
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Software Defect Prediction via Generative
Adversarial Networks and Pre-Trained Model

Wei Song, Lu Gan, Tie Bao∗
College of Computer Science and Technology, Jilin University

Changchun 130012, China

Abstract—Software defect prediction, which aims to predict
defective modules during software development, has been im-
plemented to assist developers in identifying defects and ensure
software quality. Traditional defect prediction methods utilize
manually designed features such as “Lines Of Code” that fail to
capture the syntactic and semantic structures of code. Moreover,
the high cost and difficulty of building the training set lead
to insufficient data, which poses a significant challenge for
training deep learning models, particularly for new projects. To
overcome the practical challenge of data limitation and improve
predictive capacity, this paper presents DP-GANPT, a novel
defect prediction model that integrates generative adversarial
networks and state-of-the-art code pre-trained models, employing
a novel bi-modal code-prompt input representation. The proposed
approach explores the use of code pre-trained model as auto-
encoders and employs generative adversarial networks algorithms
and semi-supervised learning techniques for optimization. To
facilitate effective training and evaluation, a new software defect
prediction dataset is constructed based on the existing PROMISE
dataset and its associated engineering files. Extensive experiments
are performed on both within-project and cross-project defect
prediction tasks to evaluate the effectiveness of DP-GANPT. The
results reveal that DP-GANPT outperforms all the state-of-the-
art baselines, and achieves performance comparable to them with
significantly less labeled data.

Keywords—Software defect prediction; semi-supervised learn-
ing; generative adversarial networks; deep learning

I. INTRODUCTION

In this highly digitized society, software has become inte-
gral to all aspect of social life. As the fundamental element
in software development, the software quality and reliability
have become prominent, exerting profound impacts on various
aspects of society. The growing complexity of modern soft-
ware technologies, however, introduces various defects during
development, compromising overall software quality and re-
liability [1]. The manual detection and correction of defects
incur significant labor and cost burdens. Therefore, software
defect prediction has emerged as a promising approach to
automatically predict defective modules with existing software
code and historical data [2], [3], [4], aiding developers in
cutting costs and enhancing development quality. Prior work
indicates that software defect prediction has been a top three
research priority in software engineering [5].

Traditional defect prediction methods utilize machine
learning algorithms, such as Decision Tree [6], Random Forest
[7] and Naive Bayes [8]. These models rely on manually de-
signed features, such as McCabe features [9] based on program

This work was supported by the Science and Technology Research Project of
Educational Commission of Jilin Province, No. JJKH20231176KJ.

flow chart, Halstead features [10] based on the number of
opcodes and operators, and object-oriented CK metric [11].
These features are often too simplistic to effectively capture
and understand the syntax, semantic structure, and contextual
relationships of the code. Moreover, as the software com-
plexity and defects grow, the costs and challenges associated
with manually designing features have escalated significantly.
Consequently, researches on automatically extracting program
structures and semantic features from source code have been
conducted. Automatic feature extraction methods primarily
encompass four categories: sequence-based, tree-based, graph-
based, and model-based. These features are put into deep
learning models such as Deep Belief Network (DBN) [12],
Convolutional Neural Network (CNN) [13] and Long Short-
Term Memory (LSTM) [14] for prediction. These models
outperform traditional machine learning models across various
scenarios, demonstrating promising capabilities in predicting
software defects.

Although deep learning models have seen success, cur-
rent software defect prediction models face challenges. One
is that current defect prediction models lack the ability to
thoroughly comprehend the syntactic and semantic structures
of the code. For example, CNNs have restricted capability
in capturing contextual information. Recently, large language
models (LLMs), which are trained on large scaled corpora and
fine-tuned on various downstream tasks, such as GPT-series
[15], [16] and BERT-series [17], [18], have set new state-of-
the-art (SOTA) benchmarks on natural language processing
tasks. Motivated by the achievements of LLMs, researchers
have started exploring the application of language models
in software engineering. Several code pre-trained language
models have been proposed, such as CodeBERT [19], CODE-
GEN [20] and UnixCoder [21]. These models achieve SOTA
in multiple software engineering tasks, demonstrating their
potential for software defect prediction.

Another challenge lies in data limitation for training a
defect prediction model. In practice, data collection for model
training is extremely limited, which means over-fitting is likely
to occur. Additionally, while fine-tuning the pre-trained model
has shown to be an effective method to improve performance
on downstream tasks, their discriminative ability significantly
diminishes when the number of labeled samples for fine-tuning
is too low. It has been exemplified that the performance of
fine-tuned BERT significantly degrades when the number of
labeled samples is less than 200 [17]. The limitations in data
availability present a significant barrier to the application of
language models and the development of defect prediction
models. While a large scale of unlabeled source code is more

www.ijacsa.thesai.org 1196 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

readily available within or cross the development projects,
researchers have explored unsupervised and semi-supervised
learning methods to gain decent results, such as those de-
scribed in [22], [23] and [24].

This paper presents DP-GANPT, a software defect pre-
diction model that leverages semi-supervised generative ad-
versarial networks and a bi-modal code pre-trained model.
DP-GANPT simultaneously leverages the generator and a
pre-trained auto-encoder as dual different encoders, and the
discriminator as a decoder for classification. The auto-encoder
utilizes both labeled and unlabeled data for code represen-
tation in semi-supervised learning, while the generator intro-
duces perturbation options for generating synthetic samples,
augmenting the quantity and diversity of training samples.
Concurrently, the discriminator serves as a decoder, enhancing
the discriminative reconstruction capability and robustness of
the decoder by the augmentation of GAN and semi-supervised
learning techniques. A novel bi-modal dataset based on man-
ually designed PROMISE datasets and the source files is con-
structed to evaluate DP-GANPT on both within-project defect
prediction(WPDP) and cross-project defect prediction(CPDP)
tasks. The results demonstrate that DP-GANPT outperforms
all of the baselines by at least 17.8% and 3.4% on average,
and it matches the performance of the SOTA models using
only 100 labeled training samples.

The main contributions of this work are as follows:

• We propose a new software defect prediction model
DP-GANPT, which employs GAN on pre-trained
code language model for software defect prediction
tasks, capable of driving both supervised and semi-
supervised learning.

• We propose a novel bi-modal sequence input repre-
sentation inspired by the thought of prompt learning,
which enhances the adaptability of the model for
downstream tasks in software defect prediction.

• We construct a software defect prediction dataset for
bi-modal sequences corresponding to the PROMISE
dataset to effectively facilitate the training and evalu-
ation.

The rest of the paper is organized as follows. In Section
II, we introduce the background and related work. Section III
describes the proposed model DP-GANPT. We introduce the
experimental setup in Section IV, and present the experiment
results and a discussion in Section V. Section VI discusses
threats to validity. Finally, we summarize our work and intro-
duce the future work in Section VII.

II. BACKGROUND AND RELATED WORKS

A. Defect Prediction Models Based on Deep Learning

Fig. 1 illustrates the main steps of building a deep learning-
based software defect prediction model. The initial step in-
volves data collection and preprocessing. Features extracted
from software modules are gathered either from the current
project (i.e., WPDP) or from other software projects (i.e.,
CPDP) to serve as training samples. These features may en-
compass automatically extracted features or manually designed
features such as code lines, complexity and comment rates.

Subsequently, the collected samples are labeled to indicate
the presence or absence of defects, and divided into training
and test sets. Following construction of the model, training
is carried out, enabling the model to learn the mapping
relationship from software features to the existence of defects.
Subsequent to training, the model is evaluated on the test set
to assess its performance. Ultimately, the evaluated model is
utilized to predict whether other software modules contain de-
fects, providing valuable information for software development
teams to identify and rectify potential defects.

Like traditional machine learning, some deep learning-
based defect prediction models rely on manually-crafted fea-
ture engineering. Qiao et al. [25] and Manjula et al. [26]
employed empirical manually extracted features, and utilized
deeper and more complex networks to achieve better perfor-
mance. More popular extraction methods include language se-
quences, abstract syntax tree (AST) and graph representations.
Wang et al. [12] leveraged DBN to learn semantic features
from the nodes of AST and source code, utilizing Euclidean
distance on traditional numerical features to handle noise
for defect prediction. Their findings demonstrate outstanding
performance of automatically generated semantic features in
file-level defect prediction, with promising results in cross-
project defect prediction as well. Shi et al. [27] extracted
AST information as symbol and control sequences to train
Bi-LSTM. Qiu et al. [28] used matrices from ASTs and feed
them into a CNN to extract features automatically. Zhao et al.
[29] integrated AST and CFG features into a graph network
architecture, leveraging the strengths of feature representations.
Zhou et al. [30] employed GNN and AST for feature extraction
and fusion, and CNN for defect prediction, claiming the best
performance across 21 open-source datasets.

