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Abstract—In recent years, particularly with the Ethereum
blockchain’s advent, smart contracts have gained significant in-
terest as a means of regulating exchanges among multiple parties
via code. This surge has prompted the emergence of various smart
contract (SC) programming languages, each possessing distinct
philosophies, grammatical structures, and components. Conse-
quently, developers are increasingly involved in SC programming.
However, these languages are platform specific, implying that a
transition to another platform necessitates the use of different lan-
guages. Additionally, developers require a certain level of control
over SCs to address encountered bugs and ensure maintenance.
To address these developer-centric challenges, this paper presents
SCEditor, a novel Eclipse Sirius-based prototype editor designed
for the visualization, design, and creation of SCs. The editor
proposes a means of standardizing the usage of SC programming
languages through the incorporation of graphical syntax and
a metamodel conforming to Model-Driven Engineering (MDE)
principles and SC construction rules to generate an abstract
SC model. The efficacy of this editor is demonstrated through
testing on a voting SC written in Vyper and Solidity languages.
Furthermore, the editor holds potential for future exploitation
in model transformation and code generation for various SC
languages.
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I. INTRODUCTION

In 1994, SC started as a concept of formalizing and se-
curing relationships over networks [1]. SCs are self-executing
applications, representing a key technology of a decentralized
system based on Blockchain platforms [2].

The integration of SCs across various sectors has been
extensively explored and advocated for within academic lit-
erature. These contracts, enabled by blockchain technology,
offer versatile applications with significant implications. They
enhance security, trust, and efficiency in diverse domains such
as healthcare [3], [4], banking and finance [5], IoT [6], secure
data sharing [7], supply chain [8], business [9], [10], education
[11], software development methodologies [12], [13], security
risk management [14], [15], and legal frameworks [16].

Studies emphasize SCs’ pivotal role in reshaping tradi-
tional business models [9], democratizing software develop-
ment through accessible methodologies [12], [10], [13], for-
tifying security frameworks against vulnerabilities [14], [15],
and promising enhanced security and efficiency in education
systems [11]. Additionally, the evolution of SCs into self-
enforcing entities, known as smart legal contracts, marks a
transformative shift in contractual agreements [16].

This widespread impact affirms their integral role in shap-
ing the future landscape of multiple domains. The substantial
interest in SCs has led to the creation of various development
languages aimed at facilitating their programming and mitigat-
ing potential issues related to their maintenance and control.

Solidity and Vyper are the two most popular and widely
used languages in SC programming. Solidity is object-oriented
and considered the primary language for Ethereum and other
private Blockchain-based platforms. Vyper, on the other hand,
has a clear and straightforward compilation code, it is a
Pythonic programming language characterized by strong typ-
ing. Furthermore, Vyper purposefully includes less function-
ality than Solidity in an effort to make contracts more secure
and simpler to audit [17].

Despite recent advancements in the SC programming lan-
guages, they still have a lot of problems to overcome, and
several concerns continue to undermine their adoption. For
example, Vyper does not support Inheritance, Inline Assembly,
Function and Operator Overloading, Recurring Calls, etc [18],
[19]. A significant challenge that developers encounter in the
Ethereum platform is the dilemma of deploying code to a
system that is immutable while the development platform itself
continues to evolve. You cannot just easily upgrade or change
your SCs. You must be ready to take proper actions to solve
occurring problems, from migrating users, apps, and funds to
deploying the SC.

To produce a SC with one of these two widely used
languages, it will take time learning as well as coding. Also,
developers need to have certain control over the SC, so in case
of a hard fork. To tackle this problem effectively, developers
can promptly and appropriately respond by taking necessary
measures. Therefore, to enhance the definition and develop-
ment of SCs, it is preferable to raise the level of abstraction
and offer a contract modeling mechanism independently of any
specific language [20].

