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Abstract—In recent years, the status of ceramics in fields such
as art, culture, and historical research has been continuously
improving. However, the increase in malicious counterfeiting
and forgery of ceramics has disrupted the normal order of the
ceramic market and brought challenges to the identification of
authenticity. Due to the intricate and interfered nature of the
microscopic characteristics of ceramics, traditional identification
methods have been suffering from issues of low accuracy and
efficiency. To address these issues, there is a proposal for a
multi-scale fusion bottleneck structure and a chunking attention
module to improve the neural network model of Resnet50 and
perform ceramic microscopic image classification and recognition.
Firstly, the original bottleneck structure has been replaced with
a multi-scale fusion bottleneck structure, which can establish
a feature pyramid and establish associations between different
feature layers, effectively focusing on features at different scales.
Then, chunking attention modules are added to both the shallow
and deep networks, respectively, to establish remote dependencies
in low-level detail features and high-level semantic features, to
reduce the impact of convolutional receptive field restrictions. The
experimental results show that, in terms of classification accuracy
and other indicators, this model surpasses the mainstream neural
network models with a better classification accuracy of 3.98%
compared to the benchmark model Resnet50, achieving 98.74%.
Meanwhile, in comparison with non-convolutional network mod-
els, it has been found that convolutional models are more suitable
for the recognition of ceramic microscopic features.

Keywords—Deep learning; ceramic anti-counterfeiting; image
classification; attention mechanism

I. INTRODUCTION

Ceramics is a material and product discovered and pro-
duced by humans in their daily lives on Earth [1]. It is a hard
product made from minerals such as clay through a series of
physical and chemical reactions in a high-temperature environ-
ment. Due to its high practical value, the ceramic preparation
process has been passed down through generations, and over
time, this process has become increasingly refined. Throughout
different historical periods, there are representative ceramic
masterpieces characterized by a unique style, which to some
extent, reflects the levels of productivity in different periods.
Driven by this historical value, the trend of collecting ceramics
has naturally flourished, while also endows ceramics with
significant economic value. However, with the improvement
of the technological level, the considerable economic benefits
of ceramics have also given rise to the imitation industry. The
rough and deliberately made products maliciously infiltrate

Fig. 1. Ceramic identification objects: macroscopic and microscopic images.

every corner of the ceramics culture and trading market. This
phenomenon not only infringes on the legitimate rights and
interests of consumers. It also affects the dissemination and
promotion of ceramic art and culture. Therefore, adopting a
scientific and effective identification method is particularly
important.

In recent years, with the rapid development of the field
of computer vision, various universal visual tasks have been
continuously refreshed with optimal indicators. At the early
stage of the development of visual methods, visual feature
extraction was mainly carried out by designing manual features
[2]. In order to reduce the cost of feature engineering, the
deep learning method represented by Convolutional neural
network gradually has replaced the traditional manual feature
method and achieved an excellent performance in basic visual
tasks such as object detection and image segmentation [3],
[4]. In the field of ceramic identification, this image-based
identification method does not cause secondary damage to
ceramics, and with the help of visual algorithms, it can achieve
good differentiation of different ceramics. Therefore, scholars
have also invested in the study of ceramic images [5]. At
present, research on ceramic image identification has been
mainly based on a macro perspective, by designing manual
features or deep features for feature extraction, followed by
feature classification. However, with the advancement of the
ceramic manufacturing process, it is now possible to replicate
the macroscopic appearance of ceramics completely (as shown
in the left side of Fig. 1). It is less likely to guarantee the
accuracy of the identification results by solely relying on
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ceramic images for identification. During the physical and
chemical process of ceramic firing, microscopic features such
as crystallization and bubbles would emerge on the surface (as
shown in the right side of Fig. 1). Even ceramics with similar
macroscopic textures would exhibit certain differences when
observed from a microscopic perspective. These randomly dis-
tributed microscopic features and texture variations are akin to
the fingerprints of ceramics, endowing them with uniqueness.
Therefore, the microscopic images of ceramics are more suited
for the task of identification. On the other hand, currently,
there is a lack of publicly available ceramic microscopic
feature datasets in the market. In addition, personally-collected
microscopic datasets of ceramics are limited in scale, and the
complexity and non-uniformity of microscopic visual features
pose challenges in feature recognition. Therefore, there is an
urgent need for a specialized method in ceramic identification
through microscopic visual analysis.

Therefore, this paper proposes a multi-scale fusion bot-
tleneck structure and chunking attention module to solve
the above problems and constructs a deep residual multi-
scale network for feature classification of micro images of
Jingdezhen and Dehua ceramics. The main contributions can
be summarized as follows:

1) Shifting the research object in the field of ceramic
identification from ceramic composition and macro-
scopic images to the study of microscopic images
of ceramics. By collecting 12 pairs of microscopic
images of ceramics with similar macroscopic features
and conducting classification experiments, the effec-
tiveness of this study was verified, and to some extent,
the risks brought by ceramic imitation were solved.

2) Proposing a multi-scale fusion bottleneck structure
and a chunking attention module for capturing fea-
tures of different scales in images and reducing the
computational cost of establishing feature remote
dependencies. They can be easily embedded into deep
neural networks.

3) Making a model improvement was made on the clas-
sic deep residual network and incorporating the two
modules mentioned above. A deep residual network
based on multi-scale fusion and attention mechanism
was proposed, and in the collected ceramic micro
datasets, it surpassed the current mainstream classi-
fication models and achieved the optimal results of
benchmark testing.

The structure of this paper is arranged as follows: Section II
will discuss related work. Section III mainly illustrates the rel-
evant modules and algorithm processes in the model. Section
IV mainly focuses on the microscopic data and experimental
situation of ceramics and analyzes them. Section V discusses
and summarizes the research content of this paper.

II. RELATED WORK

In recent years, there have been many studies using images
as a medium in the field of porcelain product recognition.
Mu et al. [6] constructed manual visual features based on
the contour, texture, and other information of macroscopic
images of ancient ceramics and achieved a recognition rate
of over 95% in ceramic recognition. However, this manual

feature-based recognition method is only applicable to ancient
ceramics with relatively fixed shapes and cannot adapt to the
increasingly diverse types of modern ceramics. The develop-
ment of deep learning has somewhat solved the limitations
brought by manual features. Jiapeng et al. [7] used neural
networks to classify ceramic images of different macroscopic
shapes and achieved an accuracy of 92.62%. Yi et al. [8]
constructed a set of ceramic classification standards for visual
elements such as shape, color, and pattern of ceramics and
achieved 72% pattern classification accuracy through target de-
tection by using neural networks, ultimately formed a ceramic
classification system. Chetouani et al. [9], [10] automatically
classified the ceramic fragment images by constructing a
Convolutional neural network and achieved the best accuracy.
These studies have improved the archaeological efficiency and
verified the superiority of neural networks in the field of
ceramic classification. The above research on macroscopic
images of ceramics still has certain limitations in scenarios
with similar macroscopic features.

