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Abstract—Cybersecurity research includes several areas, such
as authentication, software and hardware vulnerabilities, and
defences against cyberattacks. However, only a limited number
of cybersecurity experts have a comprehensive understanding
of all aspects of this sector. Hence, it is vital to possess an
impartial comprehension of the prevailing patterns in cyberse-
curity research. Scientometric analysis and knowledge mapping
may effectively detect cybersecurity research trends, significant
studies, and emerging technologies within this particular context.
The main aim of this research is to comprehend the developmental
trend of the academic literature about the concepts of “malware
detection” and ‘cybersecurity’. We collected 9,967 publications
from January 2019 to December 2023 and used the Citespace
tool for scientometric analysis. This study found six co-citation
clusters,namely malware classification, evading malware classifier,
android malware detection, IoT network, CNN, and ransomeware
families. Additionally, this study discovered that the top contribut-
ing countries are the USA, China, and India based on the citation
count, and the Chinese Academy of Science, the University of
California, and the University of Texas are the top contributing
institutions based on the frequency of the publications.
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I. INTRODUCTION

The Cybercrime in Australia series [1] is intended to shed
light on the victimisation and damages caused by cybercrime
among computer users in Australia. The data originates from
a survey conducted in early 2023, which included 13,887
individuals who use computers. Before the survey, 27% of par-
ticipants reported encountering online abuse, 22% encountered
malware, 20% faced stolen identities, and 8% fell victim to
scams and fraud. Cybersecurity research encompasses a variety
of domains, including authentication, software and hardware
vulnerabilities, and defences against cyberattacks. However,
only a small proportion of cybersecurity professionals have
a complete comprehension of all facets of this industry. As
a consequence, it is of the utmost importance to develop
an objective understanding of the prevalent trends in the
field of cybersecurity research. Scientometric analysis and
knowledge mapping have the potential to successfully identify
patterns, major studies, and new technologies in cybersecurity,
transportation [2], health, etc., using different sources such as
research articles and newspapers [3], [4]. Researchers, experts,
and authorities have to comprehend malware detection tech-
nologies and their evolution in cybersecurity. The conceptual
structure and dynamic growth of cybersecurity research can be
shown by applying these bibliometric approaches to the vast
malware detection literature. This method emphasises the most
significant contributions and the multidisciplinary links that

develop malware detection techniques. Since online hazards
have increased dramatically, virus detection technologies are
essential for digital security. As malware uses polymorphism
and metamorphism to avoid detection, the cybersecurity sector
has developed new detection methods. This ongoing arms
race between threat actors and defenders requires a thorough
examination of research and technological trends. Scientists
may categorise malware detection literature by methodology,
application fields, and efficacy using scientometric analysis.
This study gives a macro picture of the research area, directing
future research and technology implementation. Knowledge
mapping in malware detection and cybersecurity provides a
visual and analytical approach for navigating this field’s vast
information landscape. It helps explain essential ideas, research
links, emerging topics, and technology. Stakeholders may iden-
tify prominent research fronts and scientific discourse develop-
ment using co-citation analysis, co-authorship networks, and
keyword co-occurrence mapping. This comprehensive picture
helps identify knowledge gaps and encourages collaboration,
guiding global cybersecurity efforts towards more robust and
adaptable malware detection techniques. This project uses
scientometric analysis and knowledge mapping to lay the
groundwork for cyber security breakthroughs and safe digital
environments for future generations.

a) The Aim and Objectives: The main aim of this
research is to comprehend the developmental trend of the aca-
demic literature about the concepts of “malware detection” and
‘cybersecurity’. This scientometric research aims to analyse the
development trend of academic literature specifically focused
on ”malware detection” and ’cybersecurity’.

• To comprehend the collaboration pattern and analyse
the research domain.

• To discover the citation trends from 2019 to 2023.

• To discover the countries, institutions, and keywords
involved in the domain of malware detection and
cybersecurity.

