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Abstract—Human gesture recognition is an attractive research
area in computer vision with many applications such as human-
machine interaction, virtual reality, etc. Recent deep learning
techniques have been efficiently applied for gesture recognition,
but they require a large and diverse amount of training data.
In fact, the available gesture datasets contain mostly static
gestures and/or certain fixed viewpoints. Some contain dynamic
gestures, but they are not diverse in poses and viewpoints. In this
paper, we propose a novel end-to-end framework for dynamic
gesture recognition from unknown viewpoints. It has two main
components: (1) an efficient GAN-based architecture, named
ArVi-MoCoGAN; (2) the gesture recognition component, which
contains C3D backbones and an attention unit. ArVi-MoCoGAN
aims at generating videos at multiple fixed viewpoints from a
real dynamic gesture at an arbitrary viewpoint. It also returns
the probability that a real arbitrary view gesture belongs to
which of the fixed-viewpoint gestures. These outputs of ArVi-
MoCoGAN will be processed in the next component to improve
the arbitrary view recognition performance through multi-view
synthetic gestures. The proposed system is extensively analyzed
and evaluated on four standard dynamic gesture datasets. The
experimental results of our proposed method are better than
the current solutions, from 1% to 13.58% for arbitrary view
gesture recognition and from 1.2% to 7.8% for single view gesture
recognition.

Keywords—Dynamic gesture recognition; attention unit; gener-
ative adversarial network

I. INTRODUCTION

Human gesture recognition is an attractive field in com-
puter vision with many applications such as human computer
interaction, human behavior analysis, intelligent surveillance,
and virtual reality [1], [2]. A recognition system could use (1)
static gestures and (2) dynamic gestures. In comparison with
static gesture recognition, dynamic recognition is much more
challenging. Dynamic gesture recognition at multi-view points
has received much research attention in recent years because
of its closeness to real-world applications.

Several methods have been proposed for dynamic gesture
recognition. They range from traditional machine learning al-
gorithms, such as Dynamic Time Warping (DTW) [3], Hidden
Markov Model (HMM) [4], etc., to deep learning architec-
tures, such as 2D CNN (2-Dimensional Convolutional Neural
Network) [5], 3D CNN or C3D (3-Dimensional Convolutional
Neural Network) [6]. 2D CNNs utilize two-dimensional convo-
lution and pooling solutions to process gesture data. However,

2D CNNs only model the spatial domain but not the time
domain of gesture data. Thus, they are more suitable for static
gesture recognition than dynamic gesture recognition. In order
to overcome this weakness of 2D CNNs, 3D CNNs or C3D
are proposed for modeling both spatial and temporal informa-
tion from videos. C3D networks achieve promising results in
dynamic gesture recognition with deep and complex enough
network structures. However, increasing the network’s depth
and complexity indefinitely can cause degradation problems
and increase the computing cost. In addition, one of the main
obstacles to dynamic gesture recognition by deep learning
models is the scarcity of available dynamic gesture datasets,
especially those that contain a diversity of gestures at multiple
view points and movements [7], [8]. In order to overcome this
challenge, several data augmentation techniques have been pro-
posed. They range from traditional techniques, such as rotate,
slip, strength, and so on, to more complex techniques, such
as the Generative Adversarial Network (GAN). For gesture
data generation, GAN networks are mainly used to generate
static gesture images from single viewpoint [9], [10] or mul-
tiple viewpoints [11], [12]. Some GAN-based networks are
proposed for making synthetic videos of gestures or dynamic
gestures. However, it is still extremely difficult to produce
high-quality videos of dynamic gestures. The results of the
existing generative models for dynamic gestures are blurry
and inconsistent [13], [14]. This is caused by the fact that the
input for the Generator networks in these works is mainly noise
signals. The dynamic gesture generation at arbitrary viewpoints
has not been much exploited [15]. In addition, the experiments
with GAN-generated images or videos for an arbitrary-view
recognition system are less considered or limited to skeleton
images or simple skeleton frame sequences [16].

In this paper, a novel end-to-end system is proposed for
(1) generating synthetic videos at multiple fixed viewpoints
from a real dynamic gesture at an arbitrary viewpoint, and
(2) classifying dynamic gestures from multi-view synthetic
dynamic gestures. The proposed system contains two main
components, and each is responsible for a certain task as
follows:

- The first component is the improved version of the Vi-
MoCoGAN architecture in [13], named ArVi-MoCoGAN. It is
different from Vi-MoCoGAN in [13] and other available GAN-
based approaches for gesture generation, in which the input is
normally noise signal and the output is dynamic/static gesture.
In ArVi-MoCoGAN, the input is a real dynamic gesture at an
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arbitrary view, and the output is synthetic gesture video at a
certain view. Moreover, it also returns the probability that a real
arbitrary view gesture belongs to which of the fixed-viewpoint
gestures.

- The second component contains C3D backbones and
an attention unit. C3D backbones take synthetic gestures
generated by ArVi-MoCoGAN as inputs and output the feature
vectors that correspond to the generated gestures at each
viewpoint. These vectors are then multiplied by the probability
returned by ArVi-MoCoGAN to form the new feature vectors.
These new ones are put into an attention unit to give out
the scores of viewpoints that each synthetic gesture belongs
to. This approach is novel compared to other methods. In
other methods, only one C3D network is used for single-
view recognition, but in our work, we proposed several C3D
backbones for multi-view gesture recognition. In addition,
the integration of an attention unit in the block of gesture
recognition is also a new and efficient approach for dynamic
and multi-view gesture recognition.

Our proposed solution is evaluated on four datasets includ-
ing: MICAHandGes [17], IXMAS [18], MuHAVi [19], and
NUMA [20]. The experimental results of our proposed method
are better than the current solutions, from 1% to 13.58% with
arbitrary view gesture recognition and from 1.2% to 7.8% with
single view gesture recognition.

The remainder of this paper is organized as follows. In
Section II, we briefly survey recent works related to hand
gesture recognition approaches. The proposed framework is
explained in Section III. The experimental results are analyzed
in Section IV. Finally, Section V concludes the paper and states
research directions for future work.