Therefore, another type of ceramic recognition research
designed the microscopic images of ceramics. Wang et al. [11]
proposed a fractal reconstruction method for high-temperature
ceramic surface images and established a fractal Convolutional
neural network model for image recognition, which achieved
a classification accuracy of 93.74%. Min et al. [12] recog-
nized the microscopic characteristics of ceramics through a
Convolutional neural network and then carried out feature
detection. Although these studies have shown some significant
effects in their respective application fields, they have not yet
taken into account the similarity in macroscopic appearance
in ceramic identification. In addition, ceramic microscopic
images can also be used for studying the properties and
identifying the composition of ceramics. Hogan et al. [13]
discovered the relationship between compression testing and
microstructure changes by conducting uniaxial and biaxial
compression experiments on ceramics and conducting stress
analysis while observing changes in ceramic microscopic im-
ages. Aprile et al. [14], [15] identified the composition of ce-
ramics through microscopic image acquisition methods such as
OM and conducted modal analysis. This method of detection
can avoid complex component extraction processes. In terms
of detection, Guang et al. [16] improved the YOLO v5 model
by combining the attention mechanism and depth separable
convolution to detect defects in ceramic tile surface images.
Huiliang et al. [17] used a graph structure clustering algorithm
and Convolutional neural network to detect defects on ceramic
tile surfaces. These studies have shown that Convolutional
neural networks can also be used in ceramic detection tasks.

On the other hand, convolutional neural networks are not
exclusive to pure image modal data. Yong et al. [18] used a
full Convolutional neural network to classify the components
of Jian kiln black glaze porcelain from the Song Dynasty
in Fujian Province, thereby assisting in the classification
of ceramics. This research also brought the possibility of
multimodal analysis of ceramics through a Convolutional
neural network and also had the prospect of using this
technology in the field of ceramic identification. In terms
of ceramic anti-counterfeiting, in addition to studying the
characteristics of ceramics themselves, some scholars have also
added anti-counterfeiting components to achieve ceramic anti-
counterfeiting. Jae et al. [19] invented an anti-counterfeiting
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material through spray pyrolysis and applied it to the field of
ceramic anti-counterfeiting. However, the identification cost
and threshold of the identification end cannot be avoided
by anti-counterfeiting in this way. Therefore, the pure image
method has its unique advantages in the identification of
ceramic authenticity. Nevertheless, current image recognition
algorithms face certain bottlenecks in the identification of ce-
ramic microscopic images. Methods based on manual features
exhibit low accuracy and poor generalization in identifying ce-
ramic microstructures, failing to meet the demands of complex
and diverse ceramic microscopic image recognition. In order to
address this issue, this paper enhances deep residual networks
by combining multi-scale fusion and attention mechanisms,
aiming to achieve high-accuracy identification of ceramic
microscopic images.

III. MODEL DESIGN

In the field of image classification, the Convolutional neural
network has always been a simple and effective model. The
depth residual Convolutional neural network proposed by this
paper, which is based on the combination of multi-scale and at-
tention mechanisms, is an efficient and effective Convolutional
neural network that has obvious performance advantages in the
field of ceramic microscopic image data and can effectively
characterize complex ceramic microscopic characteristics. In
this chapter, we will introduce the principles and techniques
related to the proposed multi-scale fusion bottleneck struc-
ture and chunking attention mechanism. Additionally, we will
present the main details of the model used for this ceramic
microscopic image classification task.

A. Multi-scale Fusion Module

In the design process of a Convolutional neural network,
to improve the feature extraction ability of the model, it is
often necessary to expand the scale of the model in a variety
of ways, the most representative of which is widening and
deepening [20], [21].Since the proposal of Resnet [22], this
field has, for the first time, expanded the depth of the model
to a scale greater than three digits, while also avoiding the risks
of model degradation and overfitting. The residual connection
and bottleneck structure proposed in this paper have also had
a profound impact on subsequent research [23]. In addition,
some researchers believe that the performance of the model is
confined by the local dependency of convolution operations.
Therefore, to make the model globally dependent, models
represented by attention mechanisms have emerged [24].

On the other hand, it has been observed that there are a
large number of bubble features and micro-texture information
in ceramic micro images, and there are also certain differences
in the background information of these key features. Therefore,
this background information is also worth utilizing. Based
on this motivation, a feature pyramid approach has been
introduced to fuse ceramic micro background information at
different scales. This multi-scale feature extraction method can
effectively improve the recognition ability of the model [25].

However, the current mainstream multi-scale feature ex-
traction methods have just simply stacked features, ignoring
the correlation and importance between different scale feature
maps. In order to integrate multi-scale features of the model

and explore the correlation between different scale features for
weighted fusion, this module establishes cross-correlations for
different scale features through the attention mechanism and
improves on the traditional bottleneck structure to form a new
multi-scale fusion bottleneck structure.

y

x

(a) (b) (c)

Fig. 2. Example diagram of ceramic microscopic characteristic coordinate
axis pooling.

1) Cross-scale coordinate attention mechanism: The cross-
scale coordinate attention mechanism can be seen as a feature
weighting operation for features from different scales. From
Fig. 2 (a), it can be observed that ceramic micro features
exhibit different distributions along the X and Y coordinate
axes, and their grayscale pooling features thermal maps are
shown in Fig. 2 (b) and Fig. 2 (c). Therefore, modeling the
information extracted from the X-axis and Y-axis directions in
ceramic microscopic images can enhance the model’s attention
to important features.

This attention mechanism accepts any two feature ten-
sor inputs of different scales, let it be set as Xx =
[xx

1 , xx
2 , ..., xx

C ] , Xy = [xy
1, xy

2, ..., xy
C ], where Xx, Xy ∈

RC×H×W . Firstly, encode the different channels of input
features along the X and Y axes to form two one-dimensional
feature sequences. The calculation process uses two global
feature pooling operations, represented as follows:

yxc (h) =
1
W

∑W
i=1 x

x
c (h, i)

yyc (w) =
1
H

∑H
i=1 x

y
c (w, i)

(1)

where, Yx = [yx1 , yx2 , ..., yxC ] and Yy = [xy
1, xy

2, ..., xy
C ]

represent the two coding sequences Yx ∈ RC×H×1 and Yy ∈
RC×W×1. This step captures the global position information
of the coordinate axis direction from different scale feature
maps, enhancing information sharing in the direction.

The second step is to concatenate the above features to
form a new feature whole. In order to make the features from
two scales interact effectively, it is usually considered to map
the tensor to another linear space. Therefore, using a 1 × 1
convolutional kernel can perform linear transformations on the
channel of the feature map, followed by feature activation and
other operations, represented as follows:

X = R
(
B
(
Conv1×1

c→c/r ([Yx, Yy])
))

(2)

where, X ∈ RC
r ×(H+W )×1. Conv refers to convolution

operation, and r refers to the compression ratio of the feature
channel. Generally, this number is an integral power of 2. In
this paper, r = 32, B refers to Batch Normalization, and R
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refers to the Activation function of a kind of deformation
of RELU, which can limit the data range to 0 to 1 to
better adapt to image characteristics. After that, the calculated
feature is taken as the initial attention score of the attention
mechanism, weight the feature, and then segment the size
feature corresponding to the original X-axis and Y-axis. For
the features corresponding to the X-axis and Y-axis, we also
pass two sets of 1× 1 convolution kernel is inversely mapped
into the linear space of the original input, and the activation
function is used to normalize the corresponding axis attention
score, which is expressed as follows:

Dx = F
(
Conv1×1

c/(hr)→c

(
VH
))

Dy = F
(
Conv1×1

c/(wr)→c

(
VW

)) (3)

where, VH ∈ RC
r ×H×1, VW ∈ RC

r ×W×1 represent
the feature inputs corresponding to X-axis and Y-axis, and
Dx ∈ RC×H×1, Dy ∈ RC×W×1 represent the feature outputs
corresponding to X-axis and Y-axis. The activation function F
is a sigmoid function, which exhibits an S-shaped growth curve
in biology. By applying this function during normalization, it
performs a nonlinear transformation of features, enabling the
model to recognize more complex features.

Finally, the original tensor has been weighted with the
attention fraction of the coordinate axis in the X-axis and Y-
axis directions as follows:

Y = Xx ⊙Dx ⊙Dy (4)

where, ⊙ represents the point multiplication operation of
the tensor, and Y ∈ RC×H×W represents the weighting result
of the tensor along the channel for its own X-axis feature and
the Y-axis feature of other scale tensors.