The remainder of the paper is organised as follows:
Section II discusses the similar studies and establishes the
research gap. Section III discusses the methodology, includ-
ing the dataset (Section III-A) and scientometric analysis
(Section III-B). Section IV discusses the research outcome.
Section V concludes by discussing future work.

II. LITERATURE REVIEW

The quantitative analytics discipline of scientometrics is
used to determine and evaluate the volume of research con-
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ducted in any given field. In the scientific community, re-
searchers disseminate their findings via a variety of publishing
methods. There are several reseach work has been done on
scientometric analysis. Raj et al. [5] employed scientometric
analysis to discover the knowledge of collaborations, author-
ship, citations, countrywise, etc. They collected 2720 articles
on “cybersecurity” from 2001 to 2018. In another research, [6]
focused on Indian authors publications on “cybersecurity”
to get knowledge of research trends, collaborating countries,
institutions, and top-cited articles. Makawana and Rutvij [7]
performed a bibliometric analysis of 149 research articles from
2015 to 2016. Bolbot et al. [8] proposed research direction in
maritime cybersecurity by employing meta-analysis (PRISMA)
and systematic reviews. The findings demonstrated that Nor-
way, the UK, the USA, and France are the leading nations in
maritime cybersecurity. Omote et al. [9] conducted a scien-
tometric analysis using a scienctometric analysis tool named
e-CSTI to examine data on science, technology, and innovation
in cyber security research. In this research, authors collected
data between 2010 and 2019 and discovered that the USA and
China emphasise different research areas. In order to provide
an in-depth understanding of the present status of medical
device cybersecurity research, this study [10] has identified
notable authors, organisations, and journal publishers, as well
as significant concepts, approaches, and innovations that are
often addressed in relation to medical devices. In order to
provide an in-depth understanding of the present status of
medical device cybersecurity research, this study has identified
notable authors, organisations, and journal publishers, as well
as significant concepts, approaches, and innovations that are
often addressed in relation to medical devices. The study’s
findings reveal that the most highly contributing country is the
USA, and the technology hubs are the UK and India.

The literature review shows that the existing research
focused on limited research articles on cybersecurity that were
published before 2020. Additionally, there are some works
on specific regions or domains. In this study, we collected
a total of 9,967 publications from January 2019 to December
2023 and employed scientometric analysis to understand the
citation process, calculate the effect of the study, and describe
the creation and development of knowledge on a particular
research subject.

III. METHODOLOGY

A. Dataset

a) Query: The following query is used to collect dataset
from WoS: ALL=(“malware”) OR ALL=(“malware detec-
tion”) OR ALL=(“android Malware”) OR ALL=(“cyber secu-
rity”) OR ALL=(“cyber threats”) OR ALL=(“cyber attacks”)
OR ALL=(Cyber-Attack) OR ALL=(RANSOMWARE) OR
ALL=(CYBERSECURITY).

We apply several filtering approach to get more spe-
cific output of searching. For example, this study only se-
lect five-years documents (2019 - 2024) and choose docu-
ment type as proceeding paper and article, that is written
in English language. Furthermore, the filtering criteria only
include limited WoS categories, such as Computer Science
Information Systems, Computer Science Artificial Intelligence,
Computer Science Software Engineering, Computer Science

TABLE I. DATASET ANALYZING REPORT

WoS Categories Document Types
Computer Science Information Systems 5,790 Proceeding paper 5,907
Computer Science Theory Method 4,823 Article 4,118
Computer Science Artificial Intelligence 2,162 Countries
Computer Science Software Engineering 1,852 USA 2,458
Telecommunications 1,816 China 1,668
Computer Science Interdisciplinary App. 1,575 India 828

Research Areas England 695
Computer Science 9,448 Germany 540
Telecommunications 1,816 Australia 506

Theory Method, Telecommunications, and Computer Science
Interdisciplinary Applications, and research areas, for example,
Computer Science, and Telecommunications.