Recent studies have embraced pre-trained models as classi-
fiers or auto-encoders. Fu et al. [31] proposed a Transformer-
based method named LineVul, utilizing the CodeBERT pre-
trained language model to generate vector representations of
source code. Results indicate that LineVul achieves signif-
icantly higher F1-scores on C/C++ language datasets com-
pared to baseline methods. Uddin et al. [32] introduced a
novel model that combines pre-trained BERT with Bi-LSTM
networks, treating BERT as an auto-encoder and using Bi-
LSTM for classification. Liu et al. [33] introduced a model that
integrates pre-trained UnixCoder and CNN, using UnixCoder
as an auto-encoder, and CNN for classification prediction.

However, these approaches have several limitations that
hinder their effectiveness and generalizability. Firstly, data
scarcity usually occurs in practice, but is often overlooked for
these models, leading to their poor performance in the software
development. Secondly, although relevant unlabeled data is
more readily available, these methods do not fully exploit
its potential. Lastly, these approaches do not fully capitalize
on the natural language components. Software artifacts, such
as source code and documentation, often contain rich natural
language information that can be leveraged to improve the
understanding and representation of software vulnerabilities.
Our proposed DP-GANPT leverages GAN and a pre-trained
model, and is trained with semi-supervised learning method to
exploit the employment of relevant unlabeled data. Addition-
ally, we propose a novel input representation to better utilize
the deeper characteristics of both programming and natural

www.ijacsa.thesai.org 1197 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Cross project

. . .
Training set

. . .

Test set

Prediction

model

int foo(){ return 0;}

A new instance

//

Predict

Defective
Defect-free
Defective
Defect-free

Within project Source code

Extract features

Descriptions

. . .

(a) Data preprocess (b) Samples labeling (d) Evaluating and predicting(c) Model training

Fig. 1. Workflow of software defect prediction model based on deep learning.

language information. By leveraging these methods, we aim
to find a more effective and efficient approach to software
defect prediction.

B. Code Pre-trained Model

Recent advances in deep learning have enabled the de-
velopment of LLMs. Trained on ultra-large-scale corpora,
these models are able to better understand the underlying
connections and connotations of data. Code pre-trained models
aim to learn a robust representation of source code, which
can be used for various programming tasks and show the
effectiveness. The main difference between LLMs and code
pre-trained models is the training data. LLMs are typically
trained on natural language text, while code pre-trained models
are trained on source code or both of code and natural lan-
guage. The architectures of code pre-trained models are same
as LLMs, including encoder-only, decoder-only and encoder-
decoder architectures.

Encoder-only architecture models takes in a sequence of
tokens and outputs a continuous representation of the input
code. They are usually pre-trained on masked language model
and other unsupervised tasks, and are ideal for classification
and code search. Kanade et al. [34] presented CuBERT to
train BERT models on large-scale Python source code, while
CBERT [35] trains BERT on a large C language corpus. GPT-
C [36] is trained on Python, C#, JavaScript and TypeScript for
code completion task. Furthermore, Feng et al. [19] proposed
CodeBERT whose architecture is same as RoBERTa[37] with
bi-modal input.

Decoder-only architecture models are left-to-right models
that generates a sequence of tokens to produce the output
code, and usually used for generation tasks. CodeGPT [38],
CodeParrot [39] and CODEGEN [20] are examples of such
models. In the past two years, there has been a growing body
of researches focused on the study of decoder-only models,
driven by their demonstrated effectiveness in code generation
tasks.

Encoder-decoder architecture models adapt pre-training
objectives of both encoder-only and decoder only architectures.
Encoder-decoder models includes UnixCoder [21], CodeT5
[40] and the enhanced version CodeT5+ [41]. The architecture
of UnixCoder adopts the framework pattern of UniLM [42],

supporting multiple tasks through manipulation of input atten-
tion masks. CodeT5+, an enhanced version of CodeT5, aims to
efficiently expand model capacity while avoiding training from
scratch. This objective is achieved by initializing the model
with a pre-trained frozen offline language model.

C. SS-GANs

Semi-supervised Generative Adversarial Networks (SS-
GANs) [43] is an effectual technique to implement semi-
supervised learning, and a variate Generative Adversarial Net-
works(GANs) [44], which leverages labeled data to train the
discriminator, and a large scale of unlabeled data to enhance
the structural understanding and internal representations. In
GANs, the generator generates fake samples that imitate the
distribution of real samples, while the discriminator determines
whether the sample is a real sample or not. To train a SS-
GAN, the discriminator not only needs to discriminate the
authenticity of the samples, but also acts as a classifier to
classify real samples into different classes. Specifically, all
samples are divided into K + 1 categories, where the real
samples are classified into a certain class in (1, ...,K), and
the generated samples are classified into the K + 1 class.

III. METHODOLOGY

A. Motivation

This paper identifies two key challenges in software defect
prediction. The first is the lack of comprehension and discrim-
ination of models. Large scaled code pre-trained have been
successful in various downstream tasks such as code search.
Code pre-trained model as the auto-encoder employs an unsu-
pervised learning method that enhances the generalization by
learning low-dimensional representations of the input data. The
other problem is data limitation. By introducing unlabeled data,
semi-supervised learning enhances the learning of relevant
clustered data, thereby improving the prediction performance.
Furthermore, GAN architecture conducts data augmentation to
improve the robustness, which has been used widely [45], [46],
[47].

Therefore, we explore the integration of generative ad-
versarial algorithms into semi-supervised learning methods to
optimize pre-trained auto-encoder and train a discriminator, to
address challenges posed by insufficient data in real-world sce-
narios and improve the capacity of prediction. The application

www.ijacsa.thesai.org 1198 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Fig. 2. The architecture of DP-GANPT.

of GAN aids the model in supplementing the original dataset
by generating new data samples, thereby augmenting the
quantity and diversity of training examples. Semi-supervised
learning enables the model to effectively utilize unlabeled
data, enhancing its generalization capability and robustness.
Furthermore, with prompt learning becoming a new paradigm
in natural language process [48], we aim to incorporate the
thought of prompt learning into the natural language and
programming language (NL-PL) bi-modal input representation
to improve the comprehension of defect prediction objective
and accelerate the convergence.

B. Architecture

As depicted in Fig. 2, DP-GANPT primarily consists of
tokenizer, embedding layer, code pre-trained auto-encoder,
generator, discriminator, and output layer. The NL-PL bi-
modal sequences are extracted from training data within the
project or across projects. After tokenization, the labeled
and unlabeled data is represented as input representation
sequences. Subsequently, these input representation sequences
pass through token embedding and positional embedding lay-
ers, being mapped into vector representations of a specified
dimension. These vectors are then put into a pre-trained
code language model-based auto-encoder for the extraction
of semantic and structural information, yielding output vector
representations. Simultaneously, the generator takes random
noise as input and maps it to samples that conform to the
actual data distribution,which are described as fake samples in

Fig. 2. Finally, both the real and fake samples are put into the
discriminator to identify them clean, buggy or fake.

1) Input representation: In our study, we utilize source
code and descriptions collected from the same project or other
projects as training data, which are denoted as WP and CP
in Fig. 2, respectively. Each labeled or unlabeled sample is a
concatenation of two segments depending on modals, where
one segment is a natural language sequence, represented as
[NL], and the other is a programming language sequence,
represented as [PL]. Like the standard input representation
of BERT, [CLS] is placed at the beginning to describe the
characteristics of the aggregated sequence, and the [SEP] token
is placed between two sequences (i.e., between [NL] and [PL])
to indicate the separation. Finally the [EOS] token is placed
at the end to signify the end of the sequence. Therefore, the
input representation of DP-GANPT is defined as:

INPUT = SEQ([CLS][NL][SEP][PL][EOS]), (1)

where C, N, S, P and E are short for [CLS], [NL], [SEP], [PL],
[EOS], respectively.

During the fine-tuning process, prompt learning emerges as
an effective technique that guides the model in learning task-
specific representations by incorporating prompts or cues into
the input data. Inspired by prompt learning, this paper intro-
duces content for the natural language modality subsequence,
comprising various prompts. Formally, [NL] is defined as:

[NL] = {[NP]⊕ [AP]⊕ [OP]⊕ ...}, (2)

www.ijacsa.thesai.org 1199 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

(a) Masked Language Model

N x Transformer Blocks

[CLS] NL 1 ... [MASK] ... NL N [SEP] PL 1 ... [MASK] ... PL N

E[CLS] E1 E[MASK] EN E[SEP] E1'... ... E[MASK] EN'... ...

