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Abstract—COVID-19’s high fatality rate and accurately deter-
mining the mortality rate within a particular geographic region
continue to be significant concerns. In this study, the authors
investigated and assessed the performance of two advanced
machine learning approaches, Adaptive Boosting (AdaBoost) and
Bootstrap Aggregation (Bagging), as strong predictors of COVID-
19-related intensive care unit (ICU) admissions within Saudi
Arabia. These models may help Saudi health-care organizations
determine who is at a higher risk of readmission, allowing for
more targeted interventions and improved patient outcomes. The
authors found AdaBoost-RF and Bagging-RF methods produced
the most precise models, with accuracy rates of 97.4% and
97.2%, respectively. This work, like prior studies, illustrates the
viability of developing, validating, and using machine learning
(ML) prediction models to forecast ICU admission in COVID-19
cases. The ML models that have been developed have tremendous
potential in the fight against COVID-19 in the health-care
industry.
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I. INTRODUCTION

Since 2019, the coronavirus disease 2019 (COVID-19) pan-
demic has continued to spread globally [1]. The global impact
of the COVID-19 pandemic has resulted in more than 170
million confirmed infections and 3.54 million fatalities, giving
rise to significant public health and socioeconomic concerns.
By the end of November 2021, more than two hundred million
COVID-19 cases had been registered, more than five million
deaths, and more than seven billion COVID-19 vaccines had
been provided [2]. It was expected that between 0.02% and
0.82% of those infected with the virus would die [3]. Due to
the high number of asymptomatic people, the death rate would
increase.

Even though the World Health Organization (WHO) de-
clared the epidemic to be over, low- and middle-income
nations, such as Brazil or Ethiopia, are still experiencing the
effects of the COVID-19 burden on health-care systems. With
1.5 million cases, Brazil saw around 12,000 deaths between
January and September 2023 [4]. The pandemic has continued

to influence Ethiopias people and its economy, different from
than earlier pandemics. This pandemic even briefly resulted in
a global economic collapse and a near-total halt to social and
economic activities [5]. Thus, not only acquiring knowledge
and understanding the roots of the epidemic but also predicting
its trajectory are of the utmost importance, especially in low-
and middle-income nations.

The first instance of COVID-19 in Saudi Arabia was
officially documented on March 2, 2020. Subsequently, as
of September 12, 2020, a total of 325,050 confirmed cases
were identified, out of which 301,836 individuals successfully
recuperated, whereas 4,240 infections resulted in fatalities
[6, 7, 8]. The COVID-19 pandemic presents a major public
health risk to large-scale events, such as the Hajj, which draws
an annual attendance of 2.5 million Muslim pilgrims from 150
countries, with foreign pilgrims accounting for 75% of the
overall population [9].

In March 2020, Saudi Arabia witnessed a notable hospi-
talization rate of 71.6% among those who tested positive for
COVID-19, accompanied by a fatality rate of 0.65% [10]. The
aforementioned elevated rate has the potential to intensify fur-
ther the economic strain caused by viral respiratory infections,
leading to an approximate direct medical expenditure of SAR
48,551.36 (USD 12,947.03) per patient.

According to the official Saudi COVID-19 monitoring
dashboard [11], an overview of confirmed critical case counts
was described between May 2020 and May 2022. Within 24
months, the count of confirmed cases rose from less than 100
cases to around 700,000 cases, where critical cases ranged
from less than 100 to 2,000 cases. Currently, it is estimated
that there are 3,900 active cases.

Saudi Arabia encountered several public health issues
during the COVID-19 pandemic, encompassing areas such as
knowledge deficiencies, attitudes and behaviors, psychological
implications, vaccine hesitancy, management of religious mass
gatherings, and the application of travel limitations [12]. The
aforementioned challenges exhibited a distinctiveness exclu-
sive to Saudi Arabia, derived from its religious and cultural
context.
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The collective efforts to understand the COVID-19 pan-
demic have resulted in the creation of a large number of
datasets. Yet the volume, risk factors, and complexity make
predicting COVID-19 infection complicated. Factors such as
demographics, medical history, symptoms, and real-time data
updates add to the COVID-19 complications [13]. This level
of complexity necessitates advanced computing methods and
a significant amount of processing time. Thus, there is a need
for innovative techniques, namely machine learning (ML), that
can be utilized to investigate and forecast the severity of
asymptomatic carriers, as well as the prospective death rate
from recorded illnesses.