II. RELATED WORK

In this section, two brief reviews are presented for (1)
dynamic gesture recognition and (2) GAN networks for gesture
data augmentation.

A. Dynamic Gesture Recognition

In dynamic gesture recognition, three contexts are consid-
ered: gesture recognition at a single view, multiple views, and
arbitrary views. In single view dynamic gesture recognition,
dynamic gestures for training and testing the classification
models are captured by one stationary camera. In [21], authors
proposed a C3D architecture to recognize gesture video with
input as an image sequence. Spatial features are achieved by
2D CNNs, and temporal features are then obtained by a 3D
convolution on the input volume tensor. Resnet50-Temporal
Attention network [22] was used for single video recognition.
This method used Resnet50 to extract image-level features.
Next, a temporal conv layer was applied on these frame-level
features to generate temporal attention.

It is different from the single-view approach, the multi-
view method considers the gesture images that are captured
from multiple cameras at a certain time. In [23], the authors
proposed a Mutual-Aid RNN to achieve multi-view action
recognition. A view-specific attention pattern was deployed
to control other viewpoints as well as discover potential
information. This approach leveraged attention information

and enhanced multi-view representation learning. [24] used
common features to transfer from one view to another with an
attention fusion module. A query from one view is matched
with the other view by a set of key-value pairs. In the work
of [25], the authors presented an extraneous frame scraping
technique that employs 2D skeleton features with a Fine-KNN
classifier-based HAR (Human action recognition) system.

In arbitrary-view gesture recognition, the model is trained
from multiple viewpoints, but a new gesture is recognized from
a novel viewpoint. This new gesture’s viewpoint differs from
a trained viewpoint. The arbitrary gesture recognition could
be single-modal or multi-modal. [26] proposed a robust non-
linear knowledge transfer model (R-NKTM) for human action
recognition from a novel perspective. It transfers knowledge
of dynamic gestures from any unknown view to a shared
high-level virtual view through finding a non-linear virtual
path. R-NKTM only focuses on the temporal features of
synthetic models that are fitted to motion data. While the
spatial features of a dynamic gesture are lightly taken. [27]
proposed Geometric texture Transfer Network (GTNet). A
synthetic video is obtained through geometric and appearance
features that are extracted from the real viewpoint.

B. GAN-based Gesture Data Generation

Recently, GAN networks have been exploited for dynamic
gesture generation. This comes from the growing demand
for developing practical applications based on deep learning
models. In [13], a conditional GAN-based model named Vi-
MoCoGAN is proposed to generate hand gesture videos from
multiple viewpoints. Two latent sub-spaces of content and
motion are modeled in Vi-MoCoGAN for video synthesizing.
In order to control the content and view of the generated
gestures, two conditional vectors named content control vector
and view control vector are utilized in the model. In addi-
tion, the objective function for training the network is also
appropriately designed to measure the similarity in content,
action, and view of the generated videos and the real ones. In
[28] the authors introduced Dynamic Generative Adversarial
Network (Dynamic GAN) model to generate photo-realistic
videos from skeletal poses. The proposed model is evaluated
on three benchmark datasets of RWTH-PHOENIX-Weather
2014T, Indian Sign Language (ISL-CSLTR), and the UCF-101.
The quality of the output results are evaluated by the metrics of
Similarity Index Measure (SSIM), Inception Score (IS), Peak
Signal-to-Noise Ratio (PSNR), and Frechet Inception Distance
(FID).

In terms of arbitrary view recognition, some methods
utilized GAN models to learn common multi-view space from
a training dataset in various viewpoints. Then, these trained
GAN models are applied to project data from novel view
into common space to detect, segment, or recognize a gesture
[16], [27]. In general, GAN-based gesture generation is still
challenging, especially in the case of multi and arbitrary
viewpoints. The experimental results from the recent methods
are promising, but further improvements should be made for
high-quality synthetic videos from multi and arbitrary views.
This is necessary for data augmentation in training the deep
learning models and helps bring gesture recognition research
closer to practical applications.
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In order to solve these above-mentioned challenges for
dynamic and multi-view point gesture recognition, we propose
an efficient GAN-based architecture named ArVi-MoCoGAN
for generating dynamic gestures at multiple fixed viewpoints
from a real dynamic gesture at an arbitrary viewpoint. It is
an improved model of Vi-MoCoGAN architecture in [13].
Vi-MoCoGAN generates fixed-viewpoint gestures from the
input of noise signals, as do several GAN-based approaches.
However, our ArVi-MoCoGAN utilizes real dynamic gestures
at arbitrary viewpoints as the inputs. The ArVi-MoCoGAN is
integrated with the gesture classifier block of C3D backbones
and the attention unit to form a novel and efficient end-to-end
system for dynamic and multi-view gesture recognition.

III. PROPOSED METHOD

In this section, we introduce an end-to-end framework
and present in detail its components, including the ArVi-
MoCoGAN architecture, the dynamic gesture recognition
block of C3D backbones, and an attention unit.

A. The Overall Framework

The end-to-end framework for arbitrary-view gesture
recognition is presented in Figure 1. It consists of two main
blocks: (1) a view prediction and transformation block; and (2)
a multi-view dynamic gesture recognition block. The first one
is implemented by the ArVi-MoCoGAN network with the aim
of (i) generating synthetic dynamic gestures (Zsyn

Vk
video) at

multiple views by training ArVi-MoCoGAN on the videos that
present the gestures at fixed viewpoints (Zr

Vk
videos); and (ii)

returning the view score or the probability that determines if
a new generated video of Zsyn

Vk
(a generated dynamic gesture)

belongs to which of the fixed-viewpoint gestures. The second
block contains C3D backbones and an attention unit. The
inputs of C3D networks are Zsyn

Vk
and the outputs are feature

vectors FC3D
Vk

. FC3D
Vk

is then multiplied by the probability PVk

(returned by ArVi-MoCoGAN) to form new feature vectors.
These new vectors are passed into the attention unit to give out
the viewpoint scores Vk for each synthetic gesture generated
by ArVi-MoCoGAN.