The above are the details of the cross-scale coordinate
attention mechanism. It should be noted that this module
focuses on the cross-influence between scales. Therefore, for
feature input, it is necessary to ensure that the size of the
feature tensor of the two scales is consistent. The specific
process is shown in Algorithm 1.

Algorithm 1 Cross-scale coordinate attention algorithm.

Input: Different scale feature Xx, Xy , squeeze ratio r.
Output: Cross-scale coordinate attention-weighted feature Y .

1: Compute Yx, Yy according to Eq. (1)
2: Compute X according to Eq. (2)
3: Compute S according to Eq. (2) without R
4: V = X ⊙ S
5: VH ,VW = Split (V)
6: Compute Dx,Dy according to Eq. (3)
7: Compute Y according to Eq. (4)
8: return Y

2) Multi-scale fusion bottleneck structure: The traditional
residual bottleneck structure is composed of two 1 × 1 and
a 3 × 3 convolution kernel stack. On this basis, the multi-
scale fusion bottleneck structure replaces the 3×3 convolution

kernel with multiple 3× 3 convolution kernels and introduces
the cross-scale coordinate attention mechanism to mine the
correlation between different scales.

Specifically, after the feature passes through the first 1× 1
convolution kernel, it is divided into s parts according to the
number of channels. Where the first s − 1 sub-features each
have a 3×3 convolution kernel corresponding to them one-to-
one, and the features entering the current convolution operation
are those formed as a result of the mutual accumulation of the
output of the previous convolution operation and the current
sub-feature. After the scale feature pyramid operation, distinc-
tive features such as bubbles will undergo further enhancement
through a chain of convolutional operations. This operation can
be represented as follows:

yi =


Conv3×3

c/r→c/r (xi) , i = 1

Conv3×3
c/r→c/r (yi−1 + xi) , 1 < i < s

xi, i = s

(5)

where, xi ∈ RC
s ×H×W and yi ∈ RC

s ×H×W denote
the input and output features, respectively. The variable s
represents the number of scale divisions, which is a factor
of channel number C.

However, it is important to note that the presence of
noise points in the feature map can contaminate the subject
features during the convolutional operation chain. This method
overlooks the differences and correlations between adjacent
scales, and the straightforward superposition of features can
magnify this error. Therefore, a cross-scale coordinate atten-
tion mechanism has been introduced between adjacent scale
features to enable the model to accurately identify important

Algorithm 2 Multi-scale fusion bottleneck structure.

Input: Input feature X , split number s.
Output: Output feature Y .

1: [x1, x2, ..., xs] = Split
(
Conv2D1×1

in→hidden (X)
)

2: out initial value is ⊘
3: for each i ∈ [1, s) do
4: if i ̸= 1 then
5: cur feat = Conv3×3

c/r→c/r (xi + pre feat)

6: cur feat = Relu (B (cur feat))
7: zi−1, i = Φ (pre feat, cur feat)
8: zi, i−1 = Φ (cur feat, pre feat)
9: out = Concat (out, zi−1, i, zi, i−1, cur feat)

10: else
11: cur feat = Conv3×3

c/r→c/r (x1)

12: cur feat = Relu (B (cur feat))
13: out = Concat (out, cur feat)
14: end if
15: pre feat = cur feat
16: end for
17: zs−1, s = Φ (pre feat, xs)
18: zs, s−1 = Φ (xs, pre feat)
19: Y = X + Concat (out, zs−1, s, zs, s−1, xs)
20: return Y
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Fig. 3. Flowchart of the multiscale fusion bottleneck structure when s = 4.

features. When calculating attention features between different
scales, it is important to consider both the influence of oneself
on adjacent scales and the influence of adjacent scales on
oneself. As a result, the total output quantity of the operation
is s + 2 × (s − 1). Here, s represents the amount of channel
segmentation for the original feature. This operation can be
represented as follows:

zi = Concat (Φ (yi−1, yi) , Φ (yi, yi−1)) , 1 < i ≤ s (6)

where, zi ∈ R2×C
s ×H×W represents the cross-scale co-

ordinate attention feature between adjacent scales, Concat
represents the connection operation between channels and Φ
represents the cross-scale coordinate attention operation.

Fig. 3 illustrates the multi-scale fusion bottleneck structure
when s = 4. After the aforementioned computations have
resulted in a feature map with a channel number of 3× s− 2,
a second 1×1 convolution is utilized to transform the channel
number to the standard quantity. The specific process is as
shown in Algorithm 2.

B. Chunking Attention Module

Since Self Attention [26], [27] has been proposed, it has
played a role in both computer vision and Natural language
processing. On this basis, many classic architectures have also
emerged [3], [4]. In contrast, the Convolutional neural network
lacks the ability to establish a long-distance global dependency,
so intuitively, it is very likely to establish such global depen-
dency for the Convolutional neural network by introducing the
Self Attention mechanism. However, the computational cost of

Self Attention is unexpectedly high, so there has been a series
of efforts to improve the problem and propose corresponding
solutions for different fields [28], [29]. In this section, a
method has been proposed based on Self Attention to establish
attention-weighted features between local and global blocks
through block partitioning. This approach effectively reduces
computational complexity while still enabling the establish-
ment of long-distance dependencies. This section describes
the techniques and principles of spatial chunking attention and
channel chunking attention.

1) Overview of self attention: The Self Attention mecha-
nism considers a feature tensor, respectively, as Query, Key,
and Value, and obtains its important features through the
operation between them. The calculation method is as follows:

Attention (Q, K, V ) = Softmax

(
Q⊗KT

√
dk

)
⊗ V (7)

where, ⊗ represents the Matrix multiplication of the tensor,
and Q, K, V ∈ Rn×dk represents the input characteristic
tensor. T represents the matrix transpose operation. In the field
of vision, the value of n is generally the size of the image
h×w, and dk represents the number of feature channels. This
formula includes two Matrix multiplications. First, through the
operation between Query and Key, and Softmax, the attention
score of each pixel in the global is calculated. The Softmax
formula is as follows:

Softmax (Xij) = eXij/

n∑
z=1

eXiz (8)
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Then, the global pixels are weighted by the second Matrix
multiplication. It is not difficult to find that the computational
complexity of this operation is Ω

(
2n2dk

)
. However, this com-

putational complexity is unacceptable before the feature map
undergoes multi-layer downsampling. It is noticed that pixels
interact with the entire feature map during the calculation of
the global attention score, which is the fundamental reason for
the increase in computational complexity. Therefore, Query,
Key, and Value have been redesigned to reduce computational
complexity.

2) Spatial chunking attention: The Spatial Chunking At-
tention module starts by dividing the feature map into uniform
spatial patches. Inspired by the divide-and-conquer algorithm,
it independently computes attention-weighted features for each
sub-patch. Finally, these features are merged to form the
Spatial Chunking Attention features. Fig. 4 illustrates the
calculation process of the Spatial Chunking Attention module,
which consists of the following specific steps:

Set the input feature tensor as X ∈ RC×H×W . Similarly,
before calculating attention scores, form preliminary Query,
Key, and Value tensors through a set of learnable convolutional
kernels, which are represented as follows:

Query = Conv1×1
C→C/r (X)

Key = Conv1×1
C→C/r (X)

V alue = Conv1×1
C→C (X)

(9)

where, Query, Key ∈ RC
r ×H×W , V alue ∈ RC×H×W .