This study aims to investigate two advanced ML methods
for predicting COVID-19 patients admission to the intensive
care unit (ICU). The proposed model is built with well-
known classification methods1, namely the Adaptive Boosting
(AdaBoost) and Bootstrap Aggregation (Bagging) methods.
The proposed model was utilized on a private governmental
dataset using the clinical COVID-19 characteristics of Saudi
Arabian residents.

The authors have developed two hypotheses for this study:
(1) The AdaBoost technique is expected to be superior to
the Bagging method in terms of accuracy and precision in
predicting ICU admission for COVID-19 patients; (2) the
selection of features and their relevance to ICU admission
prediction will influence the performance of the AdaBoost
and Bagging algorithms. To our knowledge, there are limited
studies investigating the application of advanced ML methods,
namely AdaBoost and Bagging, on a local Saudi Arabia
dataset. The contribution of this work is thus twofold:

1) To investigate the performance of two advanced
ML methods, AdaBoost and Bagging, as predicts of
COVID-19 related ICU admission.

2) To evaluate the proposed model, the authors applied
it to a private government dataset in terms of size and
number of clinical screening features.

3) To recognize the significance of feature selection in
improving the efficiency of the applied ML classifiers
under consideration.

4) To motivate the scientific community to employ dif-
ferent ML classifiers for improving ICU admission
prediction in similar geographical regions.

The rest of the article is organized as follows: Section II
demonstrates a few related works in which the AdaBoost and
Bagging models were utilized for COVID-19 patient classifica-
tions and predictions. Section III describes the utilized dataset
and proposed model, along with the applied evaluation schema.
Section IV depicts a comparative analysis of the performance
of the proposed model. Section V sheds light upon a further
discussion, and Section VI provides a conclusion and outlines
future directions.

II. RELATED WORK

This section demonstrates some recent work applying
the AdaBoost and Bagging methods as strong predictors for

1Methods, learners, classifiers, or techniques will be used interchangeably
throughout the paper.

COVID-19 infection within a variety of geographical locations
and clinical datasets.

Soui et al. [14] conducted a comparative study of various
ML methods to identify an effective model for distinguishing
COVID-19 cases from suspects. They applied their proposed
model to two datasets: a dataset from the Wolfram Data Re-
search Repository with 1,495 patients and a dataset from an ex-
ternal source with 99,232 samples. Many algorithms including
forward floating selection, and non-dominated sorting genetic
algorithm II— were utilized to choose the optimal subset
of features. To thoroughly classify COVID-19 suspects, the
authors applied various machine learning algorithms: MLP,2
SVM,3 LR,4 DT,5 GB,6 RF,7 XGBoost,8 and AdaBoost, and
they measured their performance. After SMOTE was applied
to the datasets, the authors indicated RF outperformed all other
classifiers in the first and second datasets, with an accuracy of
81.51% and 92.88%, respectively.

Darici [15] performed a comparative analysis between
the AdaBoost-CNN and AdaBoost-ResNet-152 methods to
not only autonomously extract image features from X-ray
chest COVID-19 patients but also classify these images. The
authors used datasets containing 2,905 photos from various
sources, with an unequal distribution across classes, and the
SMOTE was used to balance the number of photos in each
class. Overall, 1024 features were fed into the AdaBoost
method, and the authors chose SVM as the weak classifier.
For automatic feature extraction, AdaBoost-CNN outperforms
AdaBoost-ResNet-152. The best average accuracy result for
AdaBoost-CNN model was 94.5%, wheres it was 89% for the
AdaBoost-ResNet-152 model.

Mary et al. [16] aimed to predict COVID-19 severity by
identifying and classifying COVID-19 cells in a chest X-ray
dataset. The used dataset contains 10,000 images of chest
X-rays, as well as CSV files, which were located at the
Kaggle site. To extract and segment COVID-19 cells from
the dataset, the authors proposed a Vulture-Based Adaboost-
Feedforward Neural (VbAFN) method. To improve segmen-
tation and classification accuracy, the authors employed a
variety of optimization strategies, including CNN with Fuzzy,
Fusion schemes, the BO-F methodology, CNN with VGG16,
and Hidden Markov with U-net Architecture. When compared
to previous studies, the authors reported the VbAFN scheme
obtained an accuracy of 99%, with an error rate of 0.02.

