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Abstract—Endoscopic image is a manifestation of visualization
technology to the human gastrointestinal tract, allowing detection
of abnormalities, characterization of lesions, and guidance for
therapeutic interventions. Accurate and reliable classification of
endoscopy images remains challenging due to variations in image
quality, diverse anatomical structures, and subtle abnormalities
such as polyps and ulcers. Convolutional Neural Network (CNN)
is widely used in modern medical imaging, especially for ab-
normality classification tasks. However, relying on a single CNN
classifier limits the model’s ability to capture endoscopy images’
full complexity and variability. A potential solution to the problem
involves employing ensemble learning, which combines multiple
models to reach at a final decision. Nevertheless, this learning
approach presents several challenges, notably a significant risk
of data bias. This issue arises from the unequal influence of weak
and strong learners in most ensemble strategies, such as standard
voting, which usually depend on certain assumptions, including
equal performance among the models. However, it reduces the
capability towards diverse model collaboration. Therefore, this
paper proposes two solutions to the problems. Firstly, we create
a diverse pool of CNNs with end-to-end approach. This approach
promotes model diversity and enhances confidence in making a
final decision. Secondly, we propose employing Particle Swarm
Optimization to enhance the weight of the members in the
ensemble learner in order to create a more resilient and accurate
model compared to the standard ensemble learning approach.
The experiment demonstrates that the proposed ensemble model
outperforms the baseline model on both the Kvasir 1 and Kvasir 2
datasets, highlighting the effectiveness of the suggested approach
in integrating diverse information from the baseline model. This
enhanced performance highlights the efficacy of capturing diverse
information from the baseline model.

Keywords—Convolution neural network; particle swarm opti-
mization; diversity; weighted ensemble

I. INTRODUCTION

The role of endoscopy images in diagnosing and treat-
ing gastrointestinal diseases is crucial. They provide a vi-
sual representation of the gastrointestinal tract, enabling the
identification of abnormalities, characterization of lesions,
and guidance for therapeutic interventions. The precise and
reliable classification of these images continues to pose a
significant challenge because of variations in image quality,
diverse anatomical structures, and subtle abnormalities. These
challenges highlight the need for the development of advanced
techniques that can enhance classification accuracy and im-
prove the overall effectiveness of endoscopic examinations.
Computer-Aided Diagnosis (CAD) systems use advanced im-
age processing techniques along with Artificial Intelligent (AI),

Machine Learning (ML) and Deep Learning (DL) to provide
reliable diagnoses. One of the remaining challenges in CAD is
designing a system that can deliver the best satisfactory results
for the recognition or classification in the diagnostic process.
Previous research has established a crucial foundation for using
Support Vector Machines (SVM) in identifying illnesses such
as polyps and ulcers, as well as for leveraging Convolutional
Neural Networks (CNN) in detecting bleeding [1], [2], [3],
[4], [5]. Previous studies have mostly used single models for
analyzing endoscopy images. However, these models may not
fully capture the complexity and variability of the images.
To address this limitation, an effective solution is to employ
ensemble learning. This approach combines multiple models
to predict a common target and make conclusive decisions,
effectively mitigating bias and ultimately yielding higher-
quality predictions compared to using a single classifier.

Ensemble learning has emerged as a prominent research
area over the past few decades. In classification tasks, ensem-
ble learning combines the strengths of multiple classifiers to
improve overall performance by leveraging their diversity. The
learning scheme distinguishes between two classifier concepts:
strong and weak learner. Strong learners typically yield a lower
error rate compared to weak learner, whereas weak learner
predictions outperform random guessing [6]. The concept of
weak and strong learners has developed into a more advanced
ensemble approach known as Adaboost. This approach has
further established the principles of bootstrapping and stacking.
However, in the field of ML today, ensemble learning primarily
revolves around bagging, boosting, and stacking. Bagging,
which was originally proposed [7], significantly enhances the
performance of models by applying a parallel sampling scheme
to the dataset. Boosting methods, introduced in [8], train
each subsequent model to rectify the mistakes made by the
previous one. The classifiers in boosting are interdependent
and rely on each other, leading to a collaborative learning
process. The errors made by one classifier directly impact the
performance of the next classifier. On the other hand, stacking
involves utilizing a training model to combine predictions from
multiple base learners in a diverse manner. By leveraging both
base and meta learners, stacking offers a robust framework.
Nevertheless, ensemble learning in ML is distinct from DL.