In recent years, the exploration of Model-Driven Engineer-
ing (MDE) as a means to abstractly model smart contracts
has garnered significant attention among researchers. While
the State-Machine model, UML Class Diagram, and Business
Process Model and Notation (BPMN) have been central to
many of these studies, there remains a minority that explores
the model-driven development process. In this paper, we intro-
duce SCEditor, a prototype model-driven tool developed using
Eclipse Sirius, and based on an abstract metamodel. It aims
to standardize the modeling of smart contracts by leveraging
MDE principles.
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The primary objective of the proposed tool is to streamline
development processes and make more efficient the design,
visualisation and generation of SCs. This work also discusses
the common SC programming languages, picking the most
used ones, comparing them, and deducing common compo-
nents to extract an abstract metamodel. The latter is used to
instantiate models including structural and functional aspects,
establishing a complete representation of SCs. The key benefit
of the SCEditor is that offers a range of SC components in a
user-friendly graphical syntax. This facilitates the creation of
platform-independent SC models, simplifies platform migra-
tion, allows adaptation to various SC languages, and ensures
ongoing control over them. To test the validity of the proposed
editor, a voting SC application was designed, found in the
documentation of both Vyper and Solidity.

The paper has the following structure: Section II reviews
innovative and recent academic approaches for SC develop-
ment based on Metamodeling. Section III gives an overview of
SCs as well as MDA-based tools, whereas Section IV presents
the proposed approach by describing the metamodel definition
process and explaining in detail the implementation process
of the SCEditor. Section V presents the chosen use case to
verify the validity and effectiveness of the proposed method
and emphasize the findings. In Section VI we discuss the
obtained results and position our proposal against the studied
approaches. Finally, Section VII summarizes the main findings
and proposes some suggestions for future directions.

II. RELATED WORK

Several studies have been conducted regarding SC pro-
gramming and MDE. Most of them are based on state-machine
or BPMN, and few on model-driven development process [20].
Most of the existing approaches focus on the behavioral aspect
of SCs and employ both BPMN and UML statechart models
for modeling business processes [21], [22], [23], [24].

During our research, we initially came across Lorikeet
[23], which exploits BPMN models and fungible/non-fungible
registry data schemas to create standardized ERC-20/ERC-
721 compliant asset registry SCs. Lorikeet’s BPMN Modeler
is developed using the bpmn-js modeling library, which is
licensed to bpmn.io, a division of Camunda. This led us to
explore another tool called Caterpillar, also developed by the
same author. Caterpillar makes use of Camunda, an open-
source platform for workflow and decision automation. One
notable advantage of Camunda is its upgradability and its
adherence to industry standards such as the Case Management
Model and Notation (CMMN) and the Decision Model and
Notation (DMN), as defined by the Object Management Group
(OMG).

Another approach based on BPMN entitled BlockME was
presented by [21]. It focuses on creating a business process
based on BPMN 2.0 which has the ability to integrate with
the Blockchain Access Layer (BAL), which serves as a mid-
dleware facilitating communication between external applica-
tions and open blockchain systems, allowing for transaction
exchange.

In study [22], the authors have specified a visual domain-
specific language (DSL) obtained from a UML class diagram,
and this method uses a collection of BPMN and DEMO

(DMN) models for the design of the process. The proposed
approach presents a metamodel for designing a SC, which is
simply a class diagram that incorporates various SC concepts.

A Model Driven Architecture (MDA) based approach was
proposed by [25], to define legal SCs. It consists of the
definition of the UML class diagram which describes legal
SC components like legal states, data sources, action, etc. The
added value of this approach is the comparison of current
modeling languages for the creation of legal SCs in light of
the suggested unified model.

iContractML 2.0 [26] is a framework that allows the cre-
ation of SCs using MDE. The proposed tool focuses on using
a reference UML class diagram to model SCs graphically.
However, the tool does not fully support the functional aspect,
as it provides templates only for some of the commonly used
basic functions.

The study used the Model-driven Architecture [27], em-
ploying the UML class and state-chart diagrams to model
the structural and functional aspects of SCs. The modeling
process involved a series of transformations, including model-
to-model (M2M) and model-to-text (M2T) transformations,
which converted the Solidity PSM model into code.