B. ArVi-MOCOGAN Architecture

The ArVi-MoCoGAN is proposed to generate fixed-
viewpoint gestures from dynamic gestures at arbitrary views.
Fixed-viewpoint gestures are captured by stationary cameras
and subjects. Each camera captures a frame sequence of a
stationary object, and this forms one video from a certain
viewpoint. Multiple cameras will create multiple videos from
multiple viewpoints. These videos will be used for train-
ing ArVi-MoCoGAN. The videos used for testing the ArVi-
MoCoGAN model are captured by other fixed cameras and/or
moving subjects. This produces multiple videos at arbitrary
views. These arbitrary-view gesture videos will be put into the
ArVi-MoCoGAN model to give out two outputs: (1) synthetic
arbitrary-view gesture videos; and (2) the probability that an
arbitrary-view gesture belongs to the fixed-viewpoint gesture.

The details of the proposed ArVi-MoCoGAN framework
are illustrated in Figure 2. It consists of two main parts: the
generator networks and the discriminator networks.

1) Generator networks: ArVi-MoCoGAN contains two
generator networks of G1 and G2. G1 tries to learn and creates
a synthetic content image IsynV k . The inputs of generator G1 are
four vectors:

• Z∗
M : is the hypothetical motion vector which is indi-

cated in Eq. (1). Z∗
M is randomly chosen from 16 vec-

tors of
[
Z

(∗0)
M , .., Z

(∗15)
M

] (
Z∗
M ∈

[
Z

(∗0)
M , .., Z

(∗15)
M

])
.

These 16 vectors are generated by putting the a frame
into the encoder network E1 and RNN network. This
input frame is the first image/frame (IrVj

= I0Vj
) in

a video Zr
Vj

(Zr
Vj

= [I
(0)
Vj

, ..., I
(15)
Vj

]). Z∗
M helps to

control the information about the object’s motion that
needs to be presented in the expected outputs of the
generator G1.

• ZC : is the content vector which is the output of the
encoder E2 with the input is the first frame I

(0)
Vj

. ZC is
intended to control the content of the videos generated
by G1 and G2.

• ZVk
: this vector is used to control the number of

viewpoints of the generated images or videos from
generators G1 and G2. In other words, how many
viewpoints are generated depends on the number of
viewpoints in the database used for training the model.

• ZSubject: this vector plays the role of a conditional
vector in conditional GAN models like ZVk

. However,
it controls the subject of the dynamic gesture.

Z∗
M = fRNN (E1(Z

(r))) = fRNN (E1(I
(r)(0), ..., (E1(I

(r)(15))
(1)

Generator G2 tries to generate synthetic gestures in multi-
ple fixed views from a real dynamic gesture in other view. In
our consideration, the synthetic image sequence contains 16
frames Zsyn

Vk
(Zsyn

Vk
= [I

(0)
Vk

, .., I
(15)
Vk

]). The inputs of generator
G2 are ZC , ZVk

, ZSubject, and ZM , in which, ZM is the
output result when we put a frame sequence (a real video
Zr
Vj

= [I
(0)
Vj

, .., I
(15)
Vj

]) into encoder E1 and RNN network. ZM

is calculated as in Eq. (2), with N (z|0, Iz) is a noise vector
and ZRandom

Class is a random category vector.

ZM = fRNN (N (z|0, Iz), ZRandom
Class ) (2)

A dynamic gesture is a frame sequence that contains both
content and motion cues. Therefore, a gesture can be decom-
posed into two latent sub-spaces of content and motion. In the
first sub-space, the content of gesture is mainly characterized
by encoder E2. The output of encoder E1 and a RNN network
are converted into Z∗

M as illustrated in top part of Figure 2.
It is note that the inputs of generator G1 consists of Z∗

M , ZC ,
ZVk

, and ZSubject. Its output is a synthetic image IsynVk
that

presents the content of object. While the inputs of generator G2

contains ZM , ZC and ZVk
, the output is a synthetic video Zsyn

Vk

which presents the movement of a gesture. Both generators
are sequentially trained. Their parameters are updated from
generator G1 to generator G2 and vice versa.
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Fig. 1. The proposed end-to-end framework of ArVi-MOCOGAN and C3D backbones with attention unit for dynamic and arbitrary-view gesture recognition.

Fig. 2. The proposed ArVi-MoCoGAN architecture with two generators of G1, G2 for generating synthetic gesture images and videos and two discriminators
of D1, D2 for distinguishing the real and synthetic samples.

2) Discriminator networks: Discriminator D1 network tries
to distinguish a real content image IrVk

with a synthetic content
image IsynVk

(IsynVk
is the output of discriminator G1). Discrim-

inator D2 network distinguishes a real dynamic gesture Zr
Vk

from a generated one Zsyn
Vk

(Zsyn
Vk

is the output of generator
G2).

The optimal function for the Generator G1 and Discrimi-
nator D1 is indicated in Eq. (3):

max
G1,RM

min
D1

F1 = max
G1,RM

min
DI

(Fmcg1(D1, G1, RM )+

λLImage(G1, PImage) + βLV iew(G1, PV iew)+

γLSubject(G1, PSubject))

(3)

For the Generator G2 and Discriminator D2, the optimal
function is presented in Eq. (4):

max
G2,RM

min
D2

F2 = max
G2RM

min
D2

(Fmcg2(D2, G2, RM )+

λLV ideo(G2, PV ideo) + βLV iew(G2, PV iew)+

γLSubject(G2, PSubject) + αLClass(D2, PClass))

(4)

The optimal function for the ArVi-MoCoGAN model is
indicated in Eq. (5):

max
G1,G2,RM

min
D1,D2

Favmcg = max
G1,G2RM

min
D1,D2

(F1 + F2) (5)