C T1 Ti TN T[SEP] T1'... ... Tj' TN'... ...

Masked Natural Language

Sequence

Masked Programming Language

Sequence

(b) Replaced Token Detection

NL Generator

PL Generator

sample

sample

sample

sample

NL-PL

Discriminator

EPL132

EPL19

EPL1

EPL3

EPL4

EPL5

PL1

PL2

PL3

PL4

PL5

PL6

NL1

NL2

NL3

NL4

NL5

E[MASK]

ENL2

ENL3

ENL4

E[MASK]

EPL1

E[MASK]

EPL3

EPL4

EPL5

EPL6

replaced

original

original

original

original

original

replaced

original

original

original

replaced

ENL49

ENL2

ENL3

ENL4

ENL5

Fig. 3. Two objectives of pre-training CodeBERT. (a) illustrates the masked language model objective, and (b) illustrates the replaced token detection objective.

where [NP], [AP] and [OP] are name-prompts, annotations-
prompts and objective-prompts, respectively. Name-prompts
refer to the names of modules, functions, or classes in the
software code, while annotations-prompts are used to doc-
ument the purpose of a function, describe how a particular
piece of code works, and provide guidance on how to modify
or extend the code. Objective-prompts suggest the training
objective, such as “Is there any bug, defect, error, fail or patch
in the software module?” for software defect prediction tasks.
The ellipsis indicates that the [NL] can be expanded depending
on different designs, allowing for flexibility and adaptability
in our approach.

By employing this input representation, additional prompt
information is incorporated into the original input data, which
guides the model to focus on portions of the input data relevant
to the software defect prediction task, facilitating the learning
of task-specific representations and enhancing performance in
defect prediction.

2) Tokenization and embbeding: Before inputting the bi-
modal sequences into the auto-encoder, the Byte Pair En-
coding (BPE) algorithm [49] is employed for tokenizing the
sequences. The core of BPE involves two stages, the generation
of a merge-operation set, followed by the concrete application
of these operations to a subword vocabulary.

The primary task in the first stage is to identify the most
frequent character pairs within words, and construct the merge-
operation set based on this information. Initially, each word
is decomposed into individual character sequences. Frequent
character pairs, which could be merged to form new symbol
pairs, are identified through a search process. Following this,
the character pairs are merged into new subwords, resulting
in a more refined tokenization. This approach ensures the
integrity of common vocabulary while breaking down rare
vocabulary into a collection of its constituent subwords. The
BPE mechanism is applied to the pre-training corpus, creating
a subword tokenizer specifically designed for source code.
BPE effectively handles complex vocabulary within the code,
breaking it down into subwords containing rich semantic in-
formation, thereby optimizing the subsequent language model

training process.

The embedding process includes word embedding and
position embedding. After tokenization, tokens are embedded
by One-Hot algorithm, and then pass through a linear layer
for word embedding, resulting in vectors of fixed dimensions.
For software defect prediction task, capturing code context
and position information is crucial. Position embedding is
employed to represent the position information of each element
in the sequence, capturing the positional relationships among
tokens in the input sequence. Position embedding is calculated
as follows:

PE(pos, 2i) = sin(
pos

10000
2i
dm

), (3)

PE(pos, 2i+ 1) = sin(
pos

10000
2i+1
dm

), (4)

where pos represents the position of the token in the sequence,
i is the dimension index of the positional vector, and dk is the
dimension of the vector representation after word embedding.
Through this encoding method, the position of tokens in the
sequence is uniquely determined, and the distance between
adjacent tokens is approximately constant.

3) Pre-trained auto-encoder: Our preliminary work has
proved that code language models with encoder-only architec-
ture are the most effective and efficient for software defect
prediction among the three language model architectures.
Therefore, we utilize pre-trained CodeBERT with encoder-
only architecture as the auto-encoder to generate high-quality
real samples representations. It is worth noting that other
outstanding models can also be implied, given the continuous
emergence of large-scale code pre-trained models.

The CodeBERT auto-encoder consists of multi-layer Trans-
former blocks with self-attention mechanism, which trains
RoBERTa [37] architecture on Codesearchnet [50], an open-
source collection of over 4,000 open-source repositories pro-
viding both bi-modal data and uni-modal data. The dataset
consists of software modules in six programming languages,
including Python, Java, JavaScript, PHP, Ruby, and Go. At
the pre-training state, two objectives are conducted as shown

www.ijacsa.thesai.org 1200 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

in Fig. 3. One is masked language model (MLM) proposed
in BERT [17] to predict the masked token in a sequence,
enhancing the comprehension of the context and relationships
between tokens. This objective is trained on bi-modal data,
which includes both code and natural language descriptions.
The other objective is replaced token detection (RTD) that is
proposed in ELECTRA [51] to identify whether a token is
replaced, strengthening the capacity to recognize alterations
in the code. This objective is trained on uni-modal data,
consisting solely of code.

After pre-training, the auto-encoder encodes the labeled
and unlabeled samples into 768-dim vector representations,
named real examples. These vectors are then fed into the
decoder, i.e., the discriminator, for prediction.

4) Generator and discriminator: The generator and dis-
criminator enable semi-supervised and adversarial learning on
the output of the auto-encoder. The generator transforms ran-
dom noises into vector representations that mirror the structure
of authentic samples, which we describe as fake examples.
During the training process, the discriminator is a ternary
classifier trained to differentiate among three distinct classes:
real samples with defects, real samples without defects, and
fake samples. Once the training process is complete, the
generator is discarded while the discriminator is retained for
prediction in practice.

The architecture of generator and discriminator is depicted
in Fig. 4. According to the theoretical and experimental proof
of Dai et al. [52], a bad generator improves generalization for
semi-supervised learning. In this work, both the generator and
discriminator are deep feed-forward networks with a hidden
fully connected layer, rather than more complex models. We
use LeakyReLU as the activation function and a dropout layer
to avoid overfitting. The input noise vector has a size of 100,
while the hidden layers of both generator and discriminator
have a size of 512. The output size of generator is 768
that mirrors real examples from the output of the pre-trained
CodeBERT. Before the SoftMax layer in the discriminator is
another fully connected layer with the same numbers of classes
for predicting. The output of the discriminator is a 3-dim
vector, where the value of each dimension is the probability of
the corresponding class. The class with the highest probability
is the prediction of the model.

Training GANs is a process of finding Nash equilibrium
in a zero-sum game between two players. However, because
the loss function is non-convex, the parameters are continuous
and the dimension of the parameter space is extremely high,
so that it is very tough to find the equilibrium. Therefore, the
loss function is usually minimized by gradient descent on the
cost functions of both generator and discriminator or by using
a heuristic algorithm to try to achieve convergence.

Formally, let G and D denote the generator and dis-
criminator, respectively. At the training state, Pg(x) is the
generator’s generation of the real data distribution Pd(x).
A three dimensional output vector of the input sample x is
represented as:

l = {l1 , l2 , l3}, (5)

where l1 and l2 denote real example with and without defects,
and l3 denotes fake examples. We use pm(y = i |x) to denote

Discriminator

Input: 1 × 768

[768, 512]

Fully Connected Layer

LeakyReLU

Dropout

[512, 3]

Fully Connected Layer

Dropout

SoftMax

Input: 1 × 768

[768, 512]

Fully Connected Layer

LeakyReLU

Dropout

[512, 3]

Fully Connected Layer

Dropout

SoftMax

Generator

Input:1 × 100

Noise Vector Layer

[100, 512]

Fully Connected Layer

LeakyReLU

Dropout

[512, 768]

Fully Connected Layer

Input:1 × 100

Noise Vector Layer

[100, 512]

Fully Connected Layer

LeakyReLU

Dropout

[512, 768]

Fully Connected Layer

Generator

Input:1 × 100

Noise Vector Layer

[100, 512]

Fully Connected Layer

LeakyReLU

Dropout

[512, 768]

Fully Connected Layer

Fig. 4. The architecture of the generator and discriminator.

the probability that the sample x is predicted to be the i-
th class, calculated by the model using SoftMax function as
follows:

pm(y = i|x) = exp(li)∑3
k=1 exp(lk)

. (6)

Therefore, pm(y = 3 |x) represents the probability that the
sample x is judged to be a generated sample. LD is defined as
the loss function of discriminator D with cross-entropy. LD is
composed of two parts, the loss function of supervised learning
LDs

and the loss function of unsupervised learning LDu
. LDs

represents the penalty of misclassifying during training for the
labeled real samples, which is defined as:

LDs
= −Ex,y∼pd(x,y)log pm(y|x, y <= 2). (7)

Unsupervised loss LDu
consists of two parts, misjudging

unlabeled real samples as fake and misjudging generated
samples as defective or non-defective. By inputting each single
real sample, a fake example would be generated in accompany
during the training stage. This means half of the input to
the discriminator is real samples from pre-trained model and
the other half is fake samples from the generator. So the
unsupervised learning loss function is define as:

LDu =− Ex∼pd(x)log [1− pm(y = 3|x)]
− Ex∼pg(x)log[pm(y = 3|x)], (8)

the loss function of discriminator is defined as follows:

LD = LDs
+ LDu

, (9)

where LDu is equal to zero for supervised learning.