The study in [28] introduces a model-driven framework that
automates the storage of domain-specific data on the Ethereum
blockchain platform. It achieves this by utilizing Ecore model
instances. The framework generates Solidity SCs by employing
model-to-model and model-to-text transformations through the
use of Acceleo. To evaluate the approach, the persons-movies
dataset was utilized within the Ganache environment.

III. BACKGROUND AND MOTIVATION

A. Smart Contract Programming Languages

Ethereum, the blockchain-based platform, is considered
as a reliable technology with integrity characterized by the
decentralized execution of processing in SC format [29]. It
has become the most popular platform for both deploying
and storing SCs in a public distributed database [30]. It was
not until the advent of Ethereum that the concept of SCs
was implemented, even though it had been around for years.
The first idea was born in 1994 by Nick Szabo [31]. A SC
is an autonomous computer application that runs without the
need for validation by stakeholders. SCs are exploited to make
transactions. Therefore, if a transaction attempts to perform
more transactions than the gas spent allows, an exception is
thrown, and the transaction is cancelled. Of course, the gas
represents the fee that is paid before executing the SC by the
caller with the Ethereum currency ETH.

For SCs development, Solidity is frequently employed,
being the foremost choice due to its widespread popularity. In
addition to Solidity, several other SC programming languages
are utilized, such as Vyper, Mandala and Obsidian [32].
Each of these languages takes different approaches to enhance
existing development tools.

As shown in Table I, we have compiled a comprehensive
list of most of the SCs programming languages, organized
them based on their respective dates of creation, and evaluated
them against the following set of characteristics:
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• Paradigm: This is a technique used to group program-
ming languages based on their characteristics. Multi-
ple paradigms can be used to categorize languages.

• Level: Programming languages can be distinguished
into two levels: High and Low. The major distinc-
tion between them is that high-level languages are
simpler for programmers to comprehend, interpret,
and compile than low-level languages. Unlike humans,
machines can easily and quickly understand low-level
languages.

• Targeted platform: This defines the platform on which
the language runs.

TABLE I. SC LANGUAGES DESCRIPTION

SC Programming
languages

Paradigm Level Targeted Platform

LLL [33] functional low-level Ethereum

Serpent [34] procedural low-level Ethereum

Solidity [35] object-oriented high-level Ethereum

Vyper [36] procedural low-level Ethereum

Bamboo [37] procedural high-level Ethereum

Obsidian [38] state-oriented - Hyperledger Fabric

Rholang [39] concurrent - RChain cooperative

Michelson [40] stack-based high-level Tezos blockchain

Plutus [41] functional - Cardano blockchain

Sophia [42] functional - Æternity blockchain

Mandala [43] - high-level -

Flint [44] contract-
oriented

high-level Ethereum

Scilla [45] functional intermediate-
level

Zilliqa

The choice of SC programming languages is limited to
two, a deliberate decision prompted by various factors. Some
languages are still in the development process, others do
not provide well-informed documentation, and some are no
longer used by developers. The selection process focused on
identifying the most widely utilized and well-documented pro-
gramming languages, to afford the maximum characteristics of
comparison. Consequently, the chosen languages are Solidity
and Vyper.

Through an analysis of both shared and distinct features,
we delineate the disparities between the selected languages at
two distinct levels: conceptual and syntactical. At a conceptual
level, a prominent disparity between Solidity and Vyper lies in
their handling of root element. Notably, a single Solidity file
can encompass multiple SCs, whereas with Vyper, each SC
necessitates its own separate file. In terms of syntax, Solidity
draws inspiration from JavaScript, while Vyper is inspired by
Python syntax (Indentation, constructor, etc).

B. MDA Based Tools

1) The MDA Architecture: MDA, which stands for Model
Driven Architecture, is a specific vision of MDE defined by
the OMG group. MDE is a powerful approach that exploits
models as central artifacts to streamline the software and
systems development process. It is considered a methodology
for improving the quality, efficiency, and maintainability of

software and systems by focusing on abstract representations
of system structure, behavior, and functionality. When used
effectively, MDE can lead to improved productivity, higher-
quality software, and greater adaptability to changing require-
ments and technological platforms. Therefore, MDA can be
seen as a subset of MDE, which represents an architecture for
designing, visualizing, developing, transforming, and storing
software models that the machine can understand, and develop
independently of the implementation technologies by separat-
ing technical constraints from functional ones [46].