This study collected a total of 9,967 Publications, where
those publications 62,377 times total cited and 52,546 times
without self-citation. The total citing articles are 37,384 and
without self-citation are 33,747 with H-Index equal to 82.

Fig. 1. Articles citation report generated from WoS.

Fig. 1 depicts the citation report of the collected 5-years
dataset from Web of Science. The details of the dataset is listed
in Table I.

B. Scientometric Analysis

The quantitative investigation of scientific research is re-
ferred to as scientometrics. Using extensive datasets of re-
search publications, it allows for the understanding of the ci-
tation process, calculates the effect of the study, and describes
the creation and development of knowledge on a particular
research subject. While it is still possible to miss literary
concepts in traditional investigations, scientometric approaches
allow academics to analyse a significant quantity of biblio-
metric data and identify systematic conclusions connected
to literature. This investigation employed CiteSpace [11], a
Java-based programme that analyses and visualises co-citation
networks, for scientometric analysis. The purpose of the tool
is to pinpoint turning points and new trends in a certain
field. It provides unique benefits for presenting and evaluat-
ing scientific data to enable more accurate interpretation of
earlier research by painstakingly creating a multitude of easily
understood visualisations that may help reveal the implications
hidden in a vast body of knowledge. Some importance terms
used in scientometric analysis are co-citation analysis, Burst
Strength, Burst Begin-End, Degree, Centrality and Sigma.
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In the network generated by CiteSpace, two quantifiable
markers may be used to identify important nodes: the burst
strength and betweenness centrality. The proportion of the
shortest path between two clusters to the total of these shortest
routes is used to calculate node betweenness centrality.

Centrality(nodex) =
∑

x ̸=y ̸=z

γyz(x)

γyz
(1)

In Eq. 1, γyz(x) represents the count of pathways that go
via node x, whereas γyz represents the count of the shortest
routes linking node y and node z. The burst identification
technique was used to identify sudden fluctuations in citations
at certain time periods. The process of calculating citation
bursting strength begins with acquiring and importing pertinent
bibliometric information, then implements Kleinberg’s method
to analyse the citation timeline for every document inside the
collection. Citation burst strength is determined by statistically
evaluating the increase in citation frequency within a certain
time period in comparison to periods with no significant in-
crease. An article with a significant burst strength demonstrates
a notable rise in its citation rate, indicating an enhanced level of
impact or significance during the burst timeframe. The citation
degree is calculated by calculating the number of linkages a
node has with adjacent nodes in the network. A larger citation
degree shows more direct citations, signifying more impact or
significance on the subject. Conversely, Sigma is computed by
multiplying the number of citations by betweenness centrality,
which expresses the frequency at which a node acts as a link
between other nodes. Papers with high sigma values are often
both highly cited and influential in bridging various disciplines
or concepts within the academic field.

In addition, CiteSpace provides scientometric analysis that
includes an investigation of countries, organisations, and the
co-occurrence of keywords.

IV. RESULTS AND DISCUSSION

Cluster analysis is a prevalent approach to finding hidden
contextual patterns in knowledge discovery. Through the use
of cluster analysis, an extensive repository of data from re-
search is divided into discrete units according to the relative
strength of word correlation. This facilitates the identification
of research themes, patterns, and their connections within a
certain field of study. In this study, six co-citation clusters
were identified using the log-likelihood ratio (LLR) technique.
This was possible since the clusters created by LLR had
excellent quality, with high intra-class and low inter-class
similarity. Additionally, based on the uniqueness and coverage
of each cluster, LLR chooses a label based on the keywords
of the texts cited in each cluster. Cluster labelling quality is
determined by the variety, depth, and breadth of terms formed
from keywords in articles. The label supplied for each cluster
identifies the focus of that cluster. Fig. 2 shows the cluster
analysis using co-citation analysis, demonstrating the timeline
of each cluster. We discovered six clusters including malware
classification (ClusterID=0), evading malware classifier (clus-
terID=1), android malware detection (clusterID=2), iot network
(clusterID=3), convolutional neural network (clusterID=4), and
ransomware families (clusterID=5).

