse size instances and area
distributions. Similarly, a novel dynamical artificial bee colony
(DABC) was used in [21] to reduce operating costs. To identify
employed bee swarm and onlooker bee swarm, two bee swarms
were formed. Also, variable neighborhood descent was used
in employed bee phase and onlooker bee phase in varying
methods. An artificial bee colony-based hybrid approach was
developed to solve the waste collecting problem while taking
the halfway disposal pattern into account in [22]. Moreover,
[23] suggested a Particle Swarm Optimization (PSO) algorithm
to solve uncertain VRP, alongside a decoding scheme to im-
prove its efficiency. According to [24], a simulated annealing
heuristic algorithm was proposed to solve one of the Green
Vehicle Routing Problems (G-VRPs), which is the Hybrid
Vehicle Routing Problem (HVRP).

The clustering algorithms are majorly common. The author
in [25] proposed two different hybrid metaheuristic algorithms
in regards of the Clustered Vehicle Routing Problem (Clu-
VRP). The first algorithm relies on an Iterated Local Search
algorithm, in which only possible solutions are searched. The
second one is a hybrid genetic search where the shortest
Hamiltonian path between every set of vertices inside each
cluster is precomputed.

The Location-Routing Problem for delivering orders to a
group of clients was discussed in [26]. They attempted to
reduce the overall CO2 emissions using trucks and drones for
last-mile deliveries. The problem was resolved using a mathe-
matical model. Their findings focused on how adopting greener
transportation technology can be a start to the substantial
contribution that UAVs make to problems with parcel delivery
routing. Hence, it is considered one of the G-VRPs, which
highlight serious environmental issues like high CO2e emis-
sion, pollution, global warming, low sustainability lifestyle
and many others, as clearly stated in [27]. Waste collection
problem is another example of the G-VRPs. Conveniently, [28]
introduced a particle swarm optimization (PSO) approach in a
capacitated vehicle-routing problem (CVRP) model to estab-
lish the optimal waste collection and route optimization solu-
tions. The PSO-based CVRP model included threshold waste
level (TWL) and scheduling approaches. Solomon’s insertion
algorithm was developed to solve a real-world waste collection
vehicle routing problem with time windows (VRPTW) in [29].

This research investigates the process of collecting haz-
ardous waste from different sites using constrained drones
(UAVs), proposing priority rules-based algorithm to help effi-
ciently collect the waste in the minimum time using multiple
drones (MTMD). Using the outcomes of [7] as the base of the
study, extending it by assigning the trips to multiple drones
instead of a single drone.

Despite the magnitude of research conducted on VRPs
following versatile approaches and proposing applicable so-
lutions, shedding lights on such problem with this significance
and effect on the daily life and unknown future of livings on
the face of earth is crucial and deserving. Also, employing the
latest modern technology like drones to accomplish the desired
goal efficiently makes a distinctive difference. On that account,
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presenting an algorithm maintaining sensitive constraints and
imposing priority rules as a solution would narrow the gap and
expedite the plan to a safer, healthier and waste free planet.

To the best of our knowledge, there is no existing literature
that addresses the specific challenges associated with using
drones in hazardous waste collection. Therefore, we are unable
to compare the proposed algorithm with existing solutions in
this context.

III. RESEARCH METHODOLOGY

To assign the trips to the drones in an efficient way so that
the total waste will be collected from all sites in the minimum
time, we developed an algorithm that is mainly based on three
principles:

• Order the trips to be traveled according to their flying
times. The trips are then executed according to either
an increasing order of their flying times: Shortest
Flying Time (SFT), a decreasing order of their flying
times: Longest Flying Time (LFT), or alternatively
from the median time: Median Flying Time (MFT).

• Assign the current trip to the first available drone.
This principle will guarantee an efficient use of the
drones, balance distributing the flying times between
the drones, and collect the waste in a minimum time.