For generator G , the goal is not just to minimize the third
output, i.e., the fake dimension of the D , but to generate data
that is as similar to the real data as possible. Therefore, we
train G to match the output of the auto-encoder, because D
needs to find features that best distinguish real data from the
generated. This process is named feature matching. Let f (x)
denote activations such as average, on the output of the auto-
encoder, then the objective function of this process is defined

www.ijacsa.thesai.org 1201 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

as:
LGfm

= ||Ex∼pd(x)f(x)− Ex∼pg(x)f(x)||
2
2, (10)

Meanwhile, we reward when the samples generated by G are
judged as non-defective by D . The loss function of this process
is defined as:

LGu
= −Ex∼pg(x)log[1− pm(ŷ <= 2|x, y = 3)]. (11)

To sum up, the loss function of G is defined as:

LG = LGfm
+ LGu . (12)

During the test and prediction stage, the fake dimension,
i.e., the third dimension l3, is omitted when calculating
SoftMax function for classification. This deliberate exclusion
prevents samples from being misclassified as fake in real-world
applications.

IV. EXPERIMENTAL SETUPS

A. Research Questions

To evaluate the effectiveness of our proposed method, the
following four research questions are designed:

• RQ1: How does DP-GANPT perform in WPDP com-
pared with the SOTA methods?

• RQ2: How does DP-GANPT perform in CPDP com-
pared with the SOTA methods?

• RQ3: How does DP-GANPT perform under labeled
data limitation?

• RQ4: Why does DP-GANPT work?

B. Construction of Bi-modal Dataset for Defect Prediction

Table I presents the projects in PROMISE dataset used
for experimentation and evaluation, comprising a total of 10
projects with 25 versions utilized in the experiments. The
PROMISE dataset has been widely utilized in researches on
software defect prediction. However, the existing PROMISE
dataset consists of static manually designed features, and lack
specialized version designed specifically for bi-modal sentence
sequences. Therefore, we construct a novel software defect
prediction dataset of bi-modal input sequence based on the
existing dataset and its source code project files, aiming to
reflect the data characteristics and task requirements in real-
world software engineering environments more accurately.

Specifically, we crawl the source engineering files corre-
sponding to each version of each project in the PROMISE
dataset. Subsequently, it extracts version, name, and defect
information from each table for each version of each project.
Leveraging the naming characteristics of JAVA project files,
it extracts path information from the names and matches
them with the source files. Irrelevant information for the
experiments, such as licenses, authors, and format details (e.g.,
spaces, extra spaces, line breaks), is removed. Then, it extracts
files, function names, comment information, and source code
sequences into new files to construct a new dataset using state
machine transitions and pattern matching. The labels, defective
or non-defective, are represented as bi-modal sequences. For
instance, when encountering the “//” symbol, the state machine

TABLE I. DESCRIPTION OF DATASET SELECTED FOR THE EXPERIMENTS

Project Version Average Samples Average Defect Rate (%)

Ant 1.5 1.6 1.7 422 22.5
Camel 1.2 1.4 1.6 891 23.6
Ivy 1.4 2.0 454 10.3
jEdit 4.0 4.1 276 21.5
Log4j 1.0 1.1 200 41.4
Lucene 2.0 2.2 2.4 247 56.7
Poi 1.5 2.5 3.0 328 66.8
Synapse 1.0 1.1 1.2 208 27.7
Xalan 2.4 2.5 816 35.6
Xerces 1.2 1.3 323 18.3

TABLE II. THE PROJECTS AND VERSIONS USED AS TRAINING AND TEST
SETS FOR DEFECT PREDICTION EXPERIMENTS

WPDP CPDP

Projects Training Set Test Set Training Set Test Set

Ant 1.5 1.6 Camel 1.4 jEdit 4.1
1.6 1.7 jEdit 4.1 Camel 1.4

Camel 1.2 1.4 Lucene 2.2 Xalan 2.5
1.4 1.6 Xalan 2.5 Lucene 2.2

Ivy 1.4 2.0 Poi 2.5 Synapse 1.1

jEdit 4.0 4.1 Synapse 1.2 Poi 3.0

Lucene 2.0 2.2 Xerces 1.3 Xalan 2.5
2.2 2.4 Xalan 2.5 Xerces 1.3

Log4j 1.0 1.1 Camel 1.4 Ant 1.6

Poi 1.5 2.5 Ant 1.6 Camel 1.4

2.5 3.0 Xerces 1.3 Ivy 2.0

Synapse 1.0 1.1 Ivy 2.0 Xerces 1.3

1.1 1.2 jEdit 4.1 Log4j 1.1

Xalan 2.4 2.5 Log4j 1.1 jEdit 4.1

Xerces 1.2 1.3 Ivy 2.0 Synapse 1.2
Synapse 1.2 Ivy 2.0

transitions to the corresponding single-line comment state,
storing the subsequent sequence in the comment information
string until encountering “\n” to conclude. Pattern matching
involves merging and rewriting the path information of project
files with the file names, followed by matching with the names
in the static dataset to identify the corresponding labels for the
files. Through these operations, a bi-modal PROMISE dataset
with multiple prompts is constructed, providing robust support
for subsequent experiments.

Based on the dataset constructed from the 10 projects
and 25 different versions above, we conduct evaluation the
proposed method on both WPDP and CPDP, as shown in Table
II, comprising a total of 31 distinct experimental groups. For
WPDP, the models are trained on older versions and tested
on more recent versions, resulting in 15 different experimental
groups. For CPDP, the study utilizes datasets from 16 different
projects for both training and testing.

C. Evaluation Metrics

F1-score is widely employed in experiments involving
imbalanced datasets, and is also widely utilized for prior
works. Consequently, we opts for F1-score as the metric for
assessment. F1-score is the harmonic mean of precision and

www.ijacsa.thesai.org 1202 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

TABLE III. CONFUSION MATRIX

Predicted positive Predicted negative

Actual Positive True Positive (TP) True Negative (TN)
Actual negative False Positive (FP) False Negative (FN)

recall. Precision denotes the proportion of samples predicted
as defects by the model that are indeed defects among all
predictions. Recall, on the other hand, indicates the proportion
of actual defect samples that the model correctly predicts.
Precision and recall often stand in opposition, with a high value
for one metric potentially leading to a reduction in the other.
To strike a balance between these two metrics, F1-score is
utilized as a comprehensive evaluation metric in experiments.
Its computation is articulated as follows:

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F1− score =
2× Precision×Recall

Precision+Recall
, (15)

where TP, FP, FN are true positive, false positive, false negative
in confusion matrix shown in Table III, respectively. TP is the
number of defective samples that are predicted buggy, while
FP is the number of samples without defect but predicted to
be buggy. FN means the number of defective examples that
are undetected.

D. Implement Details

We run all experiments on three NVIDIA RTX 3090
24G GPUs with Intel Xeon Silver 4210R 64GB RAM. The
maximum sequence length for experiments is configured as
512, the batch size is set to 16, and the learning rate is
established at 1 × 10−5. The maximum number of epochs
for the experimental training process is set to 30. A 10-fold
cross validation is employed on the training set, and early
stopping is applied to mitigate overfitting. For the genera-
tor and discriminator, we employ the LeakyReLU activation
function with a slope of 0.2 to introduce non-linearity without
causing the vanishing gradient problem. Additionally, we apply
a dropout rate of 0.3 to both the generator and discriminator,
which helps to prevent overfitting and improve generalization
performance. In terms of optimization, we selected AdamW
as our optimizer, which has been shown to be effective in
various natural language processing tasks. The auto-encoder
in DP-GANPT is implyed by CodeBERT-base with 125M
parameters based on microsoft/codebert-base in HuggingFace
Transformers [53]. Partial configuration of the model is listed
in Table IV. The input size of the auto-encoder is 514 including
[CLS] and [EOS], and 12 Transformer blocks are trained in
CodeBERT.