As depicted in Fig. 1, the OMG group proposes the MDA
and turns it into a realizable engineering framework for use in
the system/software design process. This approach advocates
the exploitation of models as operational elements participating
in the production and implementation of software. Conse-
quently, the model serves as input for a transformation engine,
which generates some or all of the desired software. Models
are instances of the concepts defined by the metamodel, and
a metamodel, in turn, defines the structure and rules that
govern the construction of models in a particular domain.
Metaclasses, on the other hand, are used to define the types
of elements in a metamodel. The MDA approach requires the
production of computation-independent models (CIM) which
are transformed into platform-independent models (PIM) and
subsequently into platform-specific models (PSM). Several
tools and graphical editors have been created based on the
principles of MDA to design models and facilitate the imple-
mentation of model transformations. One notable example is
Eclipse Sirius.

2) Eclipse sirius: Sirius, developed by the Eclipse Founda-
tion, is an open-source project that offers a flexible workbench
for model-based architecture engineering. This workbench can
be customized to suit specific requirements and needs. Sirius
gives developers the ability to create a fully rich graphical
editor containing all the components needed to design the
domain model, from tables, trees, nodes, edges, colors, shapes,
etc. It also offers the possibility to deploy the editor on the Web
[47].

By leveraging Sirius, developers can implement the MDA
principles by creating graphical editors. These editors can
provide a visual representation of the models, allowing users
to create, edit, and validate them. Additionally, Sirius can be
combined with other OMG standards to define transformation
rules and generate code from the models, aligning with the
code generation aspect of MDA.

From the perspective of specifiers and developers, Sirius
enables the capability to define workbenches that incorporate
various editors such as diagrams, tables, or trees. It allows for
seamless integration and deployment of these customized en-
vironments within Eclipse IDE or RCP applications. Addition-
ally, existing environments can be further customized through
specialization and extension. From an end-user perspective,
Sirius provides feature-rich and specialized modeling editors
that facilitate the design of models. It ensures synchronization
between different editors, enabling a cohesive and efficient
modeling experience.
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Fig. 1. The MDA framework.

IV. THE PROPOSED APPROACH

In this section, we explain the proposed approach for the
elaboration of the SCEditor. To begin with, we started with the
creation of an abstract representation of the SC components,
then, suggested a graphical representation for each one of
them. Finally, we used the metamodel in the Sirius Eclipse
project to elaborate a prototype of the SCEditor.

A. Metamodel Definition

The creation of the metamodel was done using Eclipse
Modeling Framework (EMF) [48], which is an open-source
technology in model-based software development. It is a com-
prehensive abstraction for describing, creating, and working
with structured data.

The construction of the proposed metamodel was based on
gathering a set of concepts used in the composition of SCs.
These concepts were collected from both the literature describ-
ing SCs and the studied languages. There were continuous
updates to the metamodel as we encountered new references,
and while creating model instances that covered most of the
SC elements.

In our endeavor to present a comprehensive yet digestible
depiction of a the metamodel, we employed segmentation,
dividing it into distinct structural and functional components.
This segmentation aimed to enhance clarity and facilitate
a more focused analysis. However, this division led to the
exclusion of some relationships bridging the structural and
functional aspects.

Fig. 2 illustrates the structural aspect of the metamodel.
This segmented representation aims to provide a detailed
breakdown of the structural aspect, showcasing the various
metaclasses and their interrelations within the metamodel. it’s

important to note that due to the complexity and size con-
straints, certain interrelationships with the functional aspects
have been omitted to maintain readability and visual clarity.

Fig. 3 presents the functional aspect of the segmented
metamodel, focusing on the dynamic behavior and interactions
between system components. This depiction emphasizes the
operational aspects, illustrating Statements, Expressions and
interactions between the identified elements within the function
Body. The functional representation aims to elucidate the
operational flow and functionalities. While this view provides
insights into the functional dynamics, it may lack some
structural context crucial for a complete understanding of the
system.