The predominant approach in DL research is the utilization
of DL models to construct diverse model structures. This
necessitates meticulous consideration of hyperparameter val-
ues, a process that demands significant time. To overcome
this issue, researchers have started exploring automated hy-
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perparameter optimization techniques in DL. This technique
commonly involving the use of algorithms such as Particle
Swarm Optimization (PSO) and Genetic Algorithms to ex-
plore the hyperparameter space and find the best combination
for better model performance [9], [10]. However, automatic
tuning of huge number of parameters in CNN is costly. On
the other hand, fine-tuning with pre-trained weights, such as
ImageNet, has been questioned in some research because it
was found that the performance did not surpass that of random
initialization [11], [12]. In addition, combining the DL model
with different ML algorithms generates fair performance [13],
[14]. Therefore, ensemble learning in DL is often presented
in a simple ensemble structure, such as a standard average
and majority voting approach. In the other hand, combining
multiple models using those voting methods raises challenges,
such as the increased risk of bias, especially when the baseline
models have imbalanced performance [15].

As the remedy to the earlier problems mentioned above,
in this paper primarily focuses on investigating a deep ensem-
ble learning mechanism that underscores two crucial aspects
essential for achieving successful ensemble performance: di-
versity and quality. As an initial step, we establish a diverse
pool of Convolutional Neural Networks (CNNs). Our proposal
focuses on two key aspects: (a) color transformation, and (b)
model component. Furthermore, rather than relying on the
average vote of the final decision among the models, we utilize
Particle Swarm Optimization (PSO) to calculate the optimal
weight for each individual model. This approach amplifies
the strength of the more capable learners, resulting in a more
resilient and precise outcome. Our main goal in this paper is to
create the best combinations of models to effectively handle
the wide range of variations and subtle abnormalities in the
Kvasir dataset [16]. We are highly motivated to conduct this
research as it is crucial for our future objectives, particularly
in regard to handling actual hospital data that encompasses a
diverse range of disease categories and types. Moreover, this
research has the potential to assist researchers and practitioners
in developing even more effective algorithms for diagnosing
gastrointestinal conditions in patients with different disease
categories and varying disease conditions.

In this paper, we have dedicated Section II to comprehen-
sively discuss the existing research pertaining to our study.
Building upon this literature review, we will elaborate on
the methodology that we are proposing in Section III. Then,
in the Section IV, we will present details about the dataset
utilized, followed by a thorough discussion of the experimental
results in Section V, and finally, a comprehensive conclusion
in Section VI.

II. RELATED WORKS

In a previous study by [17], researchers implemented an
ensemble scheme to detect ulcers in endoscopy images. The
scheme integrated multiple models such as KNN, MLP, and
SVM, using a majority voting approach. The final test con-
ducted on various color space input images demonstrated the
superiority of RGB color over HIS and YCrCb, achieving an
impressive accuracy of approximately 91.25%. Despite these
advancements, the proposed approach has raised concerns
about overfitting due to its minimal training data requirement.

While, in [18], an automatic detection method for cervical pre-
cancer screening was introduced, using a larger total number
of images. The authors propose a combination of three DL ar-
chitectures: RetinaNet, Deep SVDD, and CNN. The ensemble
model outperforms individual models in terms of performance;
however, the accuracy of the results is compromised due to
the presence of image noise, such as blurring. Based on the
literature provided above, the use of ensemble learning extends
far beyond the mere modeling of classifiers. It encompasses
a crucial aspect, which is the preparation of the data prior
to its input into the model. From this, it is evident that
the differentiating factors among various ensemble methods
revolve around the construction of the model and the fusion of
the ultimate decisions. Consequently, it is important to explore
two principal aspects: (i) the diversity of models, and (ii) the
quality of models.