For semi-supervised learning, given the limitation of a
small number of versions within the project, experiments on
both WPDP and CPDP follow a methodology where, after
excluding subsequent versions following the test set, three
datasets are randomly sampled as unlabeled data for each

TABLE IV. PARTIAL CONFIGURATION OF PRE-TRAINED CODEBERT AS
AUTO-ENCODER

Name microsoft/codebert-base

Architectures Roberta Model
Attention dropout prob 0.1

Activation function GELU
Hidden dropout prob 0.1

Hidden size 768
Intermediate size 3072
Layer norm eps 1 × 10−5

Max position embeddings 514
Num attention heads 12
Num hidden layers 12

Position embedding type absolute
Vocab size 50265

Parameter size 125M

TABLE V. MANUALLY DESIGNED FEATURES FOR ADABOOST

Features Description

AMC Average Method Complexity
CA Afferent Couplings

CAM Cohesion Among Methods of class
CBM Coupling Between Methods
CBO Coupling Between Object class
CE Efferent Couplings

DAM Data Access Metric
DIT Depth of Inheritance Tree
IC Inheritance Coupling

LCOM Lack of COhesion in Methods
LCOM3 Another typer of Lack of COhesion in Methods

LOC Lines Of Code
MFA Measure of Functional Abstraction
MOA Measure Of Aggregation
NOC Number Of Children
NPM Number of Public Methods
RFC Response For a Class

WMC Weighted Methods of Class

experiment. This process is repeated for five times, and the
average results are taken to mitigate the impact of randomness
on the experiments. For instance, if the test set is “Ant 1.6”, the
unlabeled data will be randomly sampled three times from the
remaining datasets after excluding “Ant 1.7” and the training
set, repeating this process five times for a comprehensive
evaluation.

E. Baselines

Five models are utilized as the baselines for evaluation,
including one of the best-performing methods using manually
designed features, the ensemble learning algorithm AdaBoost,
and four SOTA defect prediction models based using deep
learning method, including DBN [54], BugContext [55], Tree-
LSTM [56], and MFGNN [29].

AdaBoost is an adaptive boosting ensemble learning
method that constructs multiple weak classifiers on the same
dataset, ultimately yielding a strong classifier. In the ex-
periments, AdaBoost utilizes manually designed features as
shown in Table V. DBN extracts semantic information from
ASTs of the source code and metrics of code change features
using deep belief networks. BugContext enhances the feature
representation of programs by integrating semantic information
from Context-Free Grammars (CFGs) and Dependency-Free
Grammars (DFGs). Tree-LSTM trains a multi-layer LSTM

www.ijacsa.thesai.org 1203 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

network in the form of a tree structure corresponding to the
AST of the source code. MFGNN embeds AST and context-
free methods into a unified code representation, integrates
them into a hierarchical model, and proposes a neural network
architecture that effectively explores the top-down hierarchical
structure using a graph attention mechanism.

V. EXPERIMENT RESULTS AND DISCUSSION

A. Answer to RQ1 and RQ2

Table VI illustrates the comparison between five baselines
and DP-GANPT on WPDP, with the best result on bold.
Among all the models considered, DP-GANPT exhibits su-
perior average F1-score across the 15 groups of experiments,
demonstrating its outstanding performance. The five base-
lines, AdaBoost, DBN, BugContext, Tree-LSTM and MFGNN,
achieve 46.4, 35.2, 42.9, 50.7 and 52.9 on the average F1-score.
The top-performing model, DP-GANPT, achieves the value
of 62.3, outperforming the five baseline models on F1-score
by 34.3%, 77.0%, 48.3%, 22.9%, and 17.8%, respectively.
More specifically, it achieves the top position on 11 out of
15 experimental groups.

This substantial performance gap demonstrates the advan-
tage of DP-GANPT in capturing the underlying structures and
syntax of source code. The results affirm that DP-GANPT
successfully leverages its capability to enhance defect pre-
diction accuracy and highlights its effectiveness in addressing
challenges inherent on WPDP.

CPDP task primarily assesses whether the semantic and
contextual features extracted by defect prediction models can
be applied to different projects. The comparison between five
baseline models and DP-GANPT on CPDP is presented in
Table VII, where DP-GANPT achieves the highest average
F1-score of 54.6. Among the 16 experimental groups, DP-
GANPT demonstrates superior performance on 8 groups, while
MFGNN exhibits the best on 6 groups, showcasing its re-
spective strengths. Specifically, DP-GANPT outperforms the
five baselines by 42.6%, 38.9%, 56.9%, 17.4% and 3.4%,
respectively.

Another advantage of DP-GANPT lies in its ease of de-
ployment, requiring minimal additional cost and effort. Firstly,
fine-tuning a model based on pre-trained models incurs low
time consumption costs. DP-GANPT achieves performance
better than the SOTA models within less training time, often
as few as two to three epochs. Additionally, the training
samples in the form of sequences is easily obtainable, while
the construction process of the required graph structure in
MFGNN demands higher time and resource costs.

Combining the results of WPDP and CPDP tasks, DP-
GANPT exhibits superior performance compared with the
existing SOTA baselines. Conversely, AdaBoost, utilizing man-
ually designed features, demonstrates suboptimal F1-scores in
both tasks, suggesting that manually crafted features struggle
to capture deeper semantic characteristics. Additionally, the
performance of DBN, employing abstract syntax trees, is
unsatisfactory. This can be attributed to its reliance on AST
paths for establishing relationships between source code com-
ponents, which only captures latent connections among code
identifiers. However, software defect prediction, as a question

of program classification, needs the identification of the actual
control and data flow information during program execution.
DP-GANPT is proficient at modeling source code, excels
in capturing contextual and semantic information, making
them more effective for software defect prediction tasks. Fur-
thermore, MFGNN utilizing graph architecture demonstrates
commendable performance in experiments. Nonetheless, as
mentioned earlier, constructing graph models entails higher
time and resource costs. These findings underscore the ef-
fectiveness and efficiency of DP-GANPT in addressing the
challenges inherent in software defect prediction, as they offer
a more nuanced understanding of context and semantics in
source code, thereby outperforming alternative approaches.

Comparing the performance of the listed models in WPDP
and CPDP with the same test set, it is evident that the
results excel in WPDP. This demonstrates the importance
of prioritizing data from the same project when feasible, as
the consistency and correlation of data distributions between
different versions of the same project are stronger. In practical
applications, effort should be placed on collecting data from
the same project for optimal results.

In conclusion, DP-GANPT performs better than the base-
lines on both WPDP and CPDP, demonstrating the effective-
ness of the model. Furthermore, DP-GANPT is also an effi-
cient and convenient method, and achieves more appropriate
performance on WPDP.

B. Answer to RQ3

Deep learning models often exhibit lower performance
with limited training data. Therefore, this section reduces the
number of labeled samples in the dataset to 100 and 50
to demonstrate the performance with fewer labeled training
samples. DP-GANPTs trained with 100 and 50 labeled samples
are described as GANPT-100 and GANPT-50 for distinction.
The experiments are conducted by randomly selecting samples
from the training set for five iterations to obtain averaged
results. The performance under data limitation is explored
by comparing with the SOTA MFGNN, GANPT-S employing
supervised learning without unlabeled training data, and DP-
GANPT.

Across the 15 groups of experiments on WPDP depicted
in Table VIII, GANPT-100 outperforms MFGNN by 1.9%
on average, and achieves higher performance on 8 groups.
In the CPDP task, as shown in Table IX, both GANPT-50
and GANPT-100 outperform Tree-LSTM, while they perform
slightly below MFGNN. Throughout the experimental groups,
GANPT-100 surpasses MFGNN in 6 out of 16 experiments.
The performance of GANPT-50 and GANPT-100 on both
WPDP and CPDP is reduced by 14.6% and 9.0% compared to
DP-GANPT, and by 12.4% and 7.6% compared to GANPT-
S, respectively. These results shed light on the performance
of DP-GANPT under conditions of data limitation, revealing
its resilience and competitive edge on WPDP, while also
showcasing its comparative performance in the challenging
context of CPDP.