Mazloumi et al. [17] investigated the use of blood samples,
age, gender, and ICU admission to predict patient survival or
death features in Wuhan, China. The authors examined various
ML techniques from 306 infected Tangji Hospital patients.
The SMOTE method for nominal and continuous variables
was used to balance the dataset. The authors reported that
DT, AdaBoost, RF, KNN,9 and SVM outperformed other ML
methods in predicting COVID-19 patient survival or death,
where DT achieved accuracy of 91.6% and AdaBoost achieved

2Multilayer Perceptron method
3Support Vector Machine method
4Linear Regression method
5Decision Tree method
6Gradient Boosting method
7Random Forest method
8Extreme Gradient Boosting method
9K-Nearest Neighbors method
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accuracy of 91.3%. Additionally, the authors reported that age,
LD, and leukocytosis features were the most critical criteria in
measuring and analyzing COVID-19 survival.

Sharma et al. [18] aimed to effectively forecast the spread
of COVID-19 in India using multivariate time series data. The
authors employed two worldwide datasets from Kaggle and
Indiastathealth sites. The datasets were aggregated between
January 2020 and August 2021, with various features con-
sidered, such as the number of cases by date, confirmed cases
by date, confirmed deaths, vaccination, and policy responses.
To extract related COVID-19 features, an adaptive gradient
LSTM model (AGLSTM) was used. RNN,10 LSTM,11 LASSO
regression, AdaBoost, LGB,12 and KNN models are used
as classification methods. The authors validated their model
in two ways: local Indian case studies and data fusion and
transfer-learning techniques. As a result, AGLSTM outper-
forms other ML methods, with an accuracy of 99.81% with
little training time.

Solayman et al. [19] proposed an automated ML-driven
COVID-19 identification tool to determine whether or not users
were infected with COVID-19. Through answering symptom-
related clinical questions, the tool filled the gap in earlier
research by combining automated detection techniques with
rapid prediction. The authors employed ML methods, includ-
ing LR, RF, DT, KNN, SVM, AdaBoost, XGB, ANN,13 CNN,
and LSTM to train and assess the proposed tool. The authors
used a Middle Eastern-based open-source dataset with around
two million patients with a focus on their patient information,
symptoms, and COVID-19 test results. After dropping null
values and feature engineering, the SMOTE approach was used
to preprocess the dataset. As a result, other ML models were
outperformed by the hybrid CNN-LSTM methods, with an
accuracy rate of 96.34% and 85.49% after the use of SMOTE
and no SMOTE techniques, respectively.

To extract and describe the chest CT characteristics of
COVID-19 patients, Li et al. [20] proposed a COVID-19 early
warning system, and it functioned upon various ML methods,
including the XGBoost, LR, MLP, RF, and AdaBoost methods.
The system utilized an aggregated adult CT imaging dataset
from COVID-19 patients from three medical centers in Beijing,
Wuhan, and Nanchang. The dataset included a variety of
features, such as imaging ratings, clinical characteristics, and
biomarker levels. With an accuracy of 82% and 84% (mean),
the LR and XGBoost methods predicted the real probability of
severe\critical COVID-19, respectively. The authors reported
that general clinical markers such as blood oxygen saturation,
age, and total lung involvement were found to be important
predictors of critical COVID-19 patients.

Abegaz and Etikan [5] performed a case study to predict
COVID-19 mortality in Ethiopia. The authors compared Ad-
aBoost against weak classifiers including KNN, ANN, and
SVM. The dataset used included two years of COVID-19
patient records that came from OurWorldInData and the John
Hopkins University warehouse. The used datasets focused on
a set of five features: the daily number of COVID-19 deaths,

10Recurrent Neural Network method
11Long Short-Term Memory Networks method
12Light Gradient Boosting method
13Artificial Neural Networks method

TABLE I. DESCRIPTION OF THE 2019 CORONAVIRUS DISEASE
(COVID-19) POSITIVE PATIENTS (CDPP) DATASET IN TERMS OF

CATEGORICAL FEATURES

Feature Description (Values)

ClassificationGroup Epidemiological criteria
(Case, Contact)

Outcome or
Outcome Modified

Admission outcome
(Recovery No ICU,
Recovery with history of ICU,
Death )

age 65 Age above 65? (Y, N)

Gender Patient gender (M, F)

Nationality Nationality (Sa, Eg, Sd, etc.)