The classes illustrated in Fig. 2 and Fig. 3 encompass
both the structural and functional facets of the SC. Within the
structural realm, delineating the program’s foundational archi-
tecture, reside classes such as “Struct,” “Interface,” “Variable,”
“Modifier, “Function,” “Event, and “Type” Conversely, the
functional aspect characterizes the SC’s operational behavior,
incorporating the abstract classes “Statement” and “Expres-
sion” and their respective derived subclasses. Elaboration on
the intricate relationships among these classes is provided in
the next section.

B. SCEditor

SCEditor is a graphical editor for SCs design, visualization,
and generation. The proposed editor is a high-level tool that
provides a set of SC elements in a comprehensive graphical
representation, making it easy for the users to create platform-
independent models of SCs, facilitate platform migration,
enable adaptation to different SC languages, and maintain a
certain control over them through time.

SCEditor is based on the eclipse project “Sirius”. It relies
on creating model instances of a given SC conform to the
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SmartContract

name : EString

Body

Event

name : EString

Variable

name : EString

isArray : Boolean = false

Function

name : EString

Interface

name : EString

Struct

name : EString

Type

name : EString

Modifier

name : EString

Constructor

File

name : EString

Comment

content : EString

[0..*] smartcontract

[0..*] struct

[0..*] interface

[0..*] function

[0..*] variable

[0..*] event

[1..1] type

[1..*] modifier[1..1] body

[0..*] modifier

[0..*] parameters

[0..1] returns

[1..*] _variables

[0..*] function

[0..*] type

[1..*] smartcontract

[0..*] type

[0..*] modifier

[0..*] function

[0..*] comments

Fig. 2. Metamodel strcutural metaclasses.

Expression
Statement

ConditionalStatement

LoopStatement

AssignmentStatement

LiteralExpression

value : EString

BinaryExpression

operator : EString

CallStatament
[1..1] condition

[0..1] init

[0..1] step

[0..1] condition

[1..1] right

[1..1] left

[1..1] left

[1..1] right

Fig. 3. Metamodel functional metaclasses.

SC metamodel. The creation of the model consists of using
the elements provided in the palette of the editor. The editor
relies on two diagrams: the Smart Contract Diagram (SCD)
which contains elements needed for the representation of the
structural aspect, and the Function Diagram (FD) composed

of elements describing the functional aspect of the SC meta-
model.

1) Smart contract diagram: The structural and static aspect
plays an integral role in storing, managing, and manipulating
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data and transactions within a SC. In this section we present
SCD which is a graphical representation comprising various
structural nodes. it describes the static aspect of a given
SC. Its visual representation aids in comprehension, enabling
developers to grasp the composition and structure of the SC.

At the outset, the design of the SC model begins with the
creation of the SCD, the latter represents the top layer of the
model. These elements are categorized and found in the palette
(see Fig. 4(a)).

The SCEditor comprises two palettes: one dedicated to the
SCD (see Fig. 4(a)), and the other specifically designed for
the FD (see Fig. 4(b)), the latter will be elaborated upon in
the following section. These palettes encompass tools divided
into four categories:

• Contract Tools: It contains the main elements of a SC,
such as Contract, Function, and Struct.

• Statement Tools: It contains all statement elements like
AssignmentStatement, CallStatement, etc.

• Expression Tools: It contains all expression elements,
like LiteralExpression, ValueExpression, etc.

• Function Tools: It contains the variables used as
Parameter or Return variables.

Table II presents the components of the SCD, accompanied
by their respective palette icons and graphical representations.

Fig. 4. SCD and FD palettes.

Contract, Struct, and Function elements are represented
as containers. The reason behind is that these elements can
contain other components. “Contract” represents the container
that will include all the necessary elements to design the
SC structure and logic. It is composed of one or many
Struct, Function, or Variable. The “Struct” element defines
a custom type and contains one or many “Variable”. The
latter constitutes a value stored in the SC storage. Finally, the
representation of the “Variable” element is defined by a node.