Where λ, β, α, γ are hyper-parameters. In this work,
they are chosen by 1. PImage, PClass, PSubject, and PV iew

are distribution approximations of the variables of gesture
content, gesture category, subject and view that control video
generation. PClass element is added at the last feature layer
of D2 network, PImage, PSubject, PV iew are components
that adjoined in both Generators and Discriminators of ArVi-
MoCoGAN network.
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The trained ArVi-MoCoGAN model is then be used to
generate synthetic dynamic gestures. The inputs of the trained
ArVi-MoCoGAN model consist of a real dynamic gesture Zr

(Zr = Z(r,V ideo)), the control viewpoint ZV iew = ZRandom
Vk

of G2. The outputs are the synthetic dynamic gestures at
arbitrary views (Zsyn = Z(syn,V ideo)) gained from G2 and
the probability distribution PV iew gotten from D2. PV iew

shows the probability that an generated arbitrary-view dynamic
gesture belongs to which of the fixed-viewpoint gestures. It is
then utilized to classify a dynamic gesture from an unknown
viewpoint, as presented in detail in the next section.

C. C3D Backbones and Attention Unit

In this work, two implementation scenarios for dynamic
gesture recognition from arbitrary viewpoints are implemented,
called ArViAU (Arbitrary view gesture recognition with Atten-
tion unit) and ArViAVR (Arbitrary View gesture recognition
with Average method). ArViAU contains C3D backbones and
an attention unit, but ArViAVR includes C3D backbones only.

1) Arbitrary view gesture recognition with Attention Unit
(ArViAU): In this work, C3D models [29] are applied as
backbones with transfer learning by dynamic gesture databases
in N views. The parameters of the C3D models are indepen-
dently retrained and updated by dynamic gesture databases
on each view. The retrained C3D models are used as the
3D feature extractors for gesture-level features. The outputs
of C3D extractors are taken from the FC6 layer with feature
vectors Fvk(M × 1) | k = (1, .., N), M=4096 as presented in
Eq. (6):

FC3D
Vk

(M × 1) =


F

(1)
Vk

F
(2)
Vk

...

F
(M)
Vk

 (6)

Next, both feature vector FVk
and probability distribution

of view scores PVk
are combined on each viewpoint as

presented in Eq. (7):

F(Vk,PVk
) = PVk

FC3D
Vk

=


F

(1)
(Vk,PVk

)

F
(2)
(Vk,PVk

)

...

F
(M)
(Vk,PVk

)

 =


F

(1)
Vk

PVk

F
(2)
Vk

PVk

...

F
(M)
Vk

PVk

 (7)

All features of multiple viewpoints are normalized follow-
ing the minimum and maximum values of all feature vectors on
entire viewpoints. (Fmin = min(F(V1,PV1

),...,F(VN ,PVN
), and

Fmax = max(F(V1,PV1
),...,F(VN ,PVN

)). The normalized vector
is presented by Fnorm

(Vk,PVk
) as Eq. (8):

Fnorm = [Fnorm
(V1,PV1

), ..., F
norm
(VN ,PVN

)]

= [
F(V1,PV1

) − Fmin

Fmax − Fmin
, ...,

F(VN ,PVN
) − Fmin

Fmax − Fmin
]

(8)

All normalized vectors Fnorm
(Vk,PVk

) | k = (1, .., N) from
C3D backbones are then put into an attention layer of (N ×
M × 1) to output attention scores ak | k = (1, ..., N).

The attention scores ak are calculated by Sigmoid function
and L1 normalization function [30] as presented in Eq. (9):

ak =
σxk∑N
k=1 σ

xk

=
1

1−exk∑N
k=1

1
1−exk

(9)

The Attention Conv trains and generates attention factors
according to the roles of synthetic features at N views. It
presents the effects of feature vectors through attention scores.
The attention weights are applied for all gesture features to
obtain a feature vector of Ft(1×2048). The aggregated feature
is built based on N single synthetic features (FVk

) and efficient
scores (PVk

) that is presented in Eq. (10):

Ft =
1

N

N∑
k=1

(akF
norm
(Vk,PVk

)) (10)

In this work, the lost function of C3D models is exploited
for entire viewpoints. In addition, the softmax cross-entropy
loss function is also utilized to train the attention networks and
classify dynamic gestures. Given a predicted result of dynamic
gesture p̄i with the ground truth is pi, the loss function is
calculated as in Eq. (11):

Lsoftmax =
1

K

K∑
i=1

pilogp̄i (11)

2) Arbitrary View gesture recognition with average method
(ArViAvr): This method combines the probability distributions
of a view (Pv) and a gesture from FC6 layers of C3D
models (PVk

G (1 × C), C is the number of gesture classes).
The recognition accuracy of a real gesture is finally computed
from all multi-view synthetic dynamic gestures as presented
in Eq. (12):

Acc = Argmax(
∑N

k=1
PVk

P
Vk
G1

N ,...,
∑N

k=1
PVk

P
Vk
GC

N ) (12)

IV. EXPERIMENT AND RESULT

This section describes in detail the datasets used for the
experiments, and two evaluation protocols are set for the ex-
perimental datasets: the single-view protocol and the arbitrary-
view protocol. In addition, we also mention the metrics that
are used for evaluating the quality of the synthetic samples
generated by ArVi-MoCoGAN compared to the original ones.
The enhanced experiments and the results of the proposed
method for dynamic gesture recognition are also presented and
discussed in this section.