A. Cluster Analysis

Fig. 2. Cluster analysis.

Table II shows the cluster network summary by listing
the top 20 research publications sorted by burst strength.
The list includes all details, such as, publication year, burst
strength, burst begin-end, degree, centrality, sigma, frequency,
and cluster ID for each publication.

TABLE II. CLUSTER NETWORK SUMMARY

Ref. Pub.
Year

Burst
Strength

Burst
Begin-End Degree Cent. Sigma Freq. CID

[12] 2015 13.02 2019 - 2020 19 0.06 2.04 42 0
[13] 2015 11.45 2019 - 2020 13 0.03 1.4 37 0
[14] 2020 9.75 2021 - 2023 17 0.02 1.17 42 2
[15] 2018 8.57 2021 - 2023 3 0 1.01 94 3
[16] 2017 8.29 2020 - 2021 12 0.03 1.32 33 0
[17] 2016 8.04 2020 - 2021 2 0.01 1.04 32 5
[18] 2015 7.7 2019 - 2020 4 0 1 25 5
[19] 2019 7.64 2021 - 2023 10 0.06 1.51 33 5
[20] 2017 7.39 2019 - 2020 11 0.01 1.07 24 4
[21] 2015 7.39 2019 - 2020 9 0.01 1.07 24 4
[22] 2016 7.31 2019 - 2021 6 0.02 1.16 121 5
[23] 2019 6.68 2021 - 2023 24 0.06 1.52 74 2
[24] 2018 4.93 2020 - 2021 21 0.06 1.3 53 2
[25] 2019 4.8 2021 - 2023 23 0.11 1.65 57 2
[26] 2016 4.79 2019 - 2021 9 0.08 1.47 80 3
[27] 2019 4.76 2021 - 2023 21 0.09 1.48 58 1
[28] 2020 4.6 2021 - 2023 9 0.01 1.07 56 1
[29] 2019 4.51 2021 - 2023 18 0.02 1.1 55 2
[30] 2016 3.93 2019 - 2020 15 0.06 1.24 49 0
[31] 2016 3.21 2020 - 2021 8 0.04 1.14 49 5

1) Malware classification and evading malware classifier:

a) Malware Variations: Malware can be classified into
several types, including worms, spyware, viruses, trojans, bots,
rootkits, ransomware, scareware, and so on.

Worms use software and operating system flaws to prop-
agate to other machines. They do not need to connect to a
programme like viruses. Worms may overburden web servers,
steal data, install backdoors, and more. Worms’ speed and
autonomy make them hazardous, causing internet interrup-
tions and severe financial harm to afflicted organisations and
individuals. Spyware secretly tracks users’ internet activities,
keystrokes (keyloggers), and financial data. It may be installed
without the user’s knowledge via free software downloads or
malicious websites. Identity theft and unauthorised access to
personal and financial data may result from spyware, which
slows system performance and internet connections.

When run, viruses change other computer programmes and
implant their own code. Infected systems may malfunction,
lose data, and operate poorly. Email attachments, compromised
software programmes, and file downloads distribute viruses,
which need human input to activate their destructive activities.
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Trojans, or Trojan horses, deceive users. They frequently seem
like respectable applications but do bad things when run.
Trojans, unlike viruses and worms, do not multiply but may
provide paths for other malware to steal data or create a
zombie machine under an attacker’s control. Trojans may gain
unauthorised access to systems, stealing data, compromising
privacy, and installing further software.

Computer programmes called bots automate jobs. However,
malicious bots are used to take control of a computer and
employ it in a botnet. DDoS assaults, spamming, phishing,
and cryptocurrency mining are all possible with botnets. Botnet
machines may be located worldwide, making attacks hard to
track. Rootkits stealthily obtain root or administrative access
to a computer without users or security software noticing.
Rootkits may intercept and modify system operations to mask
their presence and other malicious actions, making detection
and removal difficult. Rootkits let attackers steal data, monitor
user activities, and remotely control a machine.