When representing the logic of the SC, we faced many
challenges. The first one was the creation a comprehensive

TABLE II. SCD ELEMENTS

Element Palette icon Graphical Representation

Contract Container

Struct Container

Variable Node

Function Container

set of components (Statement, Expression) to illustrate the
functional aspect of the SC model. The second one was
related to the representation of these components which was
excessively growing as the body of the function expanded,
leading to an overcrowded diagram. To solve these issues,
a “Function Diagram” was defined, thus having only the
visualization of the functions on the SCD, and when explored,
it leads to a specific FD representation.

2) Function diagram: The Function Diagram is a visual
representation that depicts the structure and relationships of
statements within a “Function” element.

The FD serves as a valuable tool to express the logic
of a function and to improve the readability of the SCD.
The numerous elements required for the representation of
the function body is mitigated by encapsulating them in the
“Function” node.

To create an FD, we first need to declare a “Function”
element in the SCD, then, by double-clicking the latter we
navigate into the FD workbench that contains a dedicated
palette shown in Fig. 4(b). This palette is composed of “State-
ment” and “Expression” child metaclasses required to design
the function body. These elements are described in Table III
with their graphical representation.

When choosing a type of “Statement”, the editor will
create a container composed of the nodes required for the
composition of the selected element. For example, the creation
of an “AssignmentStatement” implicates the construction of
two nested nodes, the first is the left “Expression” that will
be assigned the value of the second one, which is the right
“Expression”. The CallStatement allows the call of any defined
function in the “File” element. As for the “LoopStatement”,
it is used when an iteration is needed. The construction of
this element implicates the creation of three nodes: “initial”
which describes the initial state of the iteration, “condition”
which indicates the condition to stop the iteration, and “step”
which represents the iteration step. For expressing a series of
“Statement” conditioned by a “Condition” node, we use “Con-
ditionalStatement”. Finally, we have the “Expression” child
metaclasses which consist of “LiteralExpression” that contains
an expression value, and, “BinaryExpression” which is used to
compare, increment, or decrement a certain expression.

It is important to note that besides the nodes contained in
“LoopStatment” and “ConditionalStatement”, these elements
need to have a body that contains their logic. Similarly, we
can define an FD to describe these statements’ bodies.

www.ijacsa.thesai.org 1190 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Fig. 5. SCD representation of the Ballot SC.

TABLE III. FD ELEMENTS

Element Palette icon Graphical representation

AssignmentStatement Container

CallStatement Container

LoopStatement Container

ConditionalStatement Container
LiteralExpression Container

V. RESULTS

A. Case Study

Voting is a delicate, precise, and open procedure process, it
requires a certain degree of security and privacy. The issue with
most of the voting applications is that they have several design
problems [49]. They are centralized by design and proprietary,
which implies that the code base, database, system outputs,
and monitoring tools are all under the simultaneous control
of one supplier. Such centralized systems struggle to gain the
credibility needed by voters and election organizers due to the
absence of an open-source, independently verifiable output.

Given this, blockchain technologies can be very helpful for
this process as they offer open-source, peer-reviewed software
that is ubiquitous, secure, and efficient, preserving the ballots’
confidentiality, enabling free, impartial audits of the results,
lowering the level of confidence required from the organizers
[49], [50].

In this light, we choose to work with a basic example of a
voting application to validate the applicability of our approach.
The case study represents a voting SC that will be used as
a reference to create a model based on the metamodel. The

latter is found in the documentation of the studied languages
[51], [52]. The SC will create one contract per ballot, and
then the chairperson - who is the creator of the contract - will
grant the right to vote to each individual by his address. These
individuals will then choose to vote themselves or delegate
their vote to another person they trust. Finally, after the voting
process is done, we will get the proposal with the largest
number of votes.

The selected SC highlights numerous features of the SC
languages, implying a test of the proposed metamodel’s va-
lidity. To make it short, we focused only on code segments
implemented in Solidity [51] and Vyper [52]. This decision
was made due to existence of most elements required for
constructing a SC, encompassing SC and variable declarations,
structures, constructors, and more.