A. Diversity

Model diversity refers to the process of generating multiple
classifiers in order to introduce variation in the decision-
making of the classifiers. Most of research aims to promote
diversity by modifying various aspects of the network architec-
ture, such as pre-processing data, tuning hyperparameters, and
initializing weights. Data preprocessing is essential for suc-
cessful classification. For example, as shown in [2], converting
image data to the HSV color space and segmenting affected
areas is essential for defining ulcer boundaries, thus enhancing
the model’s identification process. Utilizing different color
spaces, such as YCbCr [3], has notably improved curvature
identification accuracy using MLP. Additionally, incorporating
hybrid techniques like CLAHE and Retinex can enhance polyp
detection by preserving important elements like edges and tex-
ture [4], [19]. While in study [2] the utilization of filters such
as Log Gabor and SUSAN corner detection greatly enhances
the precision in identifying polyp boundaries using SVM.
Further, CNN has numerous hyperparameters, including layer
type, number of feature maps, number of neurons, kernel size,
and weight. Automatically tuning all these hyperparameters
with an optimization algorithm can be both costly and time-
consuming. Therefore, narrowing the focus of evaluation to
specific parameter such as weight can result in cost reductions.

Weight initialization in DL can be done in two main ways.
The first way is by using a random distribution. The second
way is by using a data-driven process. Using random initial-
ization methods based on the Gaussian distribution can lead
to slow convergence and saturated activations. To address the
mentioned issue, [20] introduces an alternative approach to the
one proposed by ‘He’ [21]. ‘Glorot’ assumes linear activations,
while ‘He’ uses the ReLU activation function to introduce non-
linearity in hidden layers, making ‘He’ initialization superior to
‘Glorot’ in certain DL models. Meanwhile, another Gaussian-
based filter, Gabor, is a highly effective technique used to
detect edges and textures in endoscopy images [2]. The Gabor
filter breaks down images into different scales and orientations,
allowing for a more accurate analysis of texture patterns.
The Eq. (1) showcases the complex form of the Gabor filter,
underscoring its intricate yet powerful capabilities.

www.ijacsa.thesai.org 1138 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

G(x, y, σ, θ, λ, γ,Ψ) = (−x
′2 + y2y′2

2σ2
)exp(i(2Π

x′

λ
) + ψ)

x′ = ccosθ + ysinθ

y′ = −csinθ + ycosθ
(1)

In contrast, the data-driven approach, such as [22], builds a
set of patches using training images to construct new weights.
The weight in this network was generated using PCA filters.
The process has three stages. The first and second stages
involve PCA convolution over the image patches. The third
stage is the output layer, which includes data processing
components like binary hashing and block-wise histogram.
This filter extracts distinctive features by generating various
textures for different datasets. Eq. (2) explains the process of
generating PCA filters from image patches. The size of the
patch in the first stage is represented by k1 and k2.

Wn
l = fk1k2(q1XX

T ) ∈ Rk1k2, l = 1, 2, ..., Li (2)

gi =
[
Bhist(T 1

i ), ..., Bhist(T
L1
i )

]T ∈ R(2L2)L1B (3)

fk1k2 is a function that maps patches to the matrix W,
which will then be multiplied by the principal eigenvector
XXT . While in the second stage, it is repeating the same
process as in the first stage. Further, in the final stage encodes
the Li images into histogram values in each block and com-
bines them into one vector using Eq. (3). Ti is the feature of
the input image, while B is defined as blocks, and then the
histogram of decimal value is denoted with 2L2 . The PCA
filter, however, requires k1k2 ≥ L1, L2 .