• When the current charge of a given drone is less than
the flying duration of the next trip, then charge it
according to two principles. The first is fully recharge
the drone before taking the next trip. The second is to
recharge the drone just enough for it to take the next
trip.

The suggested algorithm enables multiple drones to access
the list of trips at the same time, where each drone has a
maximum flying and weight capacity, as well as a recharging
duration. The flying capacity and drone’s recharge are the two
key constraints defined. The algorithm’s two primary tasks are:
parallel assignment of trips to multiple drones and recharging
of drones. The trips are assigned to the drones as long as the
list of trips is not empty, employing one of three proposed
priority rules and following one of the charging principles. As
a result, six versions of the main algorithm are proposed. The
details of these algorithms are illustrated in Algorithms 1 to 4.
Note that Algorithms 1 and 2 each has two versions. A version
uses the SFT rule and another version uses the LFT rule. The
notations used to develop the algorithm are summarized in
Table I.

TABLE I. PROBLEM NOTATIONS

n Number of trips in an instance
m Number of drones
T Maximum flying time of a drone if fully charged
r Time needed to fully recharge a drone
cj Completion time of the last trip assigned to drone j, 1 ≤ j ≤ m
ti Flying duration of trip i, 1 ≤ i ≤ n
qj Remaining flying capacity of drone j

Note that steps 3 to 5 in all algorithms have the purpose
of initializing the completion times of the drones to zeros and

Algorithm 1 Assignment of trips to drones using SFT/LFT
rule and charging drones when needed

1: input: m,n, T, r, ti
output: Cmax: The completion time of the last trip.

2: Sort ti in increasing/decreasing order
3: for j ← 0 to m− 1 do
4: cj ← 0
5: qj ← T
6: end for
7: i← 0
8: while (i < n) do
9: a← index of min cj

10: if (qa < ti) then
11: ca ← ti−qa

T × r + ti
12: qa ← 0
13: else
14: ca ← ca + ti
15: qa ← qa − ti
16: end if
17: i← i+ 1
18: end while
19: return max cj

Algorithm 2 Assignment of trips to drones using SFT/LFT
rule and charging drones fully

1: input: m,n, T, r, ti
output: Cmax: The completion time of the last trip.

2: Sort ti in increasing/decreasing order
3: for j ← 0 to m− 1 do
4: cj ← 0
5: qj ← T
6: end for
7: i← 0
8: while (i < n) do
9: a← index of min cj

10: if (qa < ti) then
11: ca ← T−qa

T × r + ti
12: else
13: ca ← ca + ti
14: end if
15: qa ← qa − ti
16: i← i+ 1
17: end while
18: return max cj

set their initial charge to full so that they can fly for T unites
of time. Step 9 assigns the next trip to the first free drone.
Step 10 in Algorithms 1 and 2 and 17 in Algorithms 3 and
4 means that the drone does not have enough charge to fly
the next trip. For that reason, the drone needs either to be
partially enough charged to fly the next trip (as in algorithms
1 and 3) or fully charged up to its maximum flying capacity T
(as in algorithms 2 and 4). The last statement in all algorithms
returns the maximum completion flying time of the last trip
for all drones. The six proposed algorithms ensure an early
completion time of the waste collection by assigning the next
trip to the first available drone. This method maintains also an
equilibrium between the total flying time between the drones.
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Algorithm 3 Assignment of trips to drones using MFT rule
and charging drones when needed

1: input: m,n, T, r, ti
output: Cmax: The completion time of the last trip.

2: Sort ti in increasing order
3: for j ← 0 to m− 1 do
4: cj ← 0
5: qj ← T
6: end for
7: left← ⌊n2 ⌋, right← ⌊n2 ⌋+ 1, k ← 0
8: while (k < n) do
9: a← index of min cj

10: if (k mod 2 = 0) then
11: i← left
12: left← left− 1
13: else
14: i← right
15: right← right+ 1
16: end if
17: if (qa < ti) then
18: ca ← ti−qa

T × r + ti
19: qa ← 0
20: else
21: ca ← ca + ti
22: qa ← qa − ti
23: end if
24: k ← k + 1
25: end while
26: return max cj

Algorithm 4 Assignment of trips to drones using MFT rule
and and charging drones fully

1: input: m,n, T, r, ti
output: Cmax: The completion time of the last trip.