Next, we divide the Query and Value inputs uniformly to create
two sets of patch sequences (Kh =

√
H, Kw =

√
W ), namely

Q ∈ RKh×Kw×
√
HW×C

r and V ∈ RKh×Kw×
√
HW×C . For the

definition of Key, if the Self Attention setting is followed, the
sub-patch will only have its own local dependency. Therefore,
perform global feature mean pooling and sample a set of glob-
ally abstract features as K, which is represented as follows:



K<i, j>
c/r = 1√

H×W

∑√
H

s=1

∑√
W

t=1 Keyc/r (u, v)

u = (i− 1)×
√
H + s, 1 ≤ i ≤ Kh

v = (j − 1)×
√
W + t, 1 ≤ j ≤ Kw

(10)

where, Kc/r ∈ R
√
HW×C

r . By solving attention scores
with globally abstract features, global dependencies can be
effectively established. At this point, the Spatial Chunking
Attention feature can be obtained through Eq. (8), which is
calculated as follows:

Y <i, j>
c = Softmax

(
Q<i, j>

c/r ⊗KT
c/r√

c/r

)
⊗ V <i, j>

c (11)

where, Y <i, j>
c ∈ R

√
HW×C represents the attention

weighted features of each patch. Afterward, merge the patch

features by location to restore spatial attention features Y ∈
RC×H×W .

Finally, a learnable feature has been proposed for model-
ing momentum representation in Spatial Chunking Attention,
which is represented as follows:


momentum = 0.5⊙ gamma/(1 + |gamma|) + 0.5

Z = momentum⊙ Y + (1−momentum)⊙X
(12)

where, momentum ∈ R1×1 represents the learnable
momentum value, with a range of [0, 1]. Z ∈ RC×H×W

represents the Spatial Chunking Attention weighted feature.
At this point, the solution for Spatial Chunking Attention
is obtained. It is worth noting that when partitioning the
feature map, it is necessary to ensure that the dimensions H
and W are perfect square numbers. Therefore, has been the
prerequisite is not met, the feature map needs to be padded
along the borders. This paper employs mirror padding, where
the mirrored content of the original feature map is filled
symmetrically with respect to the border.

V ProjK ProjQ Proj

Input Padding 

Embedding

Spatial Split

X:

X:

Q: K:

GAP Spatial Split

V:

Softmax

Merge & Momentum Representation

Y: 

Z: 

Spatial chunking attention module

Fig. 4. Flowchart of the spatial chunking attention module.

3) Channel chunking attention: In the process of image
downsampling, each highly abstract channel graph can be
regarded as a special class response, and the response relation-
ship between these channels together constitutes the semantic
information of the target. In order to identify complex and
disordered bubbles and other features in ceramic micro images,
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the analysis of the response relationship between channel
graphs can help the model understand the semantic information
of ceramic micro images, and then improve the accuracy of
recognition. Similarly, using Self Attention for channel global
interaction can easily cause the unacceptable computational
complexity of the model. Also, the idea of the divide and
conquer algorithm con be used to divide the channel graph
evenly, calculate the attention characteristics of each sub-
patch independently, and finally merge to form the Channel
Chunking Attention. The calculation process is as shown in
Fig. 5. The specific calculation steps are as follows:

Firstly, transform the number of channels in the feature
map using a set of 1 × 1 convolutional kernels, which is
represented as follows:

Query = Conv1×1
C→SC (X)

Key = Conv1×1
C→SC (X)

V alue = Conv1×1
C→SC (X)

(13)

where, X ∈ RC×H×W and Query, Key, V alue ∈
RSC×H×W . SC is the perfect square number greater than the
original number of channels. Similarly, after reconstructing the
number of channels, perform the average segmentation to form
two sets of Kch×Kcw patch sequences (Kch = Kcw = 4

√
SC),

namely Q, V ∈ RKch×Kcw×
√
SC×HW , for Query and Value.

For Key, use global feature mean pooling to obtain a set of
feature K, whose operation is represented as follows:



K<i, j>
sc = 1√

SC

∑Kch

s=1

∑Kcw

t=1 Keysc (u, v)

u = (i− 1)×Kch + s, 1 ≤ i ≤ Kch

v = (j − 1)×Kcw + t, 1 ≤ j ≤ Kcw

(14)

where, Ksc ∈ R
√
SC×HW . Afterward, we can establish a

global dependency on the channel through Eq. (8), which is
represented as follows:

Y <i, j>
sc = Softmax

(
Q<i, j>

sc ⊗KT
sc√

H ×W

)
⊗ V <i, j>

sc (15)

where, Y <i, j>
sc ∈ R

√
SC×HW represents the attention-

weighted feature of each channel patch. In addition, to restore
the feature dimension, it is necessary not only to merge each
channel patch but also apply a set of 1×1 convolutional kernels
to restore the number of channels. The representation is as
follows:

P = Conv1×1
SC→C (Y ) (16)

where, Y ∈ RSC×H×W represents the result of merging
patch features by channel, and P ∈ RC×H×W represents the
result of restoring the number of feature channels. Similarly,

Softmax

Y:  

Conv1×1

Transpose & Channel Padding 

Channel Split GAP Channel Split

X:

X:

Merge & Conv1×1

Momentum Representation

P:  

Channel chunking attention module

Fig. 5. Flowchart of the channel chunking attention module.

according to Eq. (12), a set of learnable momentum representa-
tions have also been designed for Channel Chunking Attention.
At this point, the solution for Channel Chunking Attention is
completed.

4) Complexity analytics: The Spatial Chunking Attention
mechanism divides the spatial plane into Kh × Kw sub-
patches on average. To simplify the analysis, it is assumed
that the tensor dimensions H and W are perfect square
numbers, so the size of each sub-patch is

√
H ×

√
W ×C/r.

Therefore, the Time complexity of solving attention score is

Ω

(
KhKw

(√
HW

)2
C/r

)
. The second part of the operation

is Matrix multiplication between the spatial attention score and
the Kh×Kw sub-patches of V , where V ∈ RKh×Kw×

√
HW×C

and Score ∈ RKh×Kw×
√
HW×

√
HW . Therefore, the Time

complexity of this part is Ω

(
KhKw

(√
HW

)2
C

)
. Based

on the above, the overall time complexity of this module is

denoted as Ω

((√
HW

)3
(1/r + 1)C

)
.

Similarly, the Channel Chunking Attention mechanism
divides channels into Kch × Kcw sub-patches on average.
The number of channels is assumed as a second-order perfect

square number, that is, SC and
(
⌊ 4
√
SC⌋

)4
are equal. For

the first part of the calculation of attention score, it is the
Matrix multiplication between Q ∈ RKch×Kcw×

√
SC×HW

and KT ∈ RHW×
√
SC , and the Time complexity is
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Ω

(
KchKcw

(√
SC
)2

HW

)
. The operation of the second

part is Matrix multiplication between the channel attention
score and the Kch × Kcw sub-patches of V . Where V ∈
RKch×Kcw×

√
SC×HW and Score ∈ RKch×Kcw×

√
SC×

√
SC .

It is not difficult to find that the Time complexity of this

part is Ω

(
KchKcw

(√
SC
)2

HW

)
. Therefore, the time

complexity of the Channel Chunking Attention module is

Ω

(
2
(√

SC
)3

HW

)
.

C. Model Backbone Architecture

The overall structure of this model is as shown in Fig. 6
(a), where the backbone network will be designed according
to the 4-stage principle [22]. Due to the different image repre-
sentation capabilities of each stage block, shallow stage blocks
retain more ceramic microscopic details, while deep stage
blocks have a higher level of abstraction ability for ceramic
microscopic images, which can extract higher-level semantic
information. Based on the above characteristics, the chunking
attention module has been added to the first and fourth stage
blocks, respectively, to enable the model to model global key
features, thereby combining low-level detail features with high-
level semantic features. In this way, the model can fully utilize
global contextual information and generate a more accurate
characterization of ceramic microscopic images.