B. Quality

In terms of quality, it refers to consolidating the variance of
all individual decisions. Many strategies for combining votes
depend on a basic average, known as a standard method. The
average vote suffers from a major drawback in making accurate
predictions due to its strong bias towards weak learners [15].
While, another approach is majority voting [14], [23], [24],
which collects predictions for each class label and selects
the one with the highest number of votes. However, this
computation becomes expensive in larger ensemble schemes
and irrelevant in low-variance individual model decisions. In
response to the above drawback, a weighted ensemble tech-
nique was introduced in some research. In weighted ensemble,
when evaluating the weight by using validation accuracy as a
metric yields comparable results to the average-based method.
This is especially true when the learners demonstrate similar
or slightly varied levels of accuracy. In study [25] the use
of exponential function aiming for higher accuracy, however,
finding the most suitable function for particular dataset for
the optimal solution can be a challenging task. Therefore,
in [26], different weights are automatically assigned to the
learners, reflecting the unique contribution of each learner to
the prediction. This method has the advantage of automatic
adaptation to the new database.

III. METHODOLOGY

In this paper, we present an ensemble learning approach
that focuses on two key elements mentioned above: diversity
and quality. Fig. 1 illustrates the five main processes of the
proposed methodology, with detailed information as follows:

• Color-based transformation and cluster intensity – In
previous work, different color space transformations
were used to create sub-features for different illness
categories and variation in endoscopy images. Further
details in Section III(A).

• Heterogeneous network – To enhance the CNN
model’s extraction results, it is crucial to increase
the variety of parameters and architectures utilized.
Further details in Section III(B).

• Heterogeneous weight initializer – In addition to im-
plementing various CNN architectures, it is important
to utilize a range of weight initializers, such as He,
Gabor, and PCA, to optimize the extraction of edges
and textures within images. Further details in Section
III(C).

• Classifier amplification – In the final phase, an opti-
mized weighting was proposed to quantify the strong
classifier’s contribution within the ensemble. Further
details in Section III(D).

A. Color-based Transformation and Cluster Intensity

Endoscopy images commonly utilize the RGB color chan-
nel representation. However, other well-known color channel
representations, such as HSV, CIE-LAB, and YCrCb, are fre-
quently employed in diverse medical image analyses. Various
representations reveal abnormal patterns, such as color and
geometric characteristics observed in cases of polyps and
ulcers [2], [4], [13]. Drawing inspiration from the image
capturing procedure [27], where the light source moves along
one side of the narrow path within the GI tract, we make the
assumption that objects closer to the light source tend to have
higher luminance. Considering this, we propose three distinct
region to tackle the complexity of intensity variation in image
samples:

• The outer area (C1) – This region offers the most
intense illumination. This area is designed to clearly
identify any protruding objects in this region, such as
polyps and folds in the colon.

• The inner area (C2) - This area is adjacent to the
‘outer’ area. In this region, the blue area that surrounds
the polyps in the ‘dyed’ category is expected to be
distinct from the protruding part of the polyp.

• The junction area (C3) - This region is the farthest
area from the source of light. We aim to identify the
shared characteristics of renowned landmarks in this
particular region, including the cecum, pylorus, and
z-line.

We apply the k-means algorithm, with a maximum of
3 clusters, to determine the optimal solution for the given
assumptions above. For this clustering process, we consider the
gray image in RGB, the ‘L’ or luminance component in LAB,
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Fig. 1. The proposed ensemble architecture. The top stages focusing on preprocessing data, then in half stages focus on creating diverse CNN pool and the
final stage focus more on classifier amplification.