SYMPTOMATIC Symptomatic? (Y, N)

HCW totalpop
Occupation (Medical staff,
military, others)
(0 - 2)

comorbidity Any comorbidity? (Y, N)

comorbidity or any comorbidity Any comorbidity? (Y, N)

morethan2comorbidities Two or more comorbidities?
(Y, N)

DM1 Diabetes? (Y, N)

HTN1 Hypertension? (Y, N)

CRF1 Chronic kidney disease? (Y, N)

cardiac1 Heart diseases? (Y, N)

asthma1 Asthma and
chronic lung disease? (Y, N)

cancer
immunodeficiency1 Immunodeficiency? (Y, N)

C lungdisease Lung disease? (Y, N)

Smoking Smoker? (Y, N)

Fever PRESENT Fever? (Y, N)

Cough PRESENT Cough? (Y, N)

SoreThroat PRESENT Sore throat? (Y, N)

RunnyNose PRESENT Runny nose? (Y, N)

Headacheonset Headache frequency (0 - 1 3)

Myalgiaonset Myalgia frequency (0 - 1 5)

GIsymptomsonset GI symptoms frequency (0 - 1 4)

SEVERITY Patients conditions (0, 3)

daily new cases, bed capacity, mask use, and pneumonia status.
The authors indicated the best coefficient determination for
AdaBoost, KNN, ANN, and SVM were 94.2%, 86.2%, 86.3%,
and 71.7%, respectively.

de Holanda et al. [4] aimed to forecast hospitalization
and mortality outcomes for COVID-19 patients in Brazil. The
purpose of the study is to support medical professionals and
administrators in their decision-making. The demographics,
medical history, immunization records, symptoms, and under-
lying illnesses of the patients were examined by the researchers
using data from a publicly available dataset located at the
OpenDataSus site. XGBoost, LR, AdaBoost, RF, SVM, KNN,
DT, and NB,14 are among the 14 ML techniques applied to the
dataset. In terms of hospitalization risk prediction, the gradient-
boosting model was better than the others, with an accuracy
rate of 71% and an AUC of 0.75.

III. MATERIAL AND METHODS

This section describes the utilized dataset and proposed
model along with the applied evaluation schema.

14Naı̈ve Bayes classifier
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TABLE II. DESCRIPTION OF THE 2019 CORONAVIRUS DISEASE
(COVID-19) POSITIVE PATIENTS (CDPP) DATASET IN TERMS OF

NUMERICAL FEATURES

Feature Description
LOSdays Length of stay in days

dayofExposureifknown Exposure period

Incubation Incubation period

HEART RATE Heart beats per minute

RESPIRATORY Number of breaths per minute

SBP Systolic blood pressure

DBP Diastolic blood pressure

SATURATION Oxygen level

WHITE CELLS White cell count

CREATININE Creatine phosphate count

LYMPHOCYTES Lymphocyte count of less than 1,500 per
1Mio. m3

PLATELET Platelet counts

NEUTROPHILS White blood cell type level

BLOOD Blood pressure

TABLE III. PROFILE INFORMATION OF THE 2019 CORONAVIRUS DISEASE
(COVID-19) POSITIVE PATIENTS (CDPP) DATASET

Feature Mean Std. dev. Feature values
(Min—Max)

LOSdays 7.71 9.59 (0—60)

comorbidities 0.47 0.87 (0—5)

age computed 36.59 15.57 (0—84)

dayofExposureifknown 8.5 6.3 (1—30)

Incubation 7.21 6.12 (1—30)

Temperature 37.05 2.37 (0—39.1)

HEART RATE 89.82 14.19 (63—125)

RESPIRATORY 19.87 2.48 (14—30)

SBP 125.12 17.22 (60—188)

DBP 75.03 10.46 (57—116)

SATURATION 96.68 3.63 (69—100)

WHITE CELLS 6.53 3.96 (0—17)

CREATININE 64.55 43.63 (0—145)

LYMPHOCYTES 24.43 13 (6.3—58.1)

PLATELET 246.52 92.53 (107—572)

NEUTROPHILS 48.68 32.52 (1.37—93.4)

BLOOD 12.5 16.3 (2—68)

A. Dataset

As an outcome of Saudi nationwide quantitative study of
RT-PCR15 tests, a private COVID-19 Positive Patients (CDPP)
dataset was aggregated. The CDPP dataset was curated under
several Saudi authorities, including the Global Center for Mass
Gatherings Medicine, the Saudi National Health Laboratory,
and the Saudi Health Electronic Surveillance Network16 [21,
22]. The Saudi authorities employed local electronic health
systems to facilitate essential indicators for health-care facility
readiness and epidemiological surveillance. These indicators
encompassed various aspects such as the health staff dashboard
for isolation hospitals, reports on blood samples and sample
carrier shipments, the supply dashboard, COVID-19 mortality
reports, workforce information, and the blood bank dashboard.