A. Dataset and Evaluation Protocols

1) Dataset: In this study, four multi-view and dynamic
gesture datasets are utilized for evaluating the proposed frame-
work: the MICAGes dataset [31], three benchmark datasets
of IXMAS [18], MuHAVi [19], and NUMA [20]. These
datasets contain the gestures that are synchronously captured
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by multiple cameras (N cameras), a variety of subjects (S
subjects), and categories of dynamic gestures (C classes) as
presented in Table I:

TABLE I. THE FOUR MULTI-VIEW AND DYNAMIC GESTURE DATASETS
OF MICAGES, IXMAS, MUHAVI, AND NUMA

MICAGes IXMAS MuHAVi NUMA
Camera (N ) 05 04 07 03
Class (C) 09 12 07 10
Subject (S) 10 04 07 10
Video 1500 1584 3038 1475

We employ the ”Leave-one-subject-out-cross-validation”
strategy to split data in the training and testing phases. A
multi-view database Dr has S subjects (l=(1,...,S)), N views
(k=(1,...,N)), therefore S experiments are holdout. Considering
a test subject l=sth, a real dataset is divided into two parts as
Eq. (13):

Dr = Dr
1 ∪Dr

2 =

{
Dr

1 = {Dl
Vk

| k = (1, ..., N), l = sth}
Dr

2 = {Dl
Vk

| k = (1, ..., N); l = (1, ..., S); l ̸= sth} (13)

Where Dr
1 contains the dynamic gestures of the sth subject

at the entire N views, Dr
2 are the remaining subjects at all N

views.

2) Evaluation protocols: In this work, the evaluation pro-
tocols are set for experimental datasets used in (i) training
the ArVi-MoCoGAN network and generating the dynamic
gestures; (ii) training and testing the gesture classifiers. They
are single-view protocol and arbitrary-view protocol.

- Single view protocol: we use ”Leave-one-subject-out-
cross-validation” strategy in all evaluations. Thus, the data
for training ArVi-MoCoGAN and generating the synthetic
gestures is separated as follows:

• Training of ArVi-MoCoGAN in single view evalu-
ation: All dynamic gestures in Dr

2 dataset are uti-
lized as input for training ArVi-MoCoGAN model
(DArV i−MOCOGAN/DArV i) as Eq. (14):

DTr
ArV i = Dr

2 (14)

• Data generating of ArVi-MoCoGAN in single view
evaluation: Having N viewpoints means N experi-
ments are conducted. For k = jth view evaluation,
input gestures are taken from Dr

1, except for the data
from jth view. It means that the data on the other
views is projected on the jth view for data enrichment.
The inputs of the retrained ArVi-MoCoGAN model
are dynamic gestures of Dr

1 on other viewpoints as
Eq. (15):

DTe
ArV i = {Dr

1|k = (1, .., N); k ̸= jth} (15)

Synthetic data are output of ArVi-MoCoGAN model
that is presented as Eq. (16):

DOut
ArV i = {DSyn

1,Vkjth
|k = (1, ..., N); k ̸= jth} (16)

In this evaluation protocol, C3D networks are applied
to recognize dynamic gestures, which are fine-tuned by the
training data DTr

C3D (Eq. (17)). The testing data DTe
C3D is then

applied as Eq. (18):

• Training of C3D in single view evaluation:

DTr
C3D = {Dr

2|k = jth} ∪DOut
ArV i (17)

• Testing of C3D in single view evaluation:

DTe
C3D = {Dr

1|k = jth} (18)

- Arbitrary view protocol:

In this evaluation protocol, one view jth is considered an
unknown view, and the remaining views are observed as the
fixed views. This work also composes two stages as follows:

In the first stage, because jth view is consider an arbitrary
viewpoint. Thus, only a part of the Dr

2 dataset is used to train
ArVi-MoCoGAN model is presented in Eq. (19). This work
aims to create a common space from multiple fixed viewpoints.
It means that data of jth view (an arbitrary view) do not attend
in creating common space with ArVi-MoCoGAN model:

DTr
ArV i = {Dr

2|k = (1, ..., N); k ̸= jth} (19)

In the second stage, the ArVi-MoCoGAN model is used
in two roles: (1) data augmentation for the gesture classifier;
and (2) the ArVi-MoCoGAN model becomes an intermediate
step for dynamic gesture recognition. In the role of data
augmentation, gestures of Dr

1, except jth subject are used as
the inputs for the trained ArVi-MoCoGan model (Eq. (20))
to generate synthetic data DOut1

ArV i (Eq. (21)). This synthetic
data is then used as data augmentation for training the C3D
model DTe

C3D (Eq. (24)). The input and output data of the
ArVi-MoCoGan model in the first role, as follows:

• The input of ArVi-MoCoGan in role (1):

DTe1
ArV i = {Dr

1|k = (1, .., N); k ̸= jth} (20)

• The output of ArVi-MoCoGan in role (1):

DOut1
ArV i = {DSyn

1,Vk1
Vk2

|k1 = (1, ..., N); k2 = (1, ..., N), k1, k2 ̸= jth}
(21)

In the second role of ArVi-MoCoGan, an arbitrary view
gesture of jth view in Dr

1 is projected into a common space
with the previously trained ArVi-MoCoGAN, whose input
is DTe2

ArV i (Eq. (22)), and output DOut2
ArV i (Eq. (23)) contains

synthetic gestures in a common space of fixed multiple views.
DOut2

ArV i is utilized to recognize gesture in Eq. (25). The input
and output data of the ArVi-MoCoGan model in the second
role are as below:

• The input of ArVi-MoCoGan in role (2):

DTe2
ArV i = {Dr

1|k = jth} (22)

• The output of ArVi-MoCoGan in role (2):

DOut2
ArV i = {DSyn

1,jthVk
|k = (1, ..., N); k ̸= jth} (23)

In the arbitrary view evaluation protocol, C3D networks
and an attention unit (C3D − AU) are applied to recognize
synthetic dynamic gestures in the fixed multiple viewpoints as
presented in Sec. III-C. This model is fine-tuned by the training
data DTr

C3D−AU (Eq. (24)), and the testing data DTe
C3D−AU is

then applied as Eq. (25).
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• Training data of C3D −AU in role (2):

DTr
C3D−AU = {Dr

2|k = (1, ..., N); k ̸= jth} ∪DOut1
ArV i (24)

• Testing data of C3D −AU in role (2):

DTe
C3D−AU = DOut2

ArV i (25)

Throughout the whole system, an arbitrary view dynamic
gesture Dr

1,jth is firstly projected into a multi-view common
space (ArVi-MoCoGAN network) to obtain the synthetic ges-
tures DSyn

1,jthk
. These synthetic gestures are classified on certain

fixed multiple viewpoints. Finally, the dynamic gesture scores
are computed by two strategies (ArViAU and ArViAVR) as
presented in the previous sections (Sec. III-A and Sec.III-C).
For each evaluation holdout, the computed accuracy metric is
determined by all the accuracy scores of the synthetic gestures
on the target views.