Fig. 2. Clustering of three distinct areas in the ‘dyed lifted polyp’ category:
(a) Original image, (b) K-means cluster, (c) C1, (d) C2, (e) C3.

the ‘Y’ or luminance component in YCrCb, as well as the ‘V’
or value component in HSV. We use various intensity schemes
to accurately represent tissue colors and ensure robustness to
lighting variations. Fig. 2 displays an image transformation
of four color channels from the Kvasir dataset in the ‘dyed-
lifted polyp’ category. Column A shows the original images,
while column B displays the three clusters obtained through
the application of k-means clustering. Next, in column C, the
outer area is revealed after the mask is applied to the original
image. Column D showcases the inner area, followed by the
junction area in column E.

B. Heterogenous Network

Convolutional Neural Network (CNN) is widely regarded
as one of the most popular deep neural network models. It
is composed of powerful components such as convolutional
layers, pooling layers, and non-linear activation functions [28].
In this paper investigates four different CNN architectures in
the context of the study: a 3-layer CNN, AlexNet [28], VGG16
[29], and ResNet50 [30]. To emphasize the use of a shallow
CNN architecture (3-layer network) in our proposed network,
we have incorporated the branch CNN concept from [31]. The
Branch CNN represents a new variation of the traditional CNN,
implementing the concept of “coarse to fine” by establishing
a separate branch on VGG16. One of the crucial features
of this architecture is the inclusion of a weight in the loss
function, which ensures a precise representation of the branch’s
influence on the overall loss.

Lj =

N∑
n=1

−Wnlog
ef

a
y j∑
i e

fa
i

(4)

Eq. (4) presents the entropy loss function (L) in conjunction
with the weighted loss value. Branch implementation was not
carried out in VGG16 as we had anticipated that the number
of layers in AlexNet would align with those in VGG16 when
incorporating branches. Furthermore, we are reducing the
number of layers in AlexNet into 3-layer, while evaluating their
potential to deliver equivalent performance improvements.
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The weight loss values in the branch were determined by
conducting three separate runs. This resulted in weight loss
values of 0.4 for the 3-layers and 0.6 for AlexNet. In advanced
configurations, the ReLU activation function is used along
with the implementation of 8-fold cross-validation, ensuring
a 70:30 ratio between training and validation. However, our
focus lies on determining the highest level of accuracy from
these variations. Furthermore, essential parameters such as
the learning rate have been set at 0.001, while the optimizer
follows the SGD algorithm. To mitigate the risk of overfitting,
we have incorporated an early stopping mechanism, limiting
the maximum epoch to 50.

C. Heterogeneous Weight Initializer

This paper uses both the random-based and data-driven
initialization techniques mentioned above, which are ‘He’ [12],
Gabor, and PCA [22]. To create the “He” filter, we utilize
existing libraries in Keras. On the other hand, for the Gabor
filter, we generate a filter bank consisting of multiple filters
with four different parameters ( σ, θ, λ, γ ). Considering that
we employ a CNN consisting of multiple filters, we assume
that the Gabor bank also consists of the same number of filters
as the CNN. Next, PSO was utilized to obtain the parameters
for Gabor filters. Inspired by [32] work, the proposed method
apply SVM as an evaluator in order to find the best param-
eter values for each filter in the Gabor bank. Additionally,
we anticipate addressing the distribution issue for each PSO
particle value through a ‘centroid’ approach. Meanwhile, Fig.
3 exemplifies the outcomes of generating a filter using the
PCANet concept on the Kvasir v1 datasetin training process.
In part (a), we can observe the filter applied to VGG19, while
in image (b) the filter is applied to AlexNet.

Fig. 3. Training samples of the PCANet with size 9x9 (a) VGG16 and
11x11 (b) on AlexNet using RGB-color data.

Finally, the various parameter combinations mentioned
previously result in approximately 1536 models. Rather than
generating the entire model as mentioned above, we opted
for a simplified elimination strategy to expedite execution
time. Our focus is on minimizing parameter variability in
fold formation during cross-validation. This method entails
selecting the best-performing model based on the average
accuracy across folds. In this case, we simply choose RGB
and YCrCb color transformation with the ‘He’ as part of
this selection. The number of models in the experiment is
reduced by approximately 87.5%. The proposed CNN pool
finally contains a total of 192 baseline models.