The dataset comprised 639 records, with 44 features that

15Reverse Transcription Polymerase Chain Reaction
16Site: https://hesn.moh.gov.sa/webportal/

included clinical and demographic information about symp-
tomatic and asymptomatic patients. There are three types of
variables in the dataset: Boolean (15), categorical (15), and
numerical (18). Table I, Table II, and Table III demonstrate an
overview of the datasets features and its profile, respectively.

Null values were observed in the dataset. Some features
do not have any null values, including ClassificationGroup,
Outcome or Outcome Modified, HCW totalpop,
Any comorbidity, Morethan2comorbidities, DM1, HTN1,
CRF1, Cardiac1, Asthma1, Cancer immunodeficiency1,
C lungdisease, Age 65, Gender, and SEVERITY. Other
features included null values with less then 70%, including
LOSdays (1.3%), Smoking (0.2%), Nationality (5.6%),
SYMPTOMATIC (57.7%), Fever PRESENT (38%), Cough
PRESENT (65.1%), Headacheonset (21.6%), Myalgiaonset
(21.6%), GIsymptomsonset (21.6%), DayofExposureifknown
(64.9%), Incubation (65.1%), and SATURATION (59.9%).
The remaining features included null values with more then
70% including SoreThroat PRESENT (77.6%), RunnyNose
PRESENT (85%), HEART RATE (82.2%), RESPIRATORY
(83.6%), SBP (82.3%), DBP (82.2%), WHITE CELLS
(94.7%), CREATININE (96.9%), LYMPHOCYTES (96.4%),
PLATELET (94.8%), NEUTROPHILS (95.6%), and BLOOD
(97.2%).

To visualize the distribution and intensity of data points in
the CDPP dataset, Fig. 1 presents a heatmap using the Spear-
man correlation coefficients. The observed values of DM1,
HTN1, CRF1, cardic1, and asthma1 were correlated with
comorbidity. No other significant correlations were observed.

B. Background

Boosting models were developed for handling classification
difficulties before being used for regression problems. Accord-
ing to [23], boosting methods focus on a small number of
weak classifiers (those that predict just marginally better than
random) that are merged (i.e., boosted) to create an ensemble
classifier with a lower generalized misclassification error rate
[24]. Ensemble learning uses the same learning algorithm
to train many predictive models, enhancing their accuracy
and reliability over single-model instances. It frequently helps
modelers understand the models fragility or reliance on specific
data points, which can aid in determining which fresh data sets
should be gathered and with what priority. Ensemble learners
often utilized Bagging, Boosting, and Stacking [25].

1) AdaBoost: The Adaptive Boosting (AdaBoost) method
creates a series of weak classifiers, with the best classifier
picked based on the current sample weights after each iteration.
Fig. 2 contains an overview of the AdaBoost method.

Samples classified inaccurately in the kth iteration receive
a higher weight in the (k + 1)st iteration, whereas samples
classified correctly receive a lower weight in the subsequent
iteration. Difficult data are given more weight until the clas-
sifier finds a model that correctly classifies them. As a result,
each iteration of the classifier must learn a new aspect of the
data, focusing on regions containing complex samples. For
each iteration, a stage weight is calculated based on the error
rate of the iteration [24]. The final hypothesis hf is a weighted
majority vote of the hypotheses of weak learner t where t is
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Fig. 1. Heatmap of correlation coefficient of the 2019 coronavirus disease (COVID-19) positive patients (CDPP) dataset features using the spearman coefficient.

Fig. 2. An Adaptive Boosting (AdaBoost) model assigns weights to weak
and solid classifiers and the distributions samples in a way that classifiers

are driven to focus on complicated data point-related observations.

the weight assigned to a hypothesis ht calculated through Eq. 1
[26]:

hf (i) =

{
1,

∑T
t=1(log

1
βt
)ht(i) ≥ 1

2

∑T
t=1 log

1
βt

0, otherwise
(1)

There are many advantages of the AdaBoost method,
including: (1) fast, simple, and easy classification method;
to create; (2) it has little to no configurable parameters; (3)
it does not require prior knowledge of the weak learners;
(4) it showes the model to be combined with other methods
for finding weak hypotheses; and (5) it can create valid
weak hypotheses consistently when enough data are provided.
Overall, it provides a set of theoretical guarantees. However,
when there are inadequate data, weak hypotheses are highly
complicated, or weak hypotheses are too fragile. Thus the
model may underperform [27].