B. Model Configurations

Encoder 1 (E1) and Encoder 2 (E2) networks are applied
by five Conv2d with layer sizes of [512, 256, 128, 64].
Generator 1 (G1) and Generator 2 (G2) networks utilize five
ConvTrans2d layer which its sizes of [64, 128, 256, 512,
512], Kernel (4,4), Stride 2,2), Padding (1,1), BN2d and ReLU
functions.

Discriminator 1 (D1) uses six Conv2d with sizes of [512,
512, 256, 128, 128, 64]. Kernel sizes (4,4), S(2,2), Padding
size (1,1), BN2d and LeakyReLU functions. Discriminator 2
(D2) utilizes six Conv3d with sizes of [512, 512, 256, 128,
128, 64], Kernel (4,4,4), Stride (1,2,2), Padding (0,1,1), BN3d
and LeakyReLU functions.

C. Evaluation Metrics

In this work, the quality of the synthetic videos generated
by ArVi-MoCoGAN is evaluated based on two criteria: (1) the
similarity between the videos generated by ArVi-MoCoGAN
and the real ones; and (2) the performance of the dynamic
gesture recognition when training the classifier on the aug-
mented data compared to training only on the original data.
The first criterion is evaluated based on the FVD score [32]. In
addition, two other metrics, Structural Similarity (SSIM) [33]
and Peak Signal-to-Noise Ratio (PSNR) [34] are also used to
evaluate the quality of synthetic videos in comparison with the
real ones. The higher values of SSIM or PSRN indicate better
quality of synthetic gestures.

Before evaluating the quality of the synthetic videos gen-
erated by the ArVi-MoCoGAN model by the two above crite-
ria, we evaluate (i) the performance of the ArVi-MoCoGAN
training and (ii) the saturation in the amount of synthetic
videos from the ArVi-MoCoGAN model on dynamic gesture
recognition accuracy. The first one is shown by the loss
values of discriminators D1 and D2 in the ArVi-MoCoGAN
architecture. For the second one, C3DVS score (C3D Video
Score) [32] is used for evaluation. Based on these, the optimal
values are selected for later evaluations.

D. Experimental Evaluation

1) Evaluation of the saturation of synthetic videos by
the ArVi-MoCoGAN model on dynamic gesture recognition
accuracy: Figure 3 shows the C3DVS scores on various
published datasets from no augmentation with zero generator
(original dataset) to eleven synthetic videos (combination of
original dataset and synthetic dataset). We use the ”Single-view
protocol” in this experiment. It is apparent that data augmen-
tation by the ArVi-MoCoGAN network dramatically improves
dynamic gesture recognition compared to the evaluation on
the original dataset. In addition, it also indicates the number
of synthetic videos that should be used to improve the accuracy
of gesture recognition. It can be seen from Figure 3 that
for the IXMAS dataset, convergence occurs after 5 generator
samples. MICAGes and NUMA datasets obtain convergence
after 4 samples. MuHAVi dataset is stable at all. These sample
numbers will be applied to the FVD score as well as the
remaining evaluations.

Fig. 3. C3DVS scores of ArVi-MoCoGAN network on different datasets.

2) Evaluation the similarity between synthetic videos and
the real ones: The optimal synthetic samples calculated by
the C3DVS score (Figure 3) are 03 synthetic samples for the
MuHAVi dataset, 04 synthetic samples for each of the NUMA
dataset and the MICAGes dataset, and 05 synthetic samples for
the IXMAS dataset. In this work, we apply the FVD metric
to generated data at various epochs of the retrained ArVi-
MoCoGAN model.

The results in Figure 4 show that our arbitrary-view ArVi-
MoCoGAN is dramatically reduced from 1400 FVD at epoch
10th to around 600 FVD at epoch 200th and converged
after 200 epochs with MICAGes dataset (blue color line).
FVD values of the IXMAS, MuHAVi, and NUMA datasets
are presented in the green, violet, and orange color lines,
respectively. It can be seen from Figure 4 that the worst results
at all epochs belong to the MuHAVi dataset. Its FVD values
are the lowest among the four datasets. It is clear that FVD
values are stable after 350 epochs for all experimental datasets.
As a result, we will use synthetic data at 350 epochs for the
remaining evaluations.

The experimental results in Table II show the compara-
tive results of the ArVi-MoCoGAN model with the image
sequences generated by Vi-MoCoGAN at poch 350th epoch.
One dynamic action on a certain viewpoint is considered as
an input of the 350th model in order to generate six dynamic
gestures on each remaining view. It can be seen from the
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Fig. 4. The FVD values of data distribution between real videos and
synthetic videos at various epochs of the ArVi-MoCoGAN network.

Table II that our framework outperforms Vi-MoCoGAN at all
metrics as well as the datasets, with SSIM and PNRS values
drastically higher and FVD values dramatically smaller than
Vi-MoCoGAN.

TABLE II. SSIM, PSNR, AND FVD SCORES OF ARVI-MOCOGAN AND
VI-MOCOGAN ON VARIOUS DATASETS

Dataset Model SSIM(↑) PNRS(↑) FV D(↓)
MICAGes Vi-MoCoGAN 0.77 27.69 936

ArVi-MoCoGAN 0.86 30.65 629
IXMAS Vi-MoCoGAN 0.79 26.21 969

ArVi-MoCoGAN 0.87 33.21 719
MuHAVi Vi-MoCoGAN 0.68 25.59 791

ArVi-MoCoGAN 0.72 30.26 420
NUMA Vi-MoCoGAN 0.65 23.19 873

ArVi-MoCoGAN 0.76 32.01 606

Figures 5-a, b, c illustrate the synthetic key frames of G6

gesture of three different subjects in the MICAGes dataset at
350 epochs, respectively. The rows at the top of the figure are
the generated videos by the Vi-MoCoGAN model, and at the
bottom are the synthetic videos of the ArVi-MoCoGAN model.
It can be seen that Vi-MoCoGAN generates videos with the
wrong category and poor quality. The beginning frames of
the Vi-MoCoGAN frame sequence show the hand gestures are
far from the body. This is the opposite of ArVi-MoCoGAN,
with the outputs having clearer frames and showing the truth
category.