D. Classifier Amplification

Assuming a balanced performance across all learners, it
is essential to assign equal weight to each classifier, similar

to the standard average ensemble scheme. However, the di-
verse concepts in ensemble learning can lead to imbalanced
performance, which can ultimately affect the overall perfor-
mance. Thus, in the proposed approach, we utilize a swarm-
based optimization algorithm, PSO to fine-tune the weight and
achieve a balanced outcome. In [Eberhart, 1995] introduced
PSO, a population-based evolutionary computational algorithm
that solves optimization problems involving a lack of domain
knowledge. The population is like a flock of birds that can
maintain individual position and speed while flying in a
specific direction. The standard PSO formulation is described
by Eq. (5)

Vi = ωVi+c1r1(Pbest−Xi)+c2r2(Gbest−Xi)Vi+1 = Xi+Vi
(5)

Vi and Xi represent the velocity and current position of particle
i, while Pbest is the best personal position and Gbest is the best
global position for all particles in the population. ω represents
the inertia weight. c1 and c2 are the acceleration coefficients
that improve the exploitation ability of each particle. r1 and r2
are the random numbers that increase exploration ability. PSO
is more focused on searching for values in space based on ve-
locity, in contrast to other optimization algorithms like Genetic
Algorithm (GA). Therefore, PSO is suitable for continuous-
valued problems and enables faster convergence [32]. Fig. 5
illustrates the proposed algorithm for fine-tuning the weights.
In the beginning, it involves 20 particles, each representing an
individual agent within the ensemble. These agents collaborate
to discover the weight combination that delivers the highest
accuracy performance. The accuracy of the ensemble, using
the optimal weight from the best personal weight (pBest), is
employed to compute f. If the pBest outperforms the current
best global weight (gBest), then gBest is updated with the new
pBest. Throughout the 100 epochs, the agent with the highest
final accuracy in gBest is deemed the top agent. Eq. (6) is
employed to initialize the PSO inertia weight.

ωi = ωmax − (
ωmax − ωmin

maxiter)
) ∗ i (6)

Fig. 4. The optimum PSO weight on the best performance of the proposed
method.

IV. DATASET AND METRICS

A. Dataset

We used the Kvasir dataset [16], which contains images
of patients’ upper and lower gastrointestinal tract including
normal and pathological findings such as polyps and ulcers.
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There are two versions of the Kvasir dataset, which are v1
and v2. The first version has 500 images in each class, with
eight total classes. Thus, we have 4000 images. The dataset’s
original resolution varied from 720 × 576 to 1920 × 1072.
Then, it is cropped and resized to a resolution of 227 x 227.
While the second version contains 1000 images per category,
half were available in the first version. Thus, since we use
the first version for training, then in total, we have new test
data from Kvasir v2, which is about 4000 total images. As
in the training process, we use 80% of Kvasir v1. To reduce
the risk of overfitting in our baseline model, we apply data
augmentation techniques such as zoom, shear, rotate, and width
shifting to the training set. Thus, after augmentation, the total
training dataset contains 16,800 images. During testing, we
used two datasets: Kvasir v1 with 800 images and Kvasir v2
with 4000 images.

B. Metrics

This paper uses performance metrics such as accuracy,
precision, sensitivity, and specificity to evaluate our baseline
and proposed method. Accuracy describes the ability of the
model to detect the correct classes in this classification as
shown in Eq. (7):

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

TP (True Positive) is when the input is correctly predicted as
positive. TN (True Negative) is when the input is correctly
predicted as negative. FP (False Positive) is when the input
is incorrectly predicted as positive. FN (False Negative) is
when the input is incorrectly predicted as negative. In contrast,
sensitivity is the ratio of true positives found to positives in
the dataset as shown in Eq. (8).

Sensitivity =
TP

TP + FN
(8)

Specificity is the ratio of true negatives found to negatives in
the dataset as shown in Eq. (9).