Ransomware encrypts a victim’s data or locks them out
of their machine and demands a fee to decode or unlock.
Phishing emails, fraudulent ads, and software weaknesses
disseminate it. Ransomware may cause considerable data loss,
financial harm, and operational interruption until the ransom
is paid or files are recovered from backups. Scareware tricks
users into thinking their computer has a virus or other major
problem to get them to buy needless or hazardous software. It
usually appears as pop-up advertising or antivirus software-like
security notifications. Scareware may cost money and install
spyware or other malware if the user buys it or removes the
phoney risks it claims to have found.

b) Types of Malware Detection: The top cited papers
for malware detection and classification are [32], [27], [33],
[34], [28].

Signature-based Detection: This approach is one of the
simplest and traditional techniques for detecting malware.
Antivirus software conducts scans on files, executable pro-
grammes, and system locations, and then compares them with
a database in order to identify any matches. The signature-
based approach detects distinct character sequences inside the
binary code. Each time a novel kind of malware is released,
anti-malware companies must acquire a sample of the new
virus, scrutinise it, generate fresh signatures, and distribute
them to their customers. Conventionally, domain experts are
responsible for manually creating, updating, and distributing
the signature bases. This technique is often recognised as being
time-consuming and requiring a significant amount of labour.
This kind of detection strategy reduces the responsiveness
of anti-malware software programmes to emerging threats. It
has the potential to enable some malware samples to evade
detection and remain undiscovered for an extended time.

Heuristic-based Detection: This approach uses algorithms
to analyse the behaviour and features of programmes to
discover suspected malware based on abnormal patterns or
behaviours. This approach goes beyond signature matching;
instead, it examines the code’s structure for any unusual
traits that might point to a danger, including the inclusion of
code that is often used to take advantage of vulnerabilities.
By concentrating on characteristics shared by malicious soft-
ware, heuristic detection may detect newly created or altered

malware, although it may produce more false positives than
signature-based detection.

Behavior-Based Detection: This approach keeps a check
on how software behaves naturally inside the system, rather
than employing malware fingerprints to identify threats ahead
of time. This method monitors how an application accesses
network resources, user data, system files, and processes and
checks for malicious activity such as unapproved changes,
eavesdropping, or data exfiltration. It can successfully detect
polymorphic and previously undiscovered malware that would
elude signature-based techniques since it analyses behaviours
in real-time. Its emphasis on behaviour, meanwhile, may result
in false alerts should benign programmes exhibit anomalous
behaviour.

Anomaly-Based Detection: Providing a baseline of typical
network or system activity, anomaly-based detection then
keeps monitoring for variations from this baseline. Significant
discrepancies might be a sign that malware is present. This
technique is very helpful in detecting complex assaults and
zero-day threats, but it may produce incorrect results if the
baseline is not well established.

Sandbox Detection: Malicious programs are run in a virtual
environment called a “sandbox” that is isolated from the
primary system in sandbox detection. This keeps the system
safe while enabling the programme to execute and display
its behaviour. Sandboxing works well against malware that
may avoid identification by detecting it during analysis or by
postponing execution.

Cloud-based Detection: The process of detecting malware
now follows a client-server approach using a cloud-based ar-
chitecture. This involves preventing the execution of unautho-
rised software programmes listed in a blacklist and verifying
the legitimacy of software programmes listed in a whitelist at
the user’s end. Additionally, any unknown files are analysed at
the server side and the results are promptly communicated to
the clients. The grey list comprises unfamiliar software files,
which may be either harmless or dangerous. Historically, the
grey list was either rejected or verified manually by experts in
malware analysis. Due to advancements in malware authoring
and creation methods, the quantity of file samples on the
grey list is consistently growing. As an example, the grey list
produced by either Kingsoft or Comodo Cloud Security centre
often includes over 500,000 file samples on a daily basis [Ye
2010]. Therefore, it is essential to create intelligent methods to
enhance the efficiency and effectiveness of malware detection
on the server side of the cloud.