The above analysis indicates that, under conditions of data
limitation, DP-GANPT exhibits a decline in performance on
both WPDP and CPDP. However, it still manages to perform
comparably to the SOTA models, robustly demonstrating its

www.ijacsa.thesai.org 1204 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

TABLE VI. COMPARISON OF PERFORMANCE ON WPDP BETWEEN DP-GANPT AND FIVE BASELINES. F1-SCORES ARE MEASURED AS PERCENTAGES.
THE BEST F1-SCORES ARE HIGHLIGHTED IN BOLD

Project Training-Test Set AdaBoost DBN BugContext Tree-LSTM MFGNN DP-GANPT

Ant
1.5-1.6 37.8 40.7 31.1 29.7 33.1 65.7
1.6-1.7 52.2 51.7 45.1 44.2 53.7 56.0

Camel
1.2-1.4 40.2 16.5 36.2 53.1 54.3 53.3
1.4-1.6 40.2 32.0 27.8 55.9 56.8 51.2

Ivy 1.4-2.0 14.3 27.3 31.9 15.9 22.9 30.7

jEdit 4.0-4.1 57.0 41.6 38.5 62.0 65.0 63.6

Lucene
2.0-2.2 58.5 36.6 43.0 60.9 64.6 75.2
2.2-2.4 64.8 37.4 68.0 68.1 68.8 76.0

Log4j 1.0-1.1 66.7 60.5 75.5 73.3 73.3 73.2

Poi
1.5-2.5 77.3 8.4 79.7 81.6 83.1 87.4
2.5-3.0 54.6 27.0 65.2 73.9 73.3 82.9

Synapse
1.0-1.1 28.9 43.0 18.8 28.2 30.4 53.3
1.1-1.2 40.3 41.5 42.4 50.3 50.3 56.3

Xalan 2.4-2.5 32.9 30.8 17.4 34.5 33.1 69.4

Xerces 1.2-1.3 29.6 32.4 9.4 29.4 30.9 40.9

Average 46.4 35.2 42.0 50.7 52.9 62.3

TABLE VII. COMPARISON OF PERFORMANCE ON CPDP BETWEEN DP-GANPT AND FIVE BASELINES. F1-SCORES ARE MEASURED AS PERCENTAGES.
THE BEST F1-SCORES ARE HIGHLIGHTED IN BOLD

Training Set Test Set AdaBoost DBN BugContext Tree-LSTM MFGNN DP-GANPT

Camel 1.4 jEdit 4.1 34.8 32.3 45.2 39.6 41.5 53.3
jEdit 4.1 Camel 1.4 25.7 23.4 11.7 31.8 39.8 37.7
Lucene 2.2 Xalan 2.5 63.6 57.2 43.2 67.3 67.4 66.8
Xalan 2.5 Lucene 2.2 46.5 56.4 65.4 74.4 64.3 75.4
Poi 2.5 Synapse 1.1 28.3 49 37.0 42.3 48.5 49.5
Synapse 1.2 Poi 3.0 57.7 48.5 66.2 78.5 81.4 81.5
Xerces 1.3 Xalan 2.5 38.4 26.8 23.6 67.8 63.5 67.0
Xalan 2.5 Xerces 1.3 35.4 32.4 34.4 33.7 50.0 45.7
Camel 1.4 Ant 1.6 54.3 56.1 22.2 44.1 50.3 62.4
Ant 1.6 Camel 1.4 23.9 31.9 22.6 32.6 36.3 38.0
Xerces1.3 Ivy2.0 34.6 30.5 25.3 27.6 37.4 29.5
Ivy2.0 Xerces1.3 12.5 36.6 32.1 27.4 47.8 41.7
jEdit 4.1 Log4j 1.1 26.3 37.8 31.6 57.2 57.1 76.9
Log4j 1.1 jEdit 4.1 57.7 48.4 38.0 39.3 57.8 61.3
Ivy2.0 Synapse 1.2 39.7 32.4 17.5 52.7 62.0 56.6
Synapse 1.2 Ivy2.0 33.3 29.6 40.7 28.5 39.0 30.8

Average 38.3 39.3 34.8 46.5 52.8 54.6

feasibility and effectiveness in scenarios where labeled sam-
ples are limited. Throughout the experimentation process, we
observe that, in CPDP, the performance gap between models
utilizing fewer labeled samples and model with all labeled
samples is relatively lower than WPDP. This suggests that the
reduction in label information on CPDP has a less pronounced
impact on performance. This phenomenon may be attributed
to the fact that, the data distribution is more inconsistent with
the training set on CPDP compared with WPDP.

C. Answer to RQ4

To answer RQ4, we conduct ablations to investigate the
roles of individual components of DP-GANPT. More precisely,
we delve into the functions of the following components:
the Transformer-based auto-encoder, model pre-training, input
representation, generative adversarial augmentation, generator
and discriminator architectures, and semi-supervised learning.
The compared models include: 1) CB-NT, utilizing only Code-
BERT architecture; 2) CB-FT, fine-tuning CodeBERT that

incorporates both architecture and pre-trained weights; 3) CB-
FR, integrating pre-trained model and the input representation
proposed in this paper; 4) GANPT-S, supervised DP-GANPT
without unlabeled samples; 5) GANPT-LSTM, employing a
more intricate LSTM network instead of a single hidden layer
feed-forward neural network as the generator and discrim-
inator; 6) DP-GANPT, semi-supervised learning model we
proposed.

Table X and Table XI illustrate the performance of the
compared models in both WPDP and CPDP experiments. By
contrasting the ablation results of different constituent modules
in the tables, insights into the roles and impacts of auto-
encoder architecture, model pre-training, input representation,
generative adversarial techniques, generator and discriminator
architectures, as well as semi-supervised learning, can be
gleaned.

CB-NT shows the superiority of Transformer-based archi-
tecture with attention mechanism, which achieves performance

www.ijacsa.thesai.org 1205 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

TABLE VIII. PERFORMANCE AND COMPARISON OF DP-GANPT ON
WPDP UNDER DATA LIMITATION. F1-SCORES ARE MEASURED AS
PERCENTAGES. THE BEST F1-SCORES ARE HIGHLIGHTED IN BOLD

Project Training-Test Set GANPT-50 GANPT-100 MFGNN GANPT-S DP-GANPT

Ant
1.5-1.6 15.4 32.5 33.1 63.2 65.7
1.6-1.7 48.6 54.6 53.7 54.8 56.0

Camel
1.2-1.4 37.0 37.0 54.3 51.6 53.3
1.4-1.6 31.3 36.2 56.8 50.3 51.2

Ivy 1.4-2.0 11.8 27.7 22.9 29.4 30.7

jEdit 4.0-4.1 54.3 56.6 65.0 67.5 68.6

Lucene
2.0-2.2 71.9 71.4 64.6 74.4 75.2
2.2-2.4 72.1 75.1 68.8 77.1 76.0

Log4j 1.0-1.1 73.3 73.0 73.3 73.0 73.2

Poi
1.5-2.5 84.5 85.6 83.1 86.5 87.4
2.5-3.0 80.5 79.9 73.3 82.1 82.9

Synapse
1.0-1.1 39.5 46.0 30.4 50.3 53.3
1.1-1.2 41.1 40.9 50.3 54.8 56.3

Xalan 2.4-2.5 66.0 69.0 33.1 69.7 69.4

Xerces 1.2-1.3 20.7 23.3 30.9 38.9 40.9

Average 49.9 53.9 52.9 61.6 62.7

TABLE IX. PERFORMANCE AND COMPARISON OF DP-GANPT ON CPDP
UNDER DATA LIMITATION. F1-SCORES ARE MEASURED AS

PERCENTAGES. THE BEST F1-SCORES ARE HIGHLIGHTED IN BOLD

Training Set Test Set GANPT-50 GANPT-100 MFGNN GANPT-S DP-GANPT

Camel 1.4 jEdit 4.1 35.6 52.5 41.5 53.2 53.3
jEdit 4.1 Camel 1.4 36.1 36.7 39.8 36.7 37.7
Lucene 2.2 Xalan 2.5 65.5 65.5 67.4 67.6 66.8
Xalan 2.5 Lucene 2.2 72.4 74.9 64.3 74.5 75.4
Poi 2.5 Synapse 1.1 48.7 49.0 48.5 49.5 49.5
Synapse 1.2 Poi 3.0 74.5 80.6 81.4 82.1 81.5
Xerces 1.3 Xalan 2.5 59.4 61.8 63.5 64.9 67.0
Xalan 2.5 Xerces 1.3 39.0 39.6 50.0 44.5 45.7
Camel 1.4 Ant 1.6 55.6 54.9 50.3 60.8 62.4
Ant 1.6 Camel 1.4 30.6 37.0 36.3 36.3 38.0
Xerces1.3 Ivy2.0 29.4 29.5 37.4 28.8 29.5
Ivy2.0 Xerces1.3 11.9 12.3 47.8 41.3 41.7
jEdit 4.1 Log4j 1.1 73.5 70.8 57.1 76.7 76.9
Log4j 1.1 jEdit 4.1 54.1 53.7 57.8 59.5 61.3
Ivy2.0 Synapse 1.2 42.9 50.5 62.0 54.7 56.6
Synapse 1.2 Ivy2.0 26.4 26.5 39.0 31.6 30.8

Average 47.2 49.7 52.8 53.9 54.6

better than MFGNN on WPDP, and subtly under on CPDP.
Comparing the performance of fine-tuned CB-FT with CB-NT,
CB-FT reveals better results in 22 out of 31 experiments across
the two tasks. It outperforms CB-NT by an average of 4.0%
and 4.9%, indicating that the use of a code pre-trained model
is a significant contributor to DP-GANPT. More powerful pre-
trained models usually mean better results on downstream
tasks. The improvement of performance on software defect
prediction is inseparable from artificial intelligence, especially
code pre-trained language models at this stage. The pre-trained
model performs as an auto-encoder, deeply enhancing the
understanding of program semantics and contextual informa-
tion Additionally, the significantly lower cost of fine-tuning
pre-trained models underscores its practical feasibility and
advantages in real-world practice, compared with training new
models and constructing graph structures.