2: Sort ti in increasing order
3: for j ← 0 to m− 1 do
4: cj ← 0
5: qj ← T
6: end for
7: left← ⌊n2 ⌋, right← ⌊n2 ⌋+ 1, k ← 0
8: while (k < n) do
9: a← index of min cj

10: if (k mod 2 = 0) then
11: i← left
12: left← left− 1
13: else
14: i← right
15: right← right+ 1
16: end if
17: if (qa < ti) then
18: ca ← T−qa

T × r + ti
19: else
20: ca ← ca + ti
21: end if
22: qa ← qa − ti
23: k ← k + 1
24: end while
25: return max cj

IV. EXPERIMENTAL STUDY

The six versions of the proposed algorithms were im-
plemented in Java. Distributing the number of trips among
multiple drones grants completing all the trips in a sooner time
than assigning all the trips to a single drone, because all the
drones are flying simultaneously; whenever a drone completes
a trip and it is available in the depot, the program assigns
another trip to it, not taking into account the status of the
other drones.

Testing the program using the three priority rules: SFT,
LFT and MFT while recharging only for the time needed once,
and again recharging the drones till they are full, generated six
distinctive cases. Twenty instances varying from 101 to 941
sites, with a number of trips in the range [23, 249], have been
used for validation of the proposed algorithms. A summary
of results is shown in Tables II, III, IV, and V. For the six
algorithms, the time each drone takes to complete the trips
assigned to it was compared; the longest time means that it is
the last drone to finish. As observed, the last drone finishing
time of the cases that follow the LFT rule and recharge only
for the time needed, is mostly the shortest, which means the
LFT rule frequently guarantees a faster execution of the routing
process. However, in some cases, multiple drones finish on the
same time.

TABLE II. VALUES OF Cmax FOR DIFFERENT INSTANCES WHEN m = 2

Needed charge Full charge
Instance n SFT LFT MFT SFT LFT MFT
I101 23 294 289 284 296 293 284
I121 28 392 384 392 393 388 393
I141 32 416 409 416 416 411 416
I161 34 353 345 353 353 349 353
I181 52 606 598 606 607 600 607
I341 69 725 719 720 725 720 720
I301 75 708 702 699 708 703 703
I381 82 960 952 960 960 957 957
I321 87 1107 1101 1097 1076 1089 1098
I361 100 866 862 866 866 862 866
I461 118 1365 1357 1365 1365 1357 1365
I481 127 960 1128 1133 1365 1357 1133
I641 121 1494 1470 1488 1494 1471 1488
I661 143 1847 1840 1840 1847 1841 1841
I701 156 1519 1511 1519 1519 1512 1519
I721 162 1662 1652 1662 1662 1658 1662
I741 183 1493 1487 1489 1493 1488 1489
I861 194 2188 2182 2188 2188 2184 2188
I901 207 2158 2151 2153 2158 2152 2153
I941 249 2159 2151 2154 2159 2152 2154

Moreover, the three cases where the drones are fully
recharged every time the battery ran out, took a slightly longer
total time to complete all the trips, regardless of the number
of drones used, than those three cases which the drones are
recharged for only the time needed to be assigned the next
suitable trip. Table VI confirms this result for instance I101.