2) Bagging: The Bootstrap Aggregation (Bagging) method
was one of the first ensemble approaches produced [28]. Fig. 3
depicts an overview of the Bagging model.

Bagging is a general approach to constructing an ensemble
model that employs bootstrapping in conjunction with regres-
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Fig. 3. A Bootstrap Aggregation (Bagging) model predicts a new data
sample d, and the forecasts are averaged to yield the final model.

sion models. By combining multiple models (i.e., learners)
trained on various subsamples of the same data set, Bagging
decreases the variance of predictions. The Bagging method
creates several data sets from the original data, trains various
classifiers on each data set, then integrates these models to
give a single response value [25]. Each model in the ensemble
learners is then used to predict a new sample, and the forecasts
are averaged to yield the prediction of the bagged model [24].
In the Bagging method, it consists of the following simple
steps as follows:

for l ∈ learners
leftmargin=0.8cm

generate a bootstrap sample of d ∈ dataset
train an unpruned tree l on the d

end

Bagging models provide various advantages over non-
Bagged models. First, through its aggregation process, Bagging
effectively minimizes the variance of a forecast. Another
benefit of Bagging models is they can produce their internal
estimate of predicted performance that matches well with
either cross-validation or test set estimates. Although Bagging
increases predictive performance for unstable models in most
cases, a Bagged model is substantially less interpretable than
a non-Bagged model [24].

C. Proposed Model

The current rapid and exponential increase in the number
of infected patients has necessitated an accurate estimation
of suitable ML models’ potential outcomes. In this study,
the authors investigated the ability to predict the severity
of the asymptomatic carriers and the possible death rates
using two advanced ML methods, AdaBoost and Bagging,
within Saudi Arabia. The model utilized the 2019 Coronavirus
Disease (COVID-19) Positive Patients (CDPP) dataset (refer to
Subsection III-A). The CDPP dataset is arranged utilizing these
classifiers and weak classifiers (DT, RF, and SVM) under the
test method of 10-fold cross-validation.

Base learners results are assessed by comparing the results
obtained from popular classifiers: AdaBoost-DT, AdaBoost-

Algorithm 1 AdaBoost method pseudocode.
Input: Dataset D = {(a1, c1) , (a2, c2) , · · · , (aN , cN )}, Base

Learner L, and number of learning iteration T
Output: H(a) = sign

∑T
t=1 αtht(a)

1 Initialize equal weights to all training samples wi =
1
N , i =

1, 2, 3, . . . , N
for t = 1 to T do

2 (a) Train a base learner ht from D using Dt to training
sample using wi

ht = L (D,Dt)
(b) Compute error of ht as

errt =

∑N

i=1
wiI(ht(ai) ̸=ci)∑N

i=1
wi

(c) Compute the weight of ht as
αt = log

(
1−errt
errt

)
(d) Set wi ← wi · exp [αtI (ht (ai) ̸= ci)]

3 end

Algorithm 2 Bagging method pseudocode.
Input: Base Learner L, Bootstrap Samples Xl, Xl =

{xt, rt}Nt=1
Output: Voted Best Base Learner g∗ (x)

4 Generate l = 1, 2, . . . , L with |Xl| = N by sampling 1
N with

replacement
Train L for Xl ⇒ gl (x)
Use voting (average or median with regression) of multiple
base learners
gbag (x) =

1
L

∑
gl (x)

RF, Bagging-SVM, Bagging-DT, Bagging-RF, and AdaBoost-
SVM. An overview of the AdaBoost method is presented
in Pseudocode1, and an overview of the Bagging method is
presented in Pseudocode 2. The execution time for all the
classifiers was not more than 0.05 seconds. Different execution
measures are utilized to assess the error rate and accuracy of
chosen classifiers. The models performance has been evaluated
in terms of accuracy based on the confusion matrix [29].

The study utilized ensemble model techniques, AdaBoost
and Bagging, in combination to distinguish between COVID-
19 and common viral features. These methods successfully
integrated multiple features, leading to a high level of accuracy
while reducing execution and training times. Additionally,
these methods are known to be less biased compared to
traditional ML methods.

The proposed model architecture consists of five main
phases, namely data acquisition, preprocessing, feature extrac-
tion, feature selection, and classification. Fig. 4 presents an
overview of the proposed model.