Specificity =
TN

TN + FP
(9)

Afterwards, the precision of the prediction can be measured by
calculating the amount of positive predictive data, as indicated
in Eq. (10).

Precision =
TP

TP + FP
(10)

V. EXPERIMENTAL RESULT

This section categorizes the experiment into two main
objectives based on the insights gained from developing a
solution. First, it delves into analyzing the impact diversity
concept in ensemble learning. Second, identifying strong and
weak learners is important for dealing with the significant
impact of weight amplification in our system. This approach
allows us to clearly observe the most influential learners in the
proposed method.

A. Diversity Impact in Proposed Scheme

In this context, three main group experiments need to be
conducted. The first group comprises 12 models that utilize
the RGB color space without clustering (see Table I-c and f).
This group was formed to assess the impact of the classifiers,
particularly those that demonstrate the higher accuracy within
the pool. Next, in the second group, 48 models from 4 different
color spaces (RGB, YCrCb, HSV, and LAB) without clustering
were created to determine the comparison of contributions with
the first group (see Table I (d) and (g)). The performance
of groups 1 and 2 was significantly different, particularly
regarding the RGB and non-RGB input models. Then the third
group contains all the proposed models in the pool, namely 192
models (see Table I (e) and (h)).

In standard approach with Kvasir v1, the top-1 baseline
accuracy for the third group was achieved using AlexNet and
Gabor filter with RGB color space, without clustering. This
single model accuracy, in training, reaches about 88.7% and in
testing it achieved 84% accuracy. In this scenario, the standard
ensemble enhances accuracy by approximately 1%. Further,
by focusing only on the first group, the risk of overfitting was
minimized. Further, the issue was resolved using the second
group test. In this case, the accuracy of the model increased
by approximately 6% compared to the baseline. While in
the proposed method, experiments in the first group yielded
significant results, as did those in groups two and three. As
diversity increases, accuracy also increases. This demonstrates
the presence of distinct features within each existing group.
Interestingly, this stands in contrast to the performance of the
standard method. However, in reality, maintaining a balance
of performance among a collection of models can be quite
challenging, particularly if the goal is to decrease the exe-
cution time for generating models. Based on the significant
differences in tests in first groups (average accuracy is 81.9%)
and second groups (average accuracy is 68.8%), there is no
guarantee that maintaining balance in overall model perfor-
mance will result in improved performance. This is a notable
weakness of the standard ensemble model. Additionally, the
data from Kvasir v2 showcases that experiments involving all
three groups consistently show instability in standard approach,
especially when compared to the proposed method.

B. Strong and Weak Learner

In this scenario, the experiment was conducted 50 times,
yielding results that demonstrate the tremendous potential
of the proposed method in enhancing the accuracy of the
maximum single model. Specifically, our findings reveal an
improvement of 7%. (see Table I (b) and (h)). Although the
model has imbalanced performance, the accuracy was im-
proved after classifier amplification. Fig. 4 shows the optimum
weight value after amplification on the training dataset. The
strong learner is identified by a weight greater than the mean,
while the weak learner is identified by a weight smaller than
the mean. According to the data in Fig. 4, there are 30
strong learners in this group, with most of the top 15 strong
learners coming from the RGB color space without clustering.
However, there are three learners among the strong learners
coming from YCrCb intensity clustering in C1 and C3 (it was
labelled in Fig. 5 – C1 is 0.8102 and C3 with 0.6571 and
0.5654). Furthermore, the experiment was continued excluding
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TABLE I. THE PERFORMANCE COMPARISON OF THE PROPOSED SCHEME AND STANDARD SCHEME ON TEST DATA

Dataset Metrics Baseline Standard Average Proposed

(a) (b) (c) (d) (e) (f) (g) (h)
Average Maximum Full-RGB(12) Full-All Intensity(48) All model(192) Full-RGB(12) Full-All Intensity(48) All model(192)