Although, the recharge count could be the same for both
recharging conditions, the remaining charge in the cases that
recharge only the needed duration is always zero. Whereas the
cases that recharge fully, have useless remaining charge; that
adds extra period of time, which increases the completion time
of all the trips. Therefore, it is better to consider the cases that
will reduce the total time by charging the drones only for the
time needed.
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TABLE III. VALUES OF Cmax FOR DIFFERENT INSTANCES WHEN m = 3

Needed charge Full charge
Instance n SFT LFT MFT SFT LFT MFT
I101 23 196 191 195 198 195 197
I121 28 272 266 264 273 270 264
I141 32 284 277 283 284 279 284
I161 34 246 234 242 246 237 242
I181 52 419 403 408 420 408 410
I341 69 483 474 484 483 476 485
I301 75 467 462 471 470 465 469
I381 82 651 640 647 651 642 646
I321 87 729 726 735 730 729 736
I361 100 591 581 584 591 582 584
I461 118 923 911 921 923 911 918
I481 127 767 752 761 767 754 762
I641 121 1004 995 1000 1004 995 1000
I661 143 1227 1226 1230 1233 1229 1232
I701 156 1015 1007 1018 1015 1007 1020
I721 162 1112 1098 1114 1112 1102 1113
I741 183 997 987 1000 997 988 1000
I861 194 1465 1457 1466 1464 1458 1465
I901 207 1437 1430 1443 1438 1431 1442
I941 249 1444 1431 1445 1444 1431 1444

TABLE IV. VALUES OF Cmax FOR DIFFERENT INSTANCES WHEN m = 4

Needed charge Full charge
Instance n SFT LFT MFT SFT LFT MFT
I101 23 148 142 150 150 143 151
I121 28 200 190 201 200 193 201
I141 32 212 203 215 212 205 215
I161 34 191 173 186 191 181 185
I181 52 309 301 312 309 305 313
I341 69 373 363 368 373 366 368
I301 75 352 346 352 356 349 361
I381 82 488 480 486 488 482 487
I321 87 554 548 554 555 551 555
I361 100 440 431 444 441 432 444
I461 118 692 681 691 692 682 692
I481 127 578 562 577 578 564 577
I641 121 761 749 755 761 749 755
I661 143 925 919 928 927 920 928
I701 156 765 754 767 766 756 768
I721 162 838 827 841 838 832 842
I741 183 748 742 755 748 744 754
I861 194 1103 1095 1102 1104 1098 1102
I901 207 1085 1075 1085 1085 1075 1085
I941 249 1091 1079 1087 1091 1083 1088

TABLE V. VALUES OF Cmax FOR DIFFERENT INSTANCES WHEN m = 5

Needed charge Full charge
Instance n SFT LFT MFT SFT LFT MFT
I101 23 125 114 125 126 118 126
I121 28 169 159 167 169 162 167
I141 32 181 170 176 181 172 176
I161 34 155 135 155 155 136 154
I181 52 261 242 257 262 247 258
I341 69 294 286 299 294 287 299
I301 75 281 274 287 284 278 292
I381 82 398 384 394 398 390 399
I321 87 451 444 450 452 447 452
I361 100 355 345 360 355 345 360
I461 118 556 543 556 557 546 557
I481 127 471 453 468 471 455 467
I641 121 613 602 609 613 602 609
I661 143 750 738 750 750 739 749
I701 156 620 610 619 620 613 619
I721 162 676 662 673 676 663 671
I741 183 603 595 605 603 596 604
I861 194 883 872 885 883 876 883
I901 207 876 865 872 876 866 872
I941 249 876 860 877 874 860 876

TABLE VI. TOTAL TIME COMPARISON FOR INSTANCE I101

Needed charge Full charge
m SFT LFT MFT SFT LFT MFT
2 562 563 562 566 569 568
3 556 557 556 561 566 559
4 549 550 550 557 557 556
5 544 543 544 553 558 553