Furthermore, CB-FR, trained with proposed input repre-
sentation, exhibits a performance improvement of 6.3% over

models not employing this approach in WPDP and CPDP. This
demonstrates that the bi-modal input representation, built upon
language understanding capability of the pre-trained model,
guides the model training tasks, outputs directives and focuses
attention, thereby enhancing the predictive capability of the
model.

In comparison to the supervised learning models GANPT-
S and CB-IR, both datasets exhibit slight improvements in
performance, with average F1-scores increasing by 1.1% and
2.7%, respectively. DP-GANPT is able to generate imitations
of real data distributions from generator which makes the data
more diverse. However, when utilizing a more intricate LSTM
network as the hidden layer for the generator and discriminator,
the performance experiences a decline. This suggests that
samples generated through generative adversarial processes
may become overly specific, incorporating noise or excessively
specific features present in the training data. Moreover, the
excessive strength of the generator may hinder the discrimina-
tor’s effective learning of the true distribution of real data. This
imbalance in equilibrium could result in generated samples that
fail to effectively enhance model performance.

DP-GANPT, leveraging semi-supervised learning, exhibits
an improvement of 1.8% and 1.3%, respectively, compared
with GANPT-S which do not utilize unlabeled data. Addition-
ally, it surpasses models without GAN by 3.0% and 4.0%,
respectively. The experiments above demonstrate that, under
the intricate interplay of its components, DP-GANPT attains
remarkable performance.

VI. THREATS TO VALIDITY

There are three main threats to validity as follows.

Implementation to baselines. To make a fair comparison,
we reimplement CodeBERT sharing the same hyperparameters
as our proposed DP-GANPT from HuggingFace Transformers.
Although a slight difference may arise, we are confident since
Transformers is generally accepted and used by a wide range of
scholars. As for baselines that do not provide program codes,
we reimplement them after rigorous argumentation.

Projects selection. In our experiments, we select 25 datasets
from open-source PROMISE, which are fully or partly adopted
in extensive software defect prediction researches. The exper-
iments do not fully demonstrate the full performance of the
bi-modal model due to the limitation of datasets we use. For
example, we only use Java projects which do not generalize
to other projects and other programming languages.

Labeled samples for semi-supervised learning. We use
100 and 50 labeled samples from labeled training set, which
may not be enough. Furthermore, some projects have a small
sample size, leaving fewer samples to perform semi-supervised
learning. The difference in data distribution between the la-
beled samples we used and the test set might affect the results.
Even though we have done multiple experiments, it could still
have an impact on validity.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present DP-GANPT, a software defect
prediction model that employs semi-supervised generative ad-
versarial learning and a pre-trained model. DP-GANPT utilizes

www.ijacsa.thesai.org 1206 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

TABLE X. ABLATIONS OF DP-GANPT ON WPDP. F1-SCORES ARE MEASURED AS PERCENTAGES. THE BEST F1-SCORES ARE HIGHLIGHTED IN BOLD

Project Training-Test Set CB-NT CB-FT CB-FR GANPT-S GANPT-LSTM DP-GANPT

Ant
1.5-1.6 48.2 55.4 62.8 63.2 61.4 65.7
1.6-1.7 52.5 55.5 55.7 54.8 56.6 56.0

Camel
1.2-1.4 48.6 49.3 55.1 51.6 50.1 53.3
1.4-1.6 50.9 49.3 49.5 50.3 45.3 51.2

Ivy 1.4-2.0 26.9 25.0 29.4 29.4 26.7 30.7

jEdit 4.0-4.1 56.7 64.2 68.2 67.5 67.1 68.6

Lucene
2.0-2.2 65.3 70.7 73.6 74.4 66.7 75.2
2.2-2.4 69.4 73.5 73.1 77.1 76.0 76.0

Log4j 1.0-1.1 72.6 73.5 73.5 73.0 73.5 73.2

Poi
1.5-2.5 84.6 85.7 86.2 86.5 86.8 87.4
2.5-3.0 70.2 72.0 80.5 82.1 77.5 82.9

Synapse
1.0-1.1 43.0 45.8 47.7 50.3 46.7 53.3
1.1-1.2 47.7 44.3 52.8 54.8 55.2 56.3

Xalan 2.4-2.5 59.3 62.7 71.9 69.7 69.4 69.4

Xerces 1.2-1.3 30.9 32.1 33.3 38.9 27.0 40.9

Average 55.1 57.3 60.9 61.6 59.1 62.7

TABLE XI. ABLATIONS OF DP-GANPT ON CPDP. F1-SCORES ARE MEASURED AS PERCENTAGES. THE BEST F1-SCORES ARE HIGHLIGHTED IN BOLD

Training set Test set CB-NT CB-FT CB-FR GANPT-S GANPT-LSTM DP-GANPT

Camel 1.4 jEdit 4.1 38.5 36.0 52.1 53.2 52.7 53.3
jEdit 4.1 Camel 1.4 30.6 35.4 35.8 36.7 36.0 37.7
Lucene 2.2 Xalan 2.5 65.9 66.0 65.5 67.6 67.8 66.8
Xalan 2.5 Lucene 2.2 62.0 64.8 66.2 74.5 66.7 75.4
Poi 2.5 Synapse 1.1 44.3 43.1 48.7 49.5 49.0 49.5
Synapse 1.2 Poi 3.0 49.3 58.7 75.8 82.1 70.0 81.5
Xerces 1.3 Xalan 2.5 62.7 65.9 66.1 64.9 66.7 67.0
Xalan 2.5 Xerces 1.3 38.8 44.5 42.6 44.5 44.0 45.7
Camel 1.4 Ant 1.6 60.1 60.6 60.7 60.8 61.5 62.4
Ant 1.6 Camel 1.4 32.7 36.1 36.9 36.3 36.7 38.0
Xerces1.3 Ivy2.0 27.0 26.7 29.2 28.8 27.4 29.5
Ivy2.0 Xerces1.3 36.1 39.8 42.6 41.3 39.3 41.7
jEdit 4.1 Log4j 1.1 60.6 76.1 76.3 76.7 76.2 76.9
Log4j 1.1 jEdit 4.1 54.9 53.3 58.0 59.5 53.2 61.3
Ivy2.0 Synapse 1.2 56.2 54.2 55.0 54.7 53.5 56.6
Synapse 1.2 Ivy2.0 33.7 29.8 28.6 31.6 28.7 30.8

Average 47.1 49.4 52.5 53.9 51.8 54.6

GAN to generate a wealth of samples and employs a pre-
trained model to encode the novel code-prompt bi-modal
data, which includes both labeled and unlabeled samples. The
discriminator in GAN predicts whether a sample is generated,
defective, or defective-free.

We evaluate DP-GANPT on 31 groups of experiments on
both WPDP and CPDP tasks are conducted for evaluation,
using the new bi-modal dataset derived from the PROMISE
dataset. The results reveal that DP-GANPT outperforms the
SOTA methods, with an improvement of at least 17.8% on
WPDP and 3.4% on CPDP. Furthermore, we reduce the labeled
samples to 100 and 50 to investigate the performance of DP-
GANPT under data limitation. The results demonstrate that
it achieves decent performance compared with the baselines.
Finally, reasons for the effectiveness are analyzed that in-
dividual components of DP-GANPT plays a role, including
the Transformer-based auto-encoder, model pre-training, input
representation, generative adversarial augmentation, generator
and discriminator architectures, and semi-supervised learning.