The number of 4-stage bottleneck structures in the entire
backbone network is 3, 4, 6, and 3, respectively. In terms
of feature channel changes, the model first performs feature
convolution on the input image through a 7 × 7 large con-
volution kernel, and its output is a 64-channel feature tensor.
Next, in the first bottleneck structure in stage-1, the number of
channels is expanded to four times the original number, and the
number of internal channels remains unchanged. Therefore, the
feature output of this layer is a feature tensor of 256 channels.
Afterward, the next three stage blocks will undergo the feature
transfer in this form. The difference is that the first bottleneck
structure of each remaining stage will be expanded by twice
the number of channels, resulting in a final feature output
channel of 2048. In terms of feature size changes, for the
first bottleneck structure of each stage block, the convolution
operations will be used to downsample the features transmitted
from the shallow layer while maintaining the same feature
size within each stage block. Therefore, the corresponding
feature sizes within the four stage blocks are (H/4)× (W/4),
(H/8)× (W/8), (H/16)× (W/16), and (H/32)× (W/32).

For the bottleneck structure proposed in this paper, in terms
of cross-multi-scale fusion, the segmentation number of s = 4
has mainly been adopted to divide the feature channels. In
terms of Chunking Attention, it is noted note that Spatial
Chunking Attention helps the model capture spatial relation-
ships and local details in images, while Channel Chunking
Attention helps the model understand the interaction and im-
portance of different channels. Therefore, the reasonable com-
bination of Spatial Chunking Attention and Channel Chunking
Attention can make the model extract more robust semantic
features, so as to enhance the recognition ability of the model.
In order to effectively integrate the key features obtained by
the two modules, it is necessary to design a serial and parallel

feature computing structure, as shown in Fig. 6 (b) and Fig.
6 (c). In the serial structure, it is designed to cascade the two
modules and obtain the final feature representation through
sequential calculation. In parallel architecture, it is designed
to fuse the features of the two modules by adding them point
by point. Experiments have shown that both structures exhibit
excellent performance.

IV. EXPERIMENTS AND ANALYSIS

The experimental environment for the algorithm in this
paper is a 64-bit Ubuntu 16.04.1 operating system with an
Intel Core i9-10900k processor, 64GB of memory, an NVIDIA
GeForce RTX 2080Ti graphics card, and a tensor operation
library version of pytorch-1.8.1-cuda-10.1. This chapter will
first introduce the collection of ceramic microscopic data,
algorithm evaluation indicators, and experimental results, and
analyze the results.

A. Ceramic Microscopic Image Dataset

In this paper, a camera of 600 times optical is used to
collect microscopic images of 12 pairs of 24 Blue and white
pottery tea cups from Jingdezhen and Dehua Fig. 7). After
manual filtering of some pictures that are not correctly focused,
the final size of this ceramic data set is 1548 pictures. In terms
of dataset production, 24 tea cups have been divided into 24
categories, and their data formats were defined according to
the ImageNet dataset. The division ratio between the training
set and the test set is 7 : 3.

To simulate the real ceramic imitation scene, the macro-
scopic shape of each pair of blue and white porcelain tea
cups in the experiment will tend to be consistent. Therefore, if
the model correctly classifies all the pictures on this dataset,
especially the same pair of Blue and white pottery tea cups
can be correctly classified. So, it can be considered that this
model has high anti-counterfeiting performance for ceramics
and can capture more essential and discriminative features in
ceramic microscopic images. The number of samples collected
for each pair of ceramic microscopic images is as shown in
Fig. 8.

B. Evaluation Indicators

To objectively and fairly evaluate the performance of the
proposed model and its performance on ceramic microscope
image data, this paper will select evaluation indicators widely
used in machine learning to test the effectiveness of the pro-
posed model. Mainly including Accuracy(Acc), Precision(Pre),
Recall(Rec), F1-Score(F1) and Kappa(Kap). This paper also
calculates mAUC and mAP based on the Receiver Operating
Characteristic(ROC) curve and Precision-Recall (PR) curve,
respectively.

mAUC =
1

n
×
∑
i∈n

AUCi (17)

mAP =
1

n
×
∑
i∈n

APi (18)
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Fig. 6. Flowchart of the backbone network structure.

Fig. 7. Real object images of ceramic microscopic images captured by
industrial cameras.

In addition, due to the large number of learnable parameter
weights in the neural network model used in this paper,
including fully connected layers, convolutional layers, etc.,
its spatial and temporal costs are also worth paying attention
to. Therefore, this paper will introduce Params, FLOPs, and
inference time to evaluate the running cost of the model.
Among them, Params represent the parameter quantity of the
model, and FLOPs represent the number of floating-point
operations of the model. It is worth noting that due to the
presence of memory access costs (MAC), FLOPs cannot be
equivalent to inference time. Therefore, we will calculate the
average inference time for each ITERATION in the model.
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Fig. 8. The quantity distribution of ceramic microscopic image datasets.

C. Ablation Experiments

This study adopted a classic image classification experi-
mental process. In the pre-processing stage, it is scheduled
to randomly cut the original image to 224 × 224 pixels of
standard size and randomly flip it with a probability of 50% to
enhance the robustness of the model to interference. For neural
network parameter optimization, the AdamW optimizer has
been chosen with an initial learning rate of 0.001, a momentum
of 0.9, and a weight regularization term of 0.1. To ensure that
the model is not heavily influenced by significant updates in
the wrong direction during the early stages of training, a linear
warm-up learning rate strategy, which gradually increases the
learning rate from 0.0001 to the initial value of 0.001 over
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Fig. 9. Evaluation of the multi-scale fusion bottleneck structure in different
indicators.

the first 30 epochs has been adopted. Then, for the following
370 epochs, a cosine annealing learning rate decay strategy
has been employed. Through this training scheme, a total of
400 epochs, have been trained on the ceramic micro dataset
and comprehensively evaluated the performance of the model
on various indicators.

1) Effect of the multi-scale fusion bottleneck structure on
the experimental results: To verify the effectiveness of the
multi-scale fusion bottleneck structure on the ceramic micro-
scope image dataset, the classic Resnet50 [22] has been se-
lected as the benchmark and compared the changes in different
evaluation indicators before and after replacing the multi-scale
fusion bottleneck structure (see Table I). The results showed
that the replacement of the multi-scale fusion bottleneck struc-
ture increased the Top1 Accuracy by 3.56%, reaching 98.32%,
while the Top2 Accuracy increased by 0.42%, reaching 100%.
From the gap between Top1 Accuracy and Top2 Accuracy,
it can be seen that the model still has some performance
degradation even when factors such as texture are consistent.

TABLE I. COMPARISON OF PARTIAL RESULTS OF THE MULTI-SCALE
BOTTLENECK STRUCTURE UNDER BASELINE

Model Params FLOPs Time Top1-acc Top2-acc
(M) (G) (MS) (%) (%)

Baseline 23.557 4.109 102.65 94.76 99.58
+Cross Scale 36.1 6.535 76.9 98.32 100.00

In terms of the number of parameters and the number
of floating-point operations, due to the model’s use of scale
segmentation and the introduction of more convolutional ker-
nels and cross-attention calculations, both indicators have
correspondingly increased. It is worth noting that although
the computational complexity of the model has increased, the
adoption of a multi-scale fusion bottleneck structure with seg-
mented scales enables the model to have a higher parallelism.
According to the inference time test conducted on the GPU
for the last batch of data in the test sample, the network that
replaced this module showed a lower average inference time,
reduced by 25.75ms.
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(a) ROC curve plotting for each category.
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(b) PR curve plotting for each category.
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Fig. 10. The evaluation performance of multi-scale fusion bottleneck
structure in ROC and PR curves and the area under their curves.