Hybrid Detection Methods: Hybrid methodologies integrate
many detection methods to enhance the overall effectiveness
of malware detection and minimise the occurrence of false
positives. For instance, antivirus software may use a combina-
tion of signature-based and behavior-based detection methods
to provide extensive safeguarding against both recognised and
unrecognised hazards.

Feature Analysis: Static analysis examines PE files without
running them. Static analysis targets binary or source codes.
If a PE file is compressed using third-party tools like UPX
or ASPack Shell, it must be decompressed first. To decom-
pile Windows executables, employ disassembler and memory
dumper tools. Memory dumper tools extract protected main
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memory codes and save them to a file. A memory dump is
important for examining packed executables that are hard to
deconstruct. Unpacking and decrypting the executable reveals
static analysis patterns such Windows API calls, byte n-grams,
strings, opcodes, and control flow graphs. Feature extraction is
achieved via dynamic analysis methods, such as profiling and
debugging, by analyzing the PE files being executed (on a
physical or virtual CPU). To do dynamic analysis, a variety
of methods may be used, including function parameter anal-
ysis, function call monitoring, information flow tracking, and
instruction traces.

2) Android malware detection and convolutional neural
network: The rapid proliferation of Android malware, its
ability to evade detection, and the possible loss of enormous
amounts of data assets held on Android devices make Android
malware detection and categorization an issue involving big
data. Applying deep learning to Android malware detection
appears to be a logical and intuitive decision. Nevertheless,
scholars and practitioners encounter several obstacles, includ-
ing the selection of a deep learning architecture, the extraction
of features, the evaluation of efficacy, and the acquisition of
sufficient high-quality data. This research discovered the top
cited papers for android malware detection based on the Co-
citation network are [35], [36], multimodal technique [23],
significant permission identification [37], intrusion detection
dataset [15], Google Playstore Android dataset named Andro-
Zoo [38], and so on.

Fully Connected Network (FCN) [39] has been used in
several Android malware detection approaches. The FCN
analyzed the AndroidManifest.xml and classes.dex files to
extract information such as needed permissions, contextual
details, and API calls, which were then used to characterize
the Android programs. The activation function employed in the
hidden layers is the Parametric Rectified Linear Unit function,
as it is very efficient and allows for dynamic modification. In
the output layer, Softmax is employed as an activation function.

Convolutional Neural Network (CNN) [36] is employed
to identify Android malware in raw opcode sequences. First,
the application for Android was disassembled, and its opcode
sequences were retrieved for analysis. An opcode embedding
layer received one-hot vectors of opcode instructions. The
embedding layer enabled the CNN network to gather opcode
semantics. Abstract characteristics were extracted using con-
volution layers. Moreover, a max-pooling layer after each con-
volution layer selected the most appropriate malware-detecting
opcode sequence. The app’s maliciousness was determined via
a fully linked hidden layer before the output layer. Through
cooperative training, the CNN network learned malware pat-
terns from raw opcode sequences without employing any hand-
crafted features.

Long Short-Term Memory (LSTM) and Recurrent Neural
Network (RNN) [40] can acquire semantic knowledge and
connections within sequential data, enabling them to process
sequential opcode or bytecode. Xin et al. [41] presented
DroidDeep, a DBN-based tool for Android malware detection.
It uses approximately 32,000 layers AndroidManifest.xml and
classes.dex features. These features include app permissions,
activities, components, permissions used, and requests to sen-
sitive APIs. DroidDeep prepares string properties for pro-
cessing by one-hot encoding them as numerical vectors. The

DroidDeep DBN architecture uses unsupervised pre-training
to find high-level feature representations and supervised fine-
tuning via back-propagation to improve detection. These learnt
characteristics are used to train an SVM classifier to detect
malware. DroidDeep excels in malware detection with 99.4%
accuracy, making it ideal for real-world applications. The
stacked Auto-Encoder (AE) in Deep4MalDroid [42] analysed
the graph-based characteristics to identify the Android mal-
ware.