Kvasir v1 Accuracy 0.6050 0.8400 0.8788 0.9000 0.8500 0.8900 0.8988 0.9100
Precision 0.5975 0.8474 0.8820 0.9008 0.8576 0.8927 0.9000 0.9108

Sensitivity 0.6057 0.8400 0.8788 0.9000 0.8500 0.8900 0.8988 0.9100
Specificity 0.6063 0.8401 0.8788 0.9000 0.8502 0.8901 0.8988 0.9100

Kvasir v2 Accuracy 0.8530 0.8918 0.9153 0.8540 0.8760 0.9143 0.9098 0.9158
Precision 0.8614 0.8964 0.9179 0.8821 0.8882 0.9169 0.9175 0.9228

Sensitivity 0.8530 0.8918 0.9153 0.8540 0.8760 0.9143 0.9098 0.9158
Specificity 0.8532 0.8918 0.9153 0.8545 0.8763 0.9143 0.9099 0.9159

weak learners, and achieved the identical level of accuracy as
when weak learners were involved, specifically 91%. However,
performance decreased when tuning the weights for the 30
classifiers mentioned earlier, dropping by around 0.875%.
Additionally, Table II demonstrates the impact of the proposed
clustering method on various color spaces by showing the
most influential learner based on color intensity clustering
after 50 runs. It indicates that YCrCb is the only color space
that influences significantly the performance of the proposed
method. While the other learner still makes a contribution, their
impact on the proposed scheme’s performance is very limited.

Fig. 5. The computational algorithm of PSO.

TABLE II. MOST SIGNIFICANT LEARNER IN THE GROUP OF COLOR
CLUSTERING

Rank Network Filter Color Area n-runs

1 VGG16 He YCrCb Outer 50
2 AlexNet Gabor YCrCb Junction 8
3 ResNet50 PCA YCrCb Junction 7
4 ResNet50 Gabor YCrCb Junction 2
5 AlexNet He YCrCb Junction 1

VI. CONCLUSION

This study introduces a CNN-based ensemble method
designed to enhance the accuracy of classifying the Kvasir
dataset. The experimental results demonstrate that the pro-
posed method surpasses the standard approach by delivering
consistent performance across diverse test datasets. The uti-
lization of color intensity-based clustering prioritizes notable
features, particularly in abnormal cases such as polyps, ulcers,
esophagitis, and “dyed” categories. By employing various
CNN hyperparameters to create a range of models in the
ensemble, the risk of overfitting is reduced in both the standard
and proposed methods. This approach not only enhances the
learning process but also unveils the potential of features in
various color space transformations and color intensity-based
clustering.

In conclusion, we can summarize the findings and draw-
backs as follows: Firstly, the Kvasir dataset displays unique
characteristics when the data is converted into different color
spaces, such as RGB, HSV, YCrCb, and LAB. Secondly, clus-
tering a specific region within the image, specifically related
to conditions like polyps and ulcers, leads to diverse responses
and significantly impacts the overall performance of the model,
particularly in the YCrCb color space. However, this imbalance
in the overall model performance hinders the attainment of a
high standard ensemble accuracy. Even after trying different
pre-processing methods, the accuracy is still consistently lower
compared to datasets that are not clustered. Moreover, it is
essential to enhance the diversity of models in order to achieve
optimal results with the proposed method. Simultaneously,
by amplifying the learner, we can effectively mitigate the
risk of overfitting in the standard scheme. It is important
to note that both mechanisms are crucial for improving the
scheme’s overall performance. Moreover, the 3-layer network
architecture is an integral part of AlexNet and incorporates the
concept of branch CNN. Conducting experiments with other
network types could potentially yield significant advantages
in addressing the limitations of the proposed method, such as
applying it to VGG16. Furthermore, we recommend utilizing
alternative search algorithms, such as genetic algorithms or the
Bee’s algorithm, to boost mutation capacity during the training
phase and decrease the execution time required to generate
Gabor banks.
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