In addition, the average of the time each drone took to
complete the assigned trips was calculated. The difference
between the time each drone took, and the average was also
calculated, to illustrate how balanced the assigning of trips
among the drones was. The total difference of those differences
was then summed up to accentuate the exact gap between the
time all the drones took to complete the trips and the average
of it. It is noticeable that the total difference generated by
SFT rule is always the biggest compared to the LFT and MFT
rules. Whilst, the MFT cases often have smaller total difference
than the SFT cases and a few of them have the same total
difference as the LFT or SFT cases. In numerous instances,
the MFT cases have the smallest total difference out of all
three rules. Furthermore, a decreasing pattern in the number of
those instances was noticeable, where the number of instances
and the number of drones used have an inverse relationship;
whenever the number of drones used increases, the number
of the instances having the smallest total difference in the
MFT cases decreases. However, the LFT cases mostly have
the smallest total difference amongst all three. Additionally,
in some LFT cases the total time of all the drones is the
same as the average time, which means the total difference
is zero. This comparison truly demonstrated how the LFT rule
performs best in regards of the assignment of trips among
the drones, despite their number, which ensures that all the
drones take up nearly the same time to complete the trips.
Moreover, it is an indication that the drones visit approximately
the same number of trips. As a resultant, sorting the trips
from the longest flying time to the shortest flying time (LFT)
almost equally assigns the trips to the drones, which executes
a more efficient program, effectively fulfilling the objective of
the proposed algorithm MTMD.

“Fig. 1, “Fig. 2”, “Fig. 3” and “Fig. 4” below, clarify the
contrast between the total differences in each rule (SFT, LFT
and MFT) for all 20 instances using 2, 3, 4 and 5 drones.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

In conclusion, studying the Vehicle Routing Problem using
Drones (VRPD) and how it can be applied to help finding a
solution to the accumulated hazardous waste problem was the
first step. The diversified literature of VRPs gave the proper
background and knowledge to investigate this major problem
and propose an algorithm to resolve it.

Adopting the outcomes of an existent research as a dataset,
six versions of a proposed algorithm were brought forward
that allow multiple drones to access the list of trips at the
same time, where the drones have maximum flying and weight
capacities and a recharge duration. Concentrating on the flying
capacity and the recharging of drones as constraints, the
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Fig. 1. Total differences for each rule using 2 drones.

Fig. 2. Total differences for each rule using 3 drones.

Fig. 3. Total differences for each rule using 4 drones.

Fig. 4. Total differences for each rule using 5 drones.

presented algorithms handle the routing through two main
tasks: the assignment of trips to multiple drones and recharging
of drones. It suggested three priority rules in sorting the flying
times before assigning them to the drones. The first rule is
sorting from the shortest to the longest flying time (SFT) in
ascending order. The second rule is sorting from the longest to
the shortest flying time (LFT) in descending order. The third
rule is sorting the flying times in ascending or descending
order first and then starting from the median trip time (MFT).
Following each rule, whenever the drones need recharging,
two conditions were taken into consideration: recharging the
drones just for the time needed to be assigned the next adequate
trip or recharging the drones fully, taking their total recharge
duration. Hence, the algorithms map routes in minimum time
using multiple drones (MTMD).

Moreover, the algorithm’s versions were implemented us-
ing Java to program was developed validating the algorithm,
which produced six cases that test each individual rule (SFT,
LFT and MFT) with both recharging conditions (needed and
full).

After various testing of the six cases, the output of the
program resulted in valuable findings. The LFT rule was
proven the current best in assignment of trips to the multiple
drones. It almost distributes the trips equally, which means
approximately the same total flying time, recharge count and
trip count of the drones. The program was tested using com-
mon several testing types as well, to assure its effectiveness in
following the MTMD algorithm.

B. Future Work

Aggregating the work done, positive improvements are
expected to better the research, starting from developing a
program with higher performance and dedicating enough time
to test all the instances of the dataset using a greater number
of drones.

In addition, the Drone Routing Problem (DRP) is progress-
ing continuously; researchers are studying new challenging
extensions of it momentarily. Consequently, proposing a better
algorithm to develop an enhanced program as a solution to
this substantial problem is an aspiration kept in mind. An
existing similar problem called the Subset-Sum problem could
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be beneficial for evolving the rules the MTMD algorithm
proposed.
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