3) IoT Network: The top cited research papers discovered
by this study are [43] and [44]. The first paper discussed Ad-
vanced Persistent Threats (APT) detection-related challenges
and unsolved issues using ML. Hackers target Internet of
Things (IoT) systems for a variety of reasons, including dis-
closing, shifting, disabling, copying, or obtaining unauthorised
access to or using an asset without authorization. The second
paper discussed DDoS in the IoT. A Denial-of-Service (DoS)
attack is one instance when an attacker uses an authorised host
network to transmit a large number of packets to the victim
to overwhelm them with messages. On the other hand, port
scanning assaults take place when a hacker finds an open port
that might be used to launch an attack. As a result, hackers
are able to get comprehensive information about the network,
such as MAC and Internet Protocol (IP) addresses. The most
used datasets for IoT-based threat detection are N-BaIoT [45],
Bot-IoT [46], ToN-IoT [47], and Edge-IIoTset [48].

4) Ransomware families: Ransomware is a kind of mal-
ware that is used as a means of extortion. Ransomware is a kind
of malicious software that covertly infiltrates a victim’s system
and promptly demands payment in exchange for decrypting the
encrypted data [31], [49]. The majority of ransomware families
exhibit the following features: device lockout, data deletion
and stealing, encryption, and delivering alarming notifica-
tions. Ransomware families include Cryptolocker, CryptoWall,
CTB-Locker, CrypVault, CoinVault, Filecoder, TeslaCrypt, Tox
crypto, VirLock, Reveton, Tobfy, and Urausy.

B. Country Analysis

Fig. 3 shows the node-line country network, in which each
node is a country and the line indicates the cooperative links
between nations. The amount of articles determines the node’s
size of the country.

Table III shows the country network summary by listing
the top 10 countries sorted by four categories: citation count,
degree, centrality, and sigma. The highest-rated countries based
on citation counts are the USA (2019), China (1417), India
(694), England (523), Australia (416), and so on. Based on
degrees, the top countries are England (39), the USA (30), the
Netherlands (NL) (29), Belgium (28), France (27), and so on.
England and Wales are the highest-rated countries based on
centrality and sigma, respectively.

C. Institution Analysis

Fig. 4 shows the node-line institution network, in which
each node is a institution and the line indicates the cooperative
links between institutions. The amount of articles determines
the node’s size of the institution.
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Fig. 3. Country analysis.

TABLE III. COUNTRY NETWORK SUMMARY

Citation Count Degree Centrality Sigma
USA 1979 England 39 England 0.16 Wales 1.01
China 1417 USA 30 USA 0.08 USA 1.00
India 694 NL 29 France 0.08 England 1.00

England 523 Belgium 28 NL 0.07 France 1.00
Australia 416 France 27 Australia 0.07 Australia 1.00
Germany 416 Sweden 26 Italy 0.06 NL 1.00

Italy 363 Italy 25 UAE 0.06 Italy 1.00
South
Korea 285 Spain 25 Singapore 0.06 UAE 1.00

Saudi
Arabia 269 Pakistan 25 Belgium 0.05 Singapore 1.00

Canada 268 UAE 25 Spain 0.05 Belgium 1.00

Fig. 4. Institution analysis.

Table IV shows the institution network summary by listing
the top 10 institutions sorted by two categories: frequency, and
burst-strength. The top-rated institutions based on frequency
are Chinese Academy of Sciences (194), University of Cal-
ifornia (147), University of Texas (127), and so on. Based
on burst strength, the highest institutions are University of

California Berkeley (11.14), Fraunhofer Gesellschaft (7.63),
IMT - Institut Mines-Telecom (7.04), University of North
Carolina (5.76), KU Leuven (5.21), and so on.