1) Dataset preprocessing: The Synthetic Minority Over-
Sampling Technique (SMOTE) [30], which oversamples the
synthetics in the minority class and duplicates the same entities
without adding new information, was applied to the dataset to
correct this imbalance. During training, the Outcome feature
served as both an independent and dependent variable. There
were 563 patients in each class after applying SMOTE.

Three classes made up the dataset: Death,Recovery No
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Fig. 4. Architecture of the proposed model to investigate and forecast the
incidence and the potential death risk of the asymptomatic carriers.

ICU, and Active ICU or Recovery with History of ICU.
The patient classifications were maintained as follows: 563
to the Recovery No ICU class, 65 to the Active ICU or
Recovery with History of ICU class, and 11 to the Death class.
Boolean variables with values of Y and N, respectively, include
Fever PRESENT, SoreThroat, and RunnyNose PRESENT. Y
is substituted with 1 and N with 0 notations to unify the
code system. An individuals age is represented by two entries,
1 and 2, in the field Age 65, for instance. 0 is used to
replace empty entries in the event the symptom is absent.
Binary code systems are used by other boolean variables such
as Any comorbidity, DM1, HTN1, CRF1, cardiac1, asthma,
Cancer immunodeficiency, and C lungdisease. The variables
median was substituted for missing values in numerical fea-
tures such as Smoking, LOSdays, Comorbidities, and more.
There were also missing values for categorical features such
as ClassificationGroup, Gender, Nationality, and Outcome. The
scales of other numerical features, such as Headacheonset,
GIsymptomsonset, and Myalgiaonset, varied and did not all
contribute equally to the models fit. To scale values on a
single scale, the MinMax scaler was applied to each variable.
The median of each variable was used in place of the cate-
gorical features, such as Myalgiaonset, GIsymptomsonset, and
Headacheonset to represent an individual read of a symptom
every two days. Other factors, namely, client name and InvID
were removed because these variables had no role in the

TABLE IV. A CONFUSION MATRIX SAMPLE

Actual Class
P N

Predicted Class
P TP FP

N FN TN

TABLE V. DESCRIPTION OF THE PERFORMANCE EVALUATION CRITERIA

Criteria Representation (%)
Accuracy Accuracy =

TP +TN
TP +TN+FP +FN

* 100

Precision Precision =
TP

TP +FP
* 100

AUC or
Recall AUC =

TP
TP +FN

* 100

F-score F score = 2 × Precision×Recall
Precision+Recall * 100

classification stage.

2) Experimental setup: Both ML methods, AdaBoost and
Bagging, were implemented using Python 3.7 in a web-based
on-demand service platform. The platform is referred to as
Google Colaboratory (Colab)17, and is designed for ML tasks
and data analysis. The necessary libraries, including Pandas,
sklearn, NumPy, Seaborn, SciPy, Keras, ELI5, and TensorFlow,
were included. The execution utilized a CPU with Intel Xeon
2.20 GHz, 1 GB of RAM, and 69 GB of storage on Google
Drive.

3) Performance evaluation metrics: Accuracy is critical
when predicting ICU admission based on various COVID-
19 symptoms and patients clinical features. To investigate the
accuracy of the suggested approach, the authors calculated the
confusion matrix parameters. Table IV shows a sample of the
confusion matrix.

TP , TN , FP , and FN are true positive, true negative,
false positive, and false negative values, respectively. TP

characterizes a data point that was anticipated to be in a
selected class, and it was found in it. TN describes a data
point that was not anticipated to be in a selected class, and it
was not found in it. FP describes a data point anticipated to be
in a selected class, but it was not found in it. FN characterizes
a data point that was not anticipated to be in a selected class,
and it was found in it.

The most commonly used performance metrics for classi-
fication problems include accuracy, precision, AUC or recall,
and F-score. Table V demonstrates the performance criteria.
Vidiyala [31] stated accuracy is the simple ratio between
the number of correctly classified points to the total number
of points, whereas precision is the fraction of the correctly
classified instances from the total classified instances. “F-score
is the harmonic mean of precision and recall.”. The area under
the curve (AUC) or recall is the ratio of the true positive
samples to the sum of the true positive and false negative
samples.