As shown in Fig. 9, the Resnet50 model, which replaces
the multi-scale fusion bottleneck structure, has improved all the
six indicators in the figure. Among them, the Precision, Recall,
F1 Score, and Kappa coefficients have significantly increased,
with an increase of about 3%; While the increase of mAUC
and mAP is relatively low, to explore the performance results
of this module in the Receiver operating characteristic and PR
curve, Data and information visualization have been conducted
on the evaluation of various categories of ceramic microscopic
images:

First, in Fig. 10 (a) ROC curve, the multi-scale fusion
bottleneck structure is closer to the upper left corner than
the baseline model in most cases, and the baseline model has
some area gaps in most categories. Secondly, in Fig. 10 (b)
PR curve, it can be intuitively observed that the multi-scale
fusion bottleneck structure is generally closer to the upper right
corner. Based on the above two points, it indicates that the
improved multi-scale fusion bottleneck structure is effective
in improving the classification accuracy of various categories.

On the other hand, for each class of ROC curves and PR
curves, the AUC and AP metrics can be derived, respectively.
As shown in Fig. 10 (c) and Fig. 10 (d), the performance
of the baseline model and the multi-scale fusion bottleneck
structure for these two metrics in the 24 categories of ceramic
microscope image data. It can be observed that the multi-scale
fusion bottleneck structure outperforms the baseline model
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TABLE II. COMPARISON OF PARTIAL RESULTS OF THE CHUNKING
ATTENTION UNDER THE ORIGINAL BOTTLENECK STRUCTURE

Model Params FLOPs Time Top1-acc Top2-acc
(M) (G) (MS) (%) (%)

Baseline 23.557 4.109 102.65 94.76 99.58
+PA 37.143 6.06 74.80 94.76 99.58
+CA 49.966 6.677 92.42 95.39 99.79
+PCA-Serial 63.551 8.627 81.37 96.44 99.79
+PCA-Parallel 63.551 8.627 107.06 94.97 99.79

in most of the categories, especially on the data with more
complex features like ap-002, which also has a higher recog-
nition rate. To further verify whether the multi-scale fusion
bottleneck structure is significantly superior to the baseline
model in these two indicators, Wilcoxon signed rank test, a
non-parametric hypothesis testing method that can compare
the overall distribution differences between two paired samples
have also been conducted. Here, R+ and R- respectively
indicate the sum of ranks where the baseline model is greater
than and less than the multi-scale fusion model in paired
samples. In the testing process, the minimum value has been
mainly chosen between these two as the test statistic. The
larger the test statistic is the more significant the difference in
the indicators will be. In this paper, hypothesis tests have been
conducted at a significance level of α = 0.05. For the AUC
and AP metrics, the corresponding p-values are 0.0041 and
0.0027, both of which are smaller than the significance level
α; therefore, it is necessary to reject the null hypothesis H0

and accept the alternative hypothesis H1. This indicates that
the multi-scale fusion bottleneck structure exhibits significant
differences compared to the baseline model in both of these
metrics.

In summary, in the ceramic microscope image recognition
task, the multi-scale fusion bottleneck structure of this model
is superior to the 3× 3 convolution in the baseline bottleneck
structure. In the improvement of related tasks, it can be
considered to replace it with this module to achieve higher
recognition accuracy.

2) Effect of the chunking attention module combined with
primitive bottleneck structure on experimental results: To
verify the effectiveness of the chunking attention module,
Resnet50 has still been used as the baseline model in this
section and trained spatial chunking attention (PA) and channel
chunking attention (CA), as well as their serial fusion structure
(PCA Serial) and parallel fusion structure (PCA Parallel). The
changes have also been evaluated in different indicators on
the ceramic microscopic image dataset (see Table II). Under
the original bottleneck structure, the results showed that the
PA module was able to achieve the same accuracy as the
baseline model with an average inference time reduction of
27.85ms, while the CA module increased Top1 Accuracy and
Top2 Accuracy by 0.63% and 0.21%, respectively, based on an
average inference time reduction of 10.03ms. In the serial and
parallel structures fused with PA and CA, the Top1 Accuracy
has been improved by 1.68% and 0.21%, respectively, but there
is a significant difference in time between the two structures.

It is observed that in the parallel structure, Top1 Accu-
racy decreased by 0.42% compared to the CA module. This
difference may be related to the limited ability of 3 × 3

convolutions in the original bottleneck structure for feature
extraction. Therefore, in a parallel structure, the PA and
CA modules calculate two feature tensors with significant
distribution differences, and adding them up may interfere with
the high-quality features extracted by the channel attention
module, thereby reducing the recognition performance of the
model. On the contrary, cascaded serial structures can further
model the relationships between channels based on global
spatial modeling, thus being able to identify more significant
ceramic microscopic features. Therefore, when the feature
extraction ability of bottleneck structure is limited, priority
should be given to using serial fusion to avoid performance
degradation results from distribution differences.
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Fig. 11. Evaluation of the chunking attention module for different metrics in
the original bottleneck structure.

Fig. 11 shows the performance of this module in other
indicators, demonstrating the optimal effect by integrating spa-
tial and channel chunking attention through a serial structure.
At the same time, the improved model with only Spatial
Chunking Attention and Channel Chunking Attention also
has some improvement compared to the benchmark model,
indicating that this module can further improve the micro
recognition ability of the model in the benchmark model with
comparatively limited representation ability.

In addition, when evaluating mAUC and mAP, the perfor-
mance of different categories has been examined separately.
From Fig. 12, it can be seen that the baseline structure with
the addition of the PCA-Serial module exhibits the optimal
level of classification ability for all categories. Table III shows
the Wilcoxon signed rank test results for the baseline model
and ablation module. Under the two evaluation indicators of
AUC and AP, it can be concluded that the PCA-Serial module
is significantly superior to the benchmark model, thus proving
the effectiveness of the block-based attention module proposed
in this paper.

3) Effect of the chunking attention modules combined with
multi-scale fusion bottleneck structure on experimental results:
To verify the effectiveness of the proposed chunking attention
module in feature extraction modules with strong represen-
tation capabilities, this paper has been devoted to replacing
the original bottleneck structure of Resnet50 with a multi-
scale fusion bottleneck structure and using this as a baseline
model for ablation experiments of spatial chunking attention
(PA) and channel chunking attention (CA). According to the
results in Table IV and Fig. 13, the model with the addition
of the CA module showed significant improvement in various
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TABLE III. THE WILCOXON SIGNED-RANK TEST OF THE CHUNKING ATTENTION UNDER THE ORIGINAL BOTTLENECK STRUCTURE

Baseline AUC AP

vs. R+ R- P-value Sig. R+ R- P-value Sig.

+PA 38.5 66.5 0.3792 No 40 65 0.4326 No
+CA 34.5 70.5 0.2583 No 38 67 0.3627 No

+PCA-Serial 15.5 120.5 0.0066 Yes 35 118 0.0494 Yes
+PCA-Parallel 38 67 0.3624 No 37 68 0.3305 No
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Fig. 12. Comparison of metrics AUC and AP per category in the original
bottleneck structure for the chunking attention module.

indicators, while the PA module had almost no improvement in
the model’s recognition ability and even had inhibitory effects
on certain indicators. It is believed that this suppression effect
may be due to the modeling of multi-scale fusion structure
and PA modules in the spatial dimension, resulting in mutual
redundancy and suppression, exacerbating noise in the spatial
dimension, and ultimately losing the recognition ability of
some key features. However, in the module that integrates PA
and CA, the channel chunking attention introduces much more
robust channel information, which offsets the aforementioned
suppression effect. Therefore, it further improves the recogni-
tion performance in both serial and parallel fusion structures.
In particular, the parallel fusion structure further optimizes
the inference time and achieves optimal results in all metrics
compared to adding PA and CA modules separately.