TABLE IV. TOP INSTITUTION NETWORK SUMMARY

Frequency-based Burst Strength-based
Chinese Academy of

Sciences 194 University of California
Berkeley 11. 14

University of California 147 Fraunhofer Gesellschaft 7.63
University of Chinese
Academy of Sciences 130 IMT - Institut

Mines-Telecom 7.04

University of Texas 127 University of North
Carolina 5.76

State University of Florida 124 KU Leuven 5.21
Institute of Information

Engineering 109 IIT 4.64

Ben Gurion University 109 Texas A&M University 4.35
National Institute of

Technology 104 University of Illinois 2.91

University of Georgia 86 University of Illinois
Urbana-Champaign 1.41

Nanyang Technological
University 84 National University of

Singapore 0.97

D. Keywords Analysis

Fig. 5 depicts the keyword co-occurrence network. Key-
words are concise and indicative synopses of the content of
research studies. Keyword co-occurrence networks may be
used to identify the current most prevalent topics in the area
of knowledge during a certain time period. The node’s size is
determined by how often it uses the keywords.

Fig. 5. Keywords analysis.

Table V shows the most frequent terms with frequency
from 2019 to 2023. some keywords, such as, federated learning
(16), risk (15), ensemble learning (12), adversial examples
(12), iot (11), and NLP (11) are mostly used in 2023. The
top keywords in 2022 are desgn (40), cyber-physical systems
(33), CNN (24), reinforecemnt learning (22), scheme (19), and
random forest (18). In 2029, the most frequent used keywords
are intrusion detection (369), machine learning (852), deep
learning (476), information security (131), cloud computing
(111), feature selection (121), static analysis (120), dynamic
analysis (60), android malware (48), and data mining (15).
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TABLE V. KEYWORD NETWORK SUMMARY

Year Keywords with Frequency
2023 federated learning (16), risk (15), ensemble learning (12), adversial

examples (12), iot (11), NLP (11)
2022 desgn (40), cyber-physical systems (33), CNN (24), reinforecemnt

learning (22), scheme (19), random forest (18)
2021 network (74), algorithm (63), risk management (34), industrial control

system (26), network intrusion detection (18), adversial machine
learning (15)

2020 internet of things (99), digital forensics (15), behavior (39), malware
(18), computer security (35), cyber threat intelligence (19), information
(16)

2019 intrusion detection (369), machine learning (852), deep learning (476),
information security (131), cloud computing (111), feature selection
(121), static analysis (120), dynamic analysis (60), android malware
(48), data mining (15)

V. CONCLUSION

Cybersecurity is a crucial study issue that is garnering
significant attention across all sectors. Mapping cybersecurity
research is crucial to assess the level of preparation in cy-
bersecurity skills and identify areas that need improvement.
This study aims to discover research needs and peaks in the
fields of cyber security, malware detection, and android mal-
ware detection. This study performs a scientometric analysis
and knowledge mapping of cybersecurity-related papers that
were published over the last five years. We collected 9.967
research articles from WoS (see Section III-A). After that,
scientometric analysis is performed to analyse research domain
patterns, related research knowledge, which is referred to as
clusters in this study, and keywords, and finally, discover
the most contributing countries and institutions. This study
found six clusters: cluster ID=0 for malware classification;
cluster ID=1 for evading malware classifier; cluster ID=2 for
android malware detection; cluster ID=3 for iot networks;
cluster ID=4 for convolutional neural networks; and cluster
ID=5 for ransomware families. The United States, China, and
India are the top three contributors in terms of citation count.
The Chinese Academy of Science, the University of California,
and the University of Texas are the top contributing institutions
over the last five years. Future work may include analysing the
complete literature and comparing the findings to those from
the top-ranked journals.
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