Analyzing code from both Solidity and Vyper reveals com-
mon elements such as variables, loops, conditional statements,
and functions. Both languages share fundamental constructs
for control flow and data types, despite syntax variations.The
common elements found in codes are as follows:

• Ballot contract: It refers to the voting SC. In Vyper,
it is represented by the filename itself.

• Voter structure: It contains information about the
voter defined by the following variables:

◦ weight: It is accumulated by delegation.
◦ voted: True/false, depends if the person has

voted or not.
◦ delegate: The address of the person to whom

the right to vote has been delegated.
◦ vote: Index of the voted proposal.

• Proposal structure: it can be created by users. It has
the following variables:
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◦ name: Name of the proposal.
◦ voteCount: Number of votes.

• chairperson variable: The creator of the contract.

• giveRightToVote function: It gives a voter the right
to vote, it can be called only by ‘chairperson‘.

• delegate function: It delegates vote to the voter ‘to‘.

• winningProposal function: It returns the proposal
with the largest number of votes.

B. Design and Implementation

In this section, we will provide an example of an SCD, an
FD, and the resulting model.

At the outset of creating a new diagram, the workbench
automatically positions itself within the root file which con-
tains one or multiple SCs. The illustrated palette in Fig. 4(a),
provides the necessary elements to create a Contract, Struct,
Function, or Variable.

The user initiates by selecting the desired item and clicking
on the workspace, triggering the display of a graphical repre-
sentation of the corresponding element. Subsequently, the user
is asked to enter the properties of the created element. Once
completed, the user can proceed to define the description of the
functions, this can be achieved by double-clicking the function
element on the SCD. This action generates new workspace and
palette enabling the user to define the body of the function

Fig. 5 illustrates the SCD of the case study. First, we find
the name of the SC on the top left of the container. The
three purple elliptic nodes represent the voters, proposals, and
chairperson variables. Right next to them, we can find the Voter
and Proposal Struct illustrated by a gray container containing
the dedicated variables. The constructor and functions of the
SC are represented by dashed white containers including in the
body the logic defined by the Function Diagram. The green-
bordered nodes found on top of the functions represent the
input parameters, while the yellow-bordered ones represent the
return value of the function.

For example, the “winningProposal” function shown in
Fig. 5, has five statements varying from AssignmentStatment,
LoopStatement, and ConditonalStatement. These statements
are ordered according to the execution order declared in the
Function Diagram in Fig. 6.

Fig. 7 represents an ecore viewpoint of the resulting model.
The instance output is an XML Metadata Interchange (XMI)
format, which is an OMG standard for the representation of
object-oriented information in XML format. It is important to
highlight how easy it is for the user to use the XMI model for
other Model-driven related purposes such as M2M or M2T
transformations.

The components depicted Fig. 7(a) directly correlate to the
specific elements established within the SCD. Furthermore,
Fig. 7(b) serves as an illustration of the structure of the
Voter “Struct” element. Additionally, Fig. 7(c) elucidates the
composition of the “winningProposal” function, showcasing
its internal body structure and the variable returned by this
function.

Fig. 6. FD representation of the winningProposal function.

Fig. 7. Ballot model (a) with voter struct (b) and winningProposal function
(b) in ecore viewpoint.
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VI. DISCUSSION

The primary objective of this research endeavors to con-
struct a structured graphical representation for SCs, founded
upon an abstract metamodel developed in adherence to MDE
standards. The methodology adopted for this endeavor involves
the construction of a metamodel, predicated on an in-depth
analysis of programming languages used for SCs, aiming to
offer a broader, more generalized, and abstract delineation.
This approach facilitates a platform-independent depiction of
SC definitions, emphasizing the comprehensive portrayal of
both structural and behavioral facets intrinsic to SCs. The core
focus of this representation lies in encapsulating the intricacies
inherent in the structural and operational dimensions of SCs.
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SmartContract Struct Variables Parameter Return Function Constructor

Existing Modeled

Structural components representation

Fig. 8. Structural representation comparison between existing SC code and
elements modeled within the SCEditor modeled elements.