TABLE IV. COMPARISON OF PARTIAL RESULTS OF THE CHUNKING
ATTENTION UNDER THE MULTI-SCALE FUSION BOTTLENECK STRUCTURE

Model Params FLOPs Time Top1-acc Top2-acc
(M) (G) (MS) (%) (%)

Baseline 36.1 6.535 76.9 98.32 100.00
+PA 49.685 8.485 95.59 98.32 100.00
+CA 62.508 9.102 96.83 98.53 99.79
+PCA-Serial 76.094 11.052 107.95 98.74 100.00
+PCA-Parallel 76.094 11.052 91.46 98.74 100.00

V. DISCUSSION AND CONCLUSIONS

In addition, it was observed in Fig. 14 that the model
with PCA-Parallel showed a decrease in AUC and AP in
very few ceramic samples, but according to the test results
in Table V, the difference between these two indicators was
not so significant compared to the baseline model. Based on
the performance of various indicators, PCA-Parallel is still the
best choice for ceramic microscope image recognition.

1) Effect of different block attention embedding structures
on experimental results: Considering the potential impact of
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Fig. 14. Comparison of metrics AUC and AP per category in the multi-scale
fusion bottleneck structure for the chunking attention module.

PA and CA on different stage blocks of the backbone model
in the ceramic microscope image dataset, a series of combined
experiments with different embedding structures have been
designed to determine the optimal neural network architec-
ture. As shown in Table VII, four embedding methods have
been demonstrated: Version A represents embedding chunking
attention modules into each stage block, which results in the
maximum space and time overhead of the model. Version B
only embeds chunking attention in stages like stage-1 and
stage-4. It is believed that this structure can effectively estab-
lish the remote dependencies between low-level detail features
and high-level semantic features. Version C means that all
stages except stage-1 are embedded with chunking attention.
This way will abandon the modeling of low-level details and
focus on the expression of semantic information at different
levels of abstraction. The D version only embeds chunking
attention in the stage-4 stage, and compared to versions a, b,
and c, the D version has the smallest space and time overhead.

As shown in Table VI, this section of the experiments
was conducted on the three best-performing models from
previous experiments. These models include the one based on
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TABLE V. THE WILCOXON SIGNED-RANK TEST OF THE CHUNKING ATTENTION UNDER THE MULTI-SCALE FUSION BOTTLENECK STRUCTURE

Baseline AUC AP

vs. R+ R- P-value Sig. R+ R- P-value Sig.

+PA 10 18 0.4990 No 19 36 0.3862 No
+CA 11 25 0.3264 No 17 28 0.5147 No

+PCA-Serial 3 18 0.1148 No 13 42 0.1381 No
+PCA-Parallel 12 9 0.7532 No 16.5 19.5 0.8334 No

TABLE VI. COMPARE THE RESULTS OF DIFFERENT EMBEDDING METHODS

Model Version Params(M) FLOPs(G) Time(MS) Acc(%) Pre(%) Rec(%) F1(%) Kap(%)

+PCA-Serial

A 86.125 16.066 118.39 97.27 97.29 97.26 97.25 97.14
B 63.551 8.627 81.37 96.44 96.52 96.30 96.29 96.26
C 85.521 13.925 91.12 97.06 97.21 96.94 96.93 96.92
D 62.947 6.485 85.67 96.02 95.71 95.51 95.54 95.82

+Cross Scale
+PCA-Serial

A 98.668 18.492 142.79 98.32 98.31 98.25 98.23 98.24
B 76.094 11.052 107.95 98.74 98.39 98.33 98.29 98.68
C 98.063 16.35 120.57 97.90 97.70 97.62 97.55 97.80
D 75.489 8.91 99.46 98.74 98.36 98.35 98.30 98.68

+Cross Scale
+PCA-Parallel

A 98.668 18.492 142.58 97.90 97.67 97.61 97.62 97.80
B 76.094 11.052 91.46 98.74 98.73 98.65 98.60 98.68
C 98.063 16.35 116.27 97.69 98.03 97.91 97.88 97.58
D 75.489 8.91 102.64 98.53 98.38 98.24 98.24 98.46
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Fig. 15. The confusion matrix of this model on the ceramic microscopic
dataset.

TABLE VII. DIFFERENT EMBEDDING METHODS FOR CHUNKING
ATTENTION MODULES

Version Stage-1 Stage-2 Stage-3 Stage-4

A ! ! ! !

B ! % % !

C % ! ! !

D % % % !

the original bottleneck structure with the addition of PCA-
Serial and the one based on a multi-scale fusion bottleneck
structure with the addition of PCA-Serial and PCA-Parallel,

respectively. The experimental results are shown as follows:

In the original Resnet50 with the addition of PCA-Serial,
the embedding structure of version A performed the best. From
the evaluation results of different embedding structures, it can
be found that the results of different indicators also show
an overall upward trend as the number of chunking attention
embeddings increases. This is consistent with the motivation
of this study to explore the insufficient recognition ability of
basic bottleneck structures. Therefore, chunking attention can
effectively alleviate this defect and improve the performance
of the model.

In the model with the addition of PCA-Serial and replace-
ment of the multi-scale fusion bottleneck structure, chunked
attention did not show a significant ability to improve, with ver-
sions B and D performing the best, with version D showing the
best level of performance across a wide range of metrics. It is
believed that the global modeling capabilities of the chunking
attention fusion module and the multi-scale fusion bottleneck
structure in a serial structure are equivalent. In some features,
there is a coupling relationship between the recognition of
these two structures. Therefore, simply modeling high-level
semantic features can improve the effectiveness. However, in
indicators sensitive to positive and negative samples, there is
still some room for improvement in this structure. On the other
hand, compared to the original Resnet50 model, this model
has achieved an improvement of approximately 1% to 3%,
further demonstrating the superiority of the multi-scale fusion
bottleneck structure.

Finally, in the model that added PCA-Parallel and replaced
the multi-scale fusion bottleneck structure, version B showed
the best performance among all versions. Therefore, it is be-
lieved that the method of modeling remote dependencies based
on both low-level and high-level semantic features proposed
in this paper is effective. However, from other versions of this
chunking attention fusion method, it can also be found that
this method is more sensitive to the recognition ability of other
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Fig. 16. Compare the Grad-CAM visualization results of deep and shallow
modules in different models.

modules. For most application scenarios, there are serial fusion
structures have better adaptability. Therefore, when selecting
a model, specific data characteristics should be considered.

In summary, by integrating spatial and channel chunking
attention modules into the network in different ways, it is
very likely to maximize the advantages of each stage block
of the model and enhance its performance in semantic feature
extraction and recognition. These research results have further
expanded the understanding of the attention mechanism of
ceramic microscopic image data and provided valuable ref-
erences for future similar map image classification tasks.

A. Comparative Experiments

In this section, the proposed model has been pro-
posed with the most classic and advanced backbone
models in different fields of neural networks in re-
cent years: VGG11[33], WResnet50[30], Resnext50[31],
Densenet121[34], SEResnet50[24], Vision Transformer(VIT-
B)[3], Conformer[35], MLP-mixer[36], Resnest50[32], Vision
GNN (VIG-B)[38] and Hornet[37].