3) Evaluation the performance of dynamic gesture recog-
nition using data augmentation by ArVi-MoCoGAN: The ef-
ficiency of (ArVi-MoCoGAN+C3D) is investigated on four
other benchmark datasets of MICAGes, IXMAS [18], MuHAVi
[19], and NUMA [20] as illustrated in the Figure 6. The results
in this figure indicate that using augmentation data for dynamic
gesture recognition outperforms the case of original data,
with 68,87% (C3D) and 87.25% (ArVi-MoCoGAN+C3D) on
IXMAS; 86.83% (C3D) and 94.51% (ArVi-MoCoGAN) on
NUMA. However, the results on the MuHAVi dataset are
nearly the same for (ArVi-MoCoGAN+C3D) and (C3D), with
98.36% and 98.27%, respectively.

The performance of (ArVi-MoCoGAN+C3D) is also com-
pared to some SOTA methods, as presented in Table III. It
is clear that our data augmentation solution significantly im-
proves single-view gesture recognition accuracy in comparison

with other solutions. The experiments on the IXMAS dataset
show the highest recognition accuracy is 87,2% for ArVi-
MoCoGAN+C3D), while the results for 3D Exemplars, SSM,
WLE, (DR18+ELM), (DR18+ELM+aug), (DA+ELM),
(DA + ELM + aug) are 63,2%, 72,5%, 79,9%, 67.6%,
72,7%, 73,1%, and 79.4%, respectively. For MICAGes, (ArVi-
MoCoGAN+C3D) solution is compared to other methods
of Multi-Br TSN [35], Multi-Br TSN-GRU [35] and R34
(2+1)D With CVA [24]. The result of (ArVi-MoCoGAN+C3D)
is 92.88% which is higher than R34 (2+1)D With CVA
(91.71%), Multi-Br TSN - GRU (88.71%), and Multi-Br TSN
(81.77%). The result on the MuHAVI dataset gained by (ArVi-
MoCoGAN+C3D) is the highest, with 98.27% compared to the
93.6% of (DA+ELM+aug), 93.4% of (DR18+ELM+aug),
92.1% of (DR18+ELM), and 91.1% of (DA+ELM). The
experimental results on NUMA dataset show that the highest
accuracy belongs to (ArVi-MoCoGAN+C3D) with 94.51%,
the next ones are 93.81% of Multi-Br TSN - GRU, 92.78% of
R34 (2+1)D With CVA, 92.1% of DA-Net[36], 90.3% of TSN
[37], and 88.49% of Multi-Br TSN. The worst case happens
to SAM[38] with 83.2%.

TABLE III. COMPARISON OF CROSS-SUBJECT RECOGNITION ACCURACY
(%) OF SINGLE-VIEW DYNAMIC GESTURE METHODS ON VARIOUS

DATASETS (”AUG” SYMBOL MEANS DATA AUGMENTATION)

IXMAS MICAGes MuHAVI NUMA
3D Exemplars[39] 63.2 - - -
SSM [40] 72.5 - - -
WLE [41] 79.9 - - -
SAM[38] - - - 83.2
TSN [37] - - - 90.3
DA-Net[36] - - - 92.1
Multi-Br TSN [35] - 81.77 - 88.49
Multi-Br TSN - GRU [35] - 88.71 - 93.81
R34 (2+1)D With CVA [24] - 91.71 - 92.78
DR18 + ELM [42] 67.6 - 92.1 -
DR18 + ELM + aug [42] 72.7 - 93.4 -
DA + ELM [42] 73.1 - 91.1 -
DA + ELM + aug [42] 79.4 - 93.6 -
ArVi-MoCoGAN + C3D 87.25 92.88 98.27 94.51

The experiments for two end-to-end methods, ArViAvr and
ArViAU (presented in Sec. III-C) are implemented on four
published multi-view datasets of MICAGes, IXMAS, MuHAVi
and NUMA, as illustrated in the IV. In this work, we train the
end-to-end CNN models with two strategies: (1) Training on
the remaining (N-1) viewpoints and testing on one viewpoint;
(2) Training on the main frontal viewpoints and testing on one
non-frontal viewpoint.

It can be seen from the Table IV that the ArViAU
method obtains the best accuracy on the benchmark datasets
of MICAGes (94.03%), IXMAS (86.75%), MuHAVi (95.35%),
and NUMA (93.19%). In addition, these results outperform the
SOTA methods of DA + ELM + aug [42], Shah et al. [45].
For IXMAS dataset, our proposed method with the case of
ArViAVR ((ArVi-MoCoGAN+C3D); AVR) has the accuracy
of 82.03%. This is a little lower than DA + ELM + aug
method in [42]. However, with data augmentation ((ArVi-
MoCoGAN+C3D);AU), our method is about 3% higher than
(DA+ELM+aug) method. For MuHAVI dataset, our ((ArVi-
MoCoGAN+C3D);AU) is much better than (DA + ELM +
aug) method, with 13.58% higher in recognition accuracy. In
comparison with the solution of Shah et al. [45], our ((ArVi-
MoCoGAN+C3D);AU) is increased by 1.5%.
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Fig. 5. Synthetic dynamic gestures of ArVi-MoCoGAN (our method) and Vi-MoCoGAN with the MICAGes dataset.

Fig. 6. Single view dynamic gesture recognition of different methods C3D,
(Vi-MoCoGAN+C3D), and (ArVi-MoCoGAN+C3D) on various datasets.