Fig. 8 displays a bar graph contrasting existing elements
in white with modeled components in gray. The white bars
indicate the count of elements found within the codebase,
including classes, structs, variables, parameters, returns, func-
tions, and constructors. Conversely, the gray bars represent
the number of these code elements visually depicted in the
diagram. This visual comparison reveals that all structural
components were successfully represented.
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Fig. 9. Functional representation comparison between existing SC code and
elements modeled within the SCEditor modeled elements.

In Fig. 9, it is evident that only 50% of the behavioral
components were represented in the model, predominantly
comprising function bodies, resulting in a cumulative represen-
tation of 68% for all components. This comparison underscores
notable disparities; for instance, out of the 17 existing Assign-
mentStatements, only 11 were visually represented. Similarly,
among the 11 CallStatements, merely one was visually mod-
eled.

Several limitations were encountered concerning the rep-
resentation of the behavioral aspect (FD). Specifically, the

complexity of FD elements increased as the statements became
progressively more intricate. Although the representation re-
mained feasible, the growing number of components resulted
in an overcrowded diagram. Regarding the structural aspect,
users are required to define the types and built-in functions
they intend to employ while constructing the SCD and FD.
Additionally, the absence of test and exception handling func-
tions (e.g., assert, require, etc.) is notable. Further work and
validation are necessary to incorporate these functionalities at
the abstract level alongside other features.

After examining various modeling approaches highlighted
in the related work section, a key observation emerged regard-
ing the predominant use of BPMN. Many methodologies for
representing business processes rely on BPMN, an officially
recognized standard by the OMG. However, while BPMN
adeptly illustrates data flow and connections between data
artifacts and activities, it isn’t explicitly designed as a data flow
language. Furthermore, this specification does not cover the
operational simulation, monitoring, or deployment of business
processes.

Other modeling approaches offer capabilities similar to
those of our proposal [26], [27], [28]. It can be argued that
these approaches are restricted in their scope as they do not
include all the structural and dynamic components of the SC.
However, they can only present the structural aspect of the SC
leaving the functional one to the user in the manual definition.

In comparison with these approaches, the SCEditor
presents a broad and abstract representation of the SC, as the
user can define both the structural and functional aspects of
the SC.

VII. CONCLUSION

This work presents the SCEditor, a prototype model-driven
tool based on an abstract representation designed to standardize
modeling SCs using MDE. The development of this graphical
editor utilized Eclipse Sirius in conjunction with a metamodel
definition formulated from derived rules originating from So-
lidity and Vyper languages.

The primary objectives of this proposed tool encompass
streamlining and enhancing the efficiency of SC design and
modeling processes, to meet the needs for developing large-
scale SCs.Additionally, it aims to consolidate the similarities
across various SC programming languages while identifying
and addressing disparities between them, ultimately proposing
a unified model.

We conducted a validation of our graphical editor by
subjecting it to a voting SC example sourced from Solidity and
Vyper documentations. The graphical editor effectively mod-
eled a majority of the SC components, encompassing both its
structural and functional elements. This abstract representation
of SCs holds promise for future utilization in generating cus-
tomized code for various blockchain programming languages

Our forthcoming efforts will center on model transforma-
tions to target additional blockchain platforms. This approach
will enable us to propose more abstract models that adhere to
the distinct rules of each platform. Subsequently, we intend
to conduct a usability test aimed at addressing challenges
associated with the abstraction of the metamodel.
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“Caterpillar: A blockchain-based business process management sys-
tem.” BPM (Demos), vol. 172, 2017.

[25] J. Ladleif and M. Weske, “A unifying model of legal smart contracts,”
in International Conference on Conceptual Modeling. Springer, 2019,
pp. 323–337.

[26] M. Hamdaqa, L. A. P. Met, and I. Qasse, “icontractml 2.0: A domain-
specific language for modeling and deploying smart contracts onto
multiple blockchain platforms,” Information and Software Technology,
vol. 144, p. 106762, 2022.
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