The detailed comparison results are as shown in Table VIII,
indicating that the model proposed in this paper has achieved
the best performance among all evaluation indicators. Fig. 15
shows the Confusion matrix of this model. It can be seen that
all types of models show accurate prediction ability, and the
matrix is approximately a diagonal matrix, which indicates
that this model has good feature recognition ability. The first
four Resnet-type models have shown relatively cutting-edge
performance in ceramic microscope image recognition. In
recent years, the improvement direction has mainly focused on
attention mechanisms. The algorithm of combining chunking
attention with multi-scale fusion bottleneck structure in this
paper has refreshed the performance of various indicators of
this type of model, providing a new baseline for subsequent
research.

On the other hand, the results show that most models of the
non-Resnet type models have a significantly lower recognition
ability than this type of model. This is because compared to
Resnet-type models, the extraction ability of other models is
insufficient when modeling the relationship between global
and local features, especially in the complex microstructure
of ceramics, which can be amplified. Unlike this, models such
as convolutions typically have stronger feature extraction capa-
bilities. For example, convolutional-dependent networks such
as Densenet121 and Conformer perform similarly to Resnet-
type networks, and our improvement direction only needs to
overcome the local dependencies of convolutional operations.
Therefore, when dealing with ceramic micro recognition tasks,
especially fine-grained image classification problems, priority
should be given to neural network models such as convolution.

In addition, it is worth noting that VIG-B, a modeling
method based on the relationship between Tokens, still has
certain competitiveness in classification. The feature space
belonging to this method is different from the Euclidean space
adapted by traditional attention mechanisms. The relationship
graph structure can make the extracted features more robust,
so this is also a research direction worth exploring in future
work.

B. Visualization Analysis

To further demonstrate the superiority of this model, this
model has been selected, Resnet50, VIT-B, and VIG-B, and
five images have been randomly selected from the dataset for
Grad-CAM class activation map visualization. The gradient
thermal maps have been produced for both shallow and deep
modules of each model.

From Fig. 16, it can be observed that in the shallow module
section, this model captures the details of ceramic micro
images more comprehensively than other models, and can
effectively identify fine-grained details, such as bubble features
and texture features on the ceramic micro surface. In the task
of ceramic anti-counterfeiting recognition, the accurate recog-
nition of this information directly affects the identification
results. In contrast, although Resnet50 can capture individual
details to some extent, its level of attention is limited. This also
reflects the effectiveness of the chunking attention module and
multi-scale fusion bottleneck structure in this model. Although
both VIG-B based on graph structure and VIT-B based on
self-attention can also cover some features, there are problems
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(a) VIT-B
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(b) MLP-mixer
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(c) Hornet

150 100 50 0 50 100 150
150

100

50

0

50

100

150

ad-001
ad-002
ae-001
ae-002
ag-001
ag-002
ak-001
ak-002
am-001
am-002
an-001
an-002
ao-001
ao-002
ap-001
ap-002
aq-001
aq-002
ar-001
ar-002
at-001
at-002
au-001
au-002

(d) VIG-B
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(f) Ours

Fig. 17. Compare the clustering diagrams of ceramic microscopic data in the t-SNE algorithm using different models.

TABLE VIII. COMPARISON OF RESULTS BETWEEN DIFFERENT MODELS

Model Year Params(M) FLOPs(G) Time(MS) Acc(%) Pre(%) Rec(%) F1(%) Kap(%)

WResnet50[30] 2016 66.883 11.425 94.57 95.81 95.76 95.73 95.68 95.60
Resnext50[31] 2016 23.029 4.257 104.94 96.86 96.78 96.61 96.61 96.70

SEResnet50[24] 2018 26.088 4.117 92.41 95.39 95.68 95.63 95.51 95.16
Resnest50[32] 2022 25.483 5.4 101.87 97.90 97.69 97.69 97.65 97.80

VGG11[33] 2014 132.096 7.605 96.49 84.28 84.22 83.59 83.54 83.49
Densenet121[34] 2017 6.978 2.865 78.28 98.11 97.74 97.63 97.58 98.02

VIT-B[3] 2020 85.817 17.582 95.17 76.31 79.61 76.92 76.93 75.13
Conformer[35] 2021 81.226 23.401 115.39 93.08 93.81 93.42 93.38 92.73
MLP-mixer[36] 2021 59.13 12.62 89.47 72.96 72.30 72.24 71.51 71.61

Hornet[37] 2022 86.256 15.583 91.41 73.79 75.67 74.26 74.32 72.47
VIG-B[38] 2022 85.841 17.681 140.29 90.99 91.76 91.66 91.51 90.53

Ours 2023 76.094 11.052 91.46 98.74 98.73 98.65 98.60 98.68

such as scattered and incomplete focus areas, which affect
subsequent feature recognition. In the deep module section,
due to the establishment of remote dependency and multi-scale
fusion features in this model, it extracts more comprehensive
semantic information. At the same time, our model reduces
the attention to noise bubbles in some images, which is a key
difference from models such as VIG-B, thereby improving the
recognition accuracy of the model.

In addition, experiments have also been conducted by using
the t-SNE feature clustering algorithm to cluster and visualize
the model. It is designed to mainly compare the effects of VIT-
B, VIG-B, Resnet50, MLP-mixer, and Hornet models. From
Fig. 17, it can be observed that each model achieved certain
results in partitioning 24 clusters. In comparison, convolution-
based models are more effective in increasing the distance be-
tween different categories, whereas non-convolutional frame-

works such as VIT-B and MLP-mixer are limited by their lower
recognition accuracy and less clear boundaries between the
output features. Compared to Resnet50, this model can reduce
the spacing within the same cluster, which helps the model
better complete feature classification tasks. This result further
proves the effectiveness of the chunking attention module and
multi-scale fusion bottleneck structure in this model.

Based on Resnet50, this study has proposed a segmented
attention module and a multi-scale fusion bottleneck structure
to improve the existing network model and applied it to the
ceramic microscope image classification task for ceramic anti-
counterfeiting. It is found that the current popular universal
visual recognition deep learning model has certain limita-
tions in complex ceramic micro feature recognition, and the
recognition performance of Token-based models is not as
good as that of convolutional-based models. However, the
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Convolutional neural network model also has the problem of a
limited Receptive field. Therefore, the two improved modules
proposed in this study can break through this limitation to a
certain extent and further enhance the recognition effect based
on a Convolutional neural network.

After experimental verification, this model has improved
recognition accuracy by 3.98% compared to the baseline
model, and has also shown similar improvements in indicators
such as recall rate. In the collected ceramic microscopic image
dataset, this model has achieved a recognition accuracy of
98.74%, surpassing the recognition accuracy of mainstream
models such as Vision Transformer by more than 20%. This
result further confirms the viewpoint that convolution is more
suitable for ceramic microscope image recognition tasks.

In summary, this improved model has demonstrated certain
advantages in ceramic microscope image recognition and anti-
counterfeiting tasks. In future work, it will note that ceramics
also contain textual modal information such as place of origin,
which may also play a certain role in ceramic recognition.
However, effectively integrating data from different modalities
and achieving consistent expected results is a relatively chal-
lenging challenge in this field. In the next step of our work,
we plan to explore how to fuse features of different modalities
to further improve the recognition accuracy of the model.
We will focus on studying how to effectively integrate text
information and image information to achieve more accurate
ceramic recognition and anti-counterfeiting targets. At the
same time, we also plan to explore the intrinsic characteristics
of ceramics to further enhance the level of anti-counterfeiting
technology. These works will provide certain assistance and
promotion for the development and application of the ceramic
anti-counterfeiting field.
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