V. CONCLUSION AND FUTURE WORK

This work proposes a novel end-to-end framework based
on GAN architecture and attention units for dynamic and
arbitrary-view gesture recognition. Several enhanced experi-
ments on the standard datasets of dynamic gestures are imple-
mented to show the better results of our proposal compared
to other solutions. The experimental results are remarkable
and promising. However, they are only tested on experimental
databases and have not been evaluated in real-world conditions.
In order to be able to adapt to practical applications in future
work, multi-modal elements such as RGB, depth, skeleton,
etc. can be considered in the proposed system. In addition,
to improve the quality of data augmentation, condition vectors
can be added to the proposed GAN model to control the desired
outputs of arbitrary-view dynamic gestures. The transformer-
based architectures can also be deployed to improve both
gesture data generation and recognition.

TABLE IV. THE COMPARATIVE RESULTS OF OUR PROPOSED METHOD
WITH OTHER SOLUTIONS IN DYNAMIC GESTURE RECOGNITION

ACCURACY (%) FOR ARBITRARY VIEW TESTING

IXMAS MICAGes MuHAVI NUMA
3D Exemplars[39] 81.3 - - -
ST+Spin-Image features[43] 71.7 - - -
SSM [40] 72.7 - - -
SAM[38] - - - 77.2
R-NKTM [26] 74.1 - - -
WLE [41] 82.8 - - -
TSN [37] - - - 80.6
DA-Net[36] - - - 84.2
Multi-Br TSN - GRU [35] - 88.71 - 84.4
Glimpse Clouds [44] - - - 87.6
R34 (2+1)D With CVA [24] - 91.71 - 92.74
DA+ELM[42] 79.3 - 77.78 -
DA+ELM+aug[42] 83.8 - 81.76 -
Shah et al.[45] - - - 91.7
ArViAVR 82.03 90.87 94.04 85.51
(ArVi-MoCoGAN+C3D; AVR)
ArViAU 86.75 94.03 95.35 93.19
(ArVi-MoCoGAN+C3D; AU)
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[15] A. Schäfer, G. Reis, and D. Stricker, “Anygesture: Arbitrary one-handed
gestures for augmented, virtual, and mixed reality applications,” Applied
Sciences, vol. 12, no. 4, p. 1888, 2022.

[16] K. Gedamu, Y. Ji, Y. Yang, L. Gao, and H. T. Shen, “Arbitrary-view
human action recognition via novel-view action generation,” Pattern
Recognition, vol. 118, p. 108043, 2021.

[17] T.-H. Tran, H.-N. Tran, and H.-G. Doan, “Dynamic hand gesture
recognition from multi-modal streams using deep neural network,” in
Multi-disciplinary Trends in Artificial Intelligence. Cham: Springer
International Publishing, 2019, pp. 156–167.

[18] D.Weinland, R. Ronfard, and E. Boyer, “Free viewpoint action recog-
nition using motion history volumes,” Computer Vision and Image
Understanding, vol. 104, no. 2, pp. 249–257, 2006.

[19] F. Murtaza, M. H. Yousaf, and S. A. Velastin, “Multi-view human action
recognition using 2d motion templates based on mhis and their hog
description,” IET Comput. Vis., vol. 10, no. 7, pp. 758–767, 2016.

[20] L. Wang, Z. Ding, Z. Tao, Y. Liu, and Y. Fu, “Generative multi-view
human action recognition,” in 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), 2019, pp. 6211–6220.

[21] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” 12 2015, pp.
4489–4497.

[22] Q. Liu, X. Che, and M. Bie, “R-stan: Residual spatial-temporal attention
network for action recognition,” IEEE Access, vol. 7, pp. 82 246–82 255,
2019.

[23] Y. Bai, Z. Tao, L. Wang, S. Li, Y. Yin, and Y. Fu, “Collaborative
attention mechanism for multi-view action recognition,” CoRR, vol.
abs/2009.06599, 2020.

[24] H.-T. Nguyen and T.-O. Nguyen, “Attention-based network for effective
action recognition from multi-view video,” Procedia Computer Science,
vol. 192, pp. 971–980, 2021.

[25] N. u. R. Malik, U. U. Sheikh, S. A. R. Abu-Bakar, and A. Channa,
“Multi-view human action recognition using skeleton based-fineknn

with extraneous frame scrapping technique,” Sensors, vol. 23, no. 5,
2023.

[26] H. Rahmani, A. S. Mian, and M. Shah, “Learning a deep model for
human action recognition from novel viewpoints,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, pp. 667–681,
2018.

[27] M. I. Lakhal, D. Boscaini, F. Poiesi, O. Lanz, and A. Cavallaro, “Novel-
view human action synthesis,” CoRR, vol. abs/2007.02808, 2020.

[28] B. Natarajan and R. Elakkiya, “Dynamic gan for high-quality sign lan-
guage video generation from skeletal poses using generative adversarial
networks,” Soft Computing, vol. 26, no. 23, pp. 13 153–13 175, 2022.

[29] D.-M. Truong, D. Giang, T.-H. Tran, V. Hai, and T. Le, “Robustness
analysis of 3d convolutional neural network for human hand gesture
recognition,” International Journal of Machine Learning and Comput-
ing, vol. 9, pp. 135–142, 04 2019.

[30] Y. Liu, J. Yan, and W. Ouyang, “Quality aware network for set to set
recognition,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 4694–4703.

[31] H. Doan, T. Tran, H. Vu, T. Le, V. Nguyen, S. V. Dinh, T. Nguyen,
T. T. Nguyen, and D. Nguyen, “Multi-view discriminant analysis for
dynamic hand gesture recognition,” in Pattern Recognition - ACPR 2019
Workshops, Auckland, New Zealand, November 26, 2019, Proceedings,
ser. Communications in Computer and Information Science, vol. 1180.
Springer, 2019, pp. 196–210.

[32] T. Unterthiner, S. van Steenkiste, K. Kurach, R. Marinier, M. Michalski,
and S. Gelly, “Fvd: A new metric for video generation,” 2019.

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
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