In the future, with more powerful pre-trained models pro-
posed continuously, we would like to apply them to software

defect prediction tasks to pursue better enhancement. It is
worthwhile generalizing DP-GANPT to other programming
languages such as Python and Go, since the pre-trained model
is trained on several programming languages. Additionally, we
would continue to investigate more effective input representa-
tions of models.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their thoughtful comments. The authors declare that they have
no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported
in this paper. This work was supported by the Science and
Technology Research Project of Educational Commission of
Jilin Province, Grant Number: JJKH20231176KJ.

REFERENCES

[1] N. E. Fenton and M. Neil, “A critique of software defect prediction
models,” IEEE Transactions on software engineering, vol. 25, no. 5,
pp. 675–689, 1999.

www.ijacsa.thesai.org 1207 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

[2] A. Perera, A. Aleti, B. Turhan, and M. Boehme, “An experimental
assessment of using theoretical defect predictors to guide search-based
software testing,” IEEE Transactions on Software Engineering, 2022.

[3] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-g. Wang, and J. Chen, “Detection
of malicious code variants based on deep learning,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 7, pp. 3187–3196, 2018.

[4] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and
A. Abraham, “A systematic literature review on software defect
prediction using artificial intelligence: Datasets, data validation
methods, approaches, and tools,” Engineering Applications of
Artificial Intelligence, vol. 111, p. 104773, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0952197622000616

[5] F. Ferreira, L. L. Silva, and M. T. Valente, “Software engineering meets
deep learning: a mapping study,” in Proceedings of the 36th annual
ACM symposium on applied computing, 2021, pp. 1542–1549.

[6] J. Wang, B. Shen, and Y. Chen, “Compressed c4. 5 models for software
defect prediction,” in 2012 12th International Conference on Quality
Software. IEEE, 2012, pp. 13–16.

[7] K. E. Bennin, K. Toda, Y. Kamei, J. Keung, A. Monden, and
N. Ubayashi, “Empirical evaluation of cross-release effort-aware defect
prediction models,” in 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS). IEEE, 2016, pp. 214–221.

[8] T. Wang and W.-h. Li, “Naive bayes software defect prediction model,”
in 2010 International conference on computational intelligence and
software engineering. IEEE, 2010, pp. 1–4.

[9] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[10] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series), 1977.

[11] M. Jureczko and D. Spinellis, “Using object-oriented design metrics to
predict software defects,” Models and Methods of System Dependability.
Oficyna Wydawnicza Politechniki Wrocławskiej, pp. 69–81, 2010.

[12] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning
for software defect prediction,” IEEE Transactions on Software Engi-
neering, vol. 46, no. 12, pp. 1267–1293, 2018.

[13] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in 2017 IEEE international conference
on software quality, reliability and security (QRS). IEEE, 2017, pp.
318–328.

[14] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via lstm,” IET
Software, vol. 14, no. 4, pp. 443–450, 2020.

[15] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[16] J. Scheurer, J. A. Campos, J. S. Chan, A. Chen, K. Cho, and E. Perez,
“Training language models with natural language feedback,” arXiv
preprint arXiv:2204.14146, 2022.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, jun 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[18] P. He, J. Gao, and W. Chen, “Debertav3: Improving deberta using
electra-style pre-training with gradient-disentangled embedding shar-
ing,” arXiv preprint arXiv:2111.09543, 2021.

[19] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, nov 2020, pp. 1536–1547.
[Online]. Available: https://aclanthology.org/2020.findings-emnlp.139

[20] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[21] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2022, pp. 7212–7225.

[22] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, and
T. Zhang, “Software defect prediction based on kernel pca and weighted
extreme learning machine,” Information and Software Technology, vol.
106, pp. 182–200, 2019.

[23] N. Li, M. Shepperd, and Y. Guo, “A systematic review of unsupervised
learning techniques for software defect prediction,” Information and
Software Technology, vol. 122, p. 106287, 2020.

[24] F. Wu, X.-Y. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, and Y. Sun, “Cross-
project and within-project semisupervised software defect prediction: A
unified approach,” IEEE Transactions on Reliability, vol. 67, no. 2, pp.
581–597, 2018.

[25] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software
defect prediction,” Neurocomputing, vol. 385, pp. 100–110, 2020.

[26] C. Manjula and L. Florence, “Deep neural network based hybrid
approach for software defect prediction using software metrics,” Cluster
Computing, vol. 22, no. 4, pp. 9847–9863, 2019.

[27] K. Shi, Y. Lu, J. Chang, and Z. Wei, “Pathpair2vec: An ast path pair-
based code representation method for defect prediction,” Journal of
Computer Languages, vol. 59, p. 100979, 2020.

[28] S. Qiu, H. Huang, W. Jiang, F. Zhang, and W. Zhou, “Defect prediction
via tree-based encoding with hybrid granularity for software sustainabil-
ity,” IEEE Transactions on Sustainable Computing, 2023.

[29] Z. Zhao, B. Yang, G. Li, H. Liu, and Z. Jin, “Precise learning of source
code contextual semantics via hierarchical dependence structure and
graph attention networks,” Journal of Systems and Software, vol. 184,
p. 111108, 2022.

[30] C. Zhou, P. He, C. Zeng, and J. Ma, “Software defect prediction with
semantic and structural information of codes based on graph neural
networks,” Information and Software Technology, vol. 152, p. 107057,
2022.

[31] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 608–620.

[32] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and I. Zada, “Software
defect prediction employing bilstm and bert-based semantic feature,”
Soft Computing, vol. 26, no. 16, pp. 7877–7891, 2022.

[33] J. Liu, J. Ai, M. Lu, J. Wang, and H. Shi, “Semantic feature learning for
software defect prediction from source code and external knowledge,”
Journal of Systems and Software, p. 111753, 2023.

[34] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in International
Conference on Machine Learning. PMLR, 2020, pp. 5110–5121.

[35] L. Buratti, S. Pujar, M. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang et al., “Exploring soft-
ware naturalness through neural language models,” arXiv preprint
arXiv:2006.12641, 2020.

[36] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1433–1443. [Online]. Available:
https://doi.org/10.1145/3368089.3417058

[37] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[38] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou,
L. Zhou, M. Tufano, M. GONG, M. Zhou, N. Duan, N. Sundaresan,
S. K. Deng, S. Fu, and S. LIU, “CodeXGLUE: A machine
learning benchmark dataset for code understanding and generation,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021. [Online]. Available:
https://openreview.net/forum?id=6lE4dQXaUcb

[39] L. Tunstall, L. Von Werra, and T. Wolf, Natural language processing
with transformers. ” O’Reilly Media, Inc.”, 2022.

[40] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696–8708.

www.ijacsa.thesai.org 1208 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

[41] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi,
“Codet5+: Open code large language models for code understanding
and generation,” arXiv preprint arXiv:2305.07922, 2023.

[42] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao,
M. Zhou, and H.-W. Hon, “Unified language model pre-training for
natural language understanding and generation,” Advances in neural
information processing systems, vol. 32, 2019.

[43] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” Advances in neural
information processing systems, vol. 29, 2016.

[44] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[45] L. Chen, S. Dai, C. Tao, H. Zhang, Z. Gan, D. Shen, Y. Zhang, G. Wang,
R. Zhang, and L. Carin, “Adversarial text generation via feature-mover's
distance,” in Advances in Neural Information Processing Systems,
vol. 31, 2018.

[46] A. Bissoto, E. Valle, and S. Avila, “Gan-based data augmentation and
anonymization for skin-lesion analysis: A critical review,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 1847–1856.

[47] X. Guo, U. Anjum, and J. Zhan, “Cyberbully detection using bert with
augmented texts,” in 2022 IEEE International Conference on Big Data
(Big Data). IEEE, 2022, pp. 1246–1253.

[48] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods in
natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[49] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” arXiv preprint arXiv:1508.07909,
2015.

[50] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” arXiv preprint arXiv:1909.09436, 2019.

[51] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra:
Pre-training text encoders as discriminators rather than generators,” in
International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=r1xMH1BtvB

[52] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. R. Salakhutdinov, “Good
semi-supervised learning that requires a bad gan,” Advances in neural
information processing systems, vol. 30, 2017.

[53] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L.
Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush,
“Transformers: State-of-the-art natural language processing,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Online: Association for
Computational Linguistics, oct 2020, pp. 38–45. [Online]. Available:
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[54] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning
for software defect prediction,” IEEE Transactions on Software Engi-
neering, vol. 46, no. 12, pp. 1267–1293, 2020.

[55] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug
detection via context-based code representation learning and attention-
based neural networks,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019.

[56] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose,
T. Kim, and C.-J. Kim, “Lessons learned from using a deep tree-based
model for software defect prediction in practice,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR).
IEEE, 2019, pp. 46–57.

www.ijacsa.thesai.org 1209 | P a g e