Errors metrics are used as quantitative measures to demon-
strate how predictive models perform. The authors calculated
four error metrics: Root Mean Squared Error (RMSE), Relative
Squared Error (RSE), Mean Absolute Error (MAE), and Rel-
ative Absolute Error (RAE). Table VI demonstrates the used

17Colab Site: https://colab.research.google.com/
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TABLE VI. DESCRIPTION OF THE ERROR METRICS

Criteria Title Representation (%)
Root Mean Squared Error
(RMSE) RMSE =

√∑n

i=1
(pi−ai)

2

n * 100

Relative Squared Error (RSE) RSE =

∑n

i=1
(pi−ai)

2∑n

i=1
(ā−ai)

2
* 100

Mean Absolute Error (MAE) MAE =

∑n

i=1
|pi−ai|
n * 100

Relative Absolute Error (RAE) RAE =

∑n

i=1
|pi−ai|∑n

i=1
|ā−ai|

* 100

TABLE VII. PERFORMANCE METRICS OF THE ML CLASSIFIERS,
ADABOOST, AND BAGGING METHODS

Classifiers Accuracy Precision AUC F-Score
AdaBoost-SVM 0.310 0.096 0.500 0

DT 0.882 0.883 0.814 0.839

AdaBoost-DT 0.884 0.885 0.824 0.845

Bagging-DT 0.945 0.945 0.912 0.923

SVM 0.949 0.950 0.912 0.937

Bagging-SVM 0.959 0.958 0.936 0.946

RF 0.966 0.967 0.936 0.953

Bagging-RF 0.972 0.972 0.953 0.961

AdaBoost-RF 0.974 0.974 0.955 0.964

evaluation criteria in this work. RMSE calculates the mean
magnitude of the error, where a is the actual target, and p
is the predicted target. RSE compares the sum of the models
errors to a simple predictor (using the average). MAE is the
average of all absolute errors. The square root of the relative
squared error is calculated by RAE.

IV. RESULTS

This section demonstrates the study results from the applied
ML classifiers and the used evaluation schema.

A. Performance of ML Methods

Using the accuracy, precision, AUC, and f-score values,
the authors evaluated the ML classifiers output. Table VII and
Fig. 5 contain an overview of the performance of the ML
classifiers was calculated.

Fig. 6 and Fig. 7 depict the accuracy and precision mea-
sures. Fig. 8 shows the AUC measure, and Fig. 9 depicts the
f-score measure. From Fig. 6 and Fig. 8, several ML classifiers,
namely, AdaBoost-RF, Bagging-RF, Bagging-SVM, Bagging-
DT, and AdaBoost-DT, applied for classification on the CDPP
dataset yielded accuracy of 97.4%, 97.2%, 95.9%, 94.5%, and
88.4%, respectively. AdaBoost-RF and Bagging-RF provided
accuracy of 97.4% and 97.2% and AUC value of 95.5%
and 95.3% greater than other variants of the CDPP dataset
by alleviating data inconsistencies, respectively. In contrast,
AdaBoost-SVM provided the worse accuracy of 30.9% and
AUC value of 50% of the CDPP dataset.

Table VIII presents a comparison between related COVID-
19 predictive models. These models attained an average ac-
curacy of 90.3%, whereas our proposed model provided an
accuracy of 97.4% when considering the used dataset.

TABLE VIII. COMPARISON OF THE PROPOSED MODEL WITH THE
RELATED MODELS

ML Architecture ML Methods Accuracy (%)
de Holanda et al. [4] Ensemble learners 71

Li et al. [20] Ensemble learners 84

Mazloumi et al. [17] Ensemble learners 91.6

Soui et al. [14] Ensemble learners 92.88

Abegaz and Etikan [5] AdaBoost 94.2

Darici [15] AdaBoost 94.5

Solayman et al. [19] CNN-LSTM 96.34

Ghandorh et al. [32] Ensemble learners 97.93

Proposed approach AdaBoost and
Bagging 97.4

TABLE IX. P-VALUES OF THE ML CLASSIFIERS AGAINST THE
ADABOOST AND BAGGING-METHODS

ML Methods t-test p-value
RF - AdaBoost-SVM 8.132 0.00004

SVM - AdaBoost-SVM 7.327 0.0001

DT - AdaBoost-SVM 5.895 0.0004

RF - AdaBoost-DT 3.215 0.0123

DT - AdaBoost-RF -2.931 0.0190

DT - Bagging-RF -2.609 0.0312

DT - Bagging-SVM -2.152 0.0636

SVM - AdaBoost-RF -2.041 0.0756

SVM - AdaBoost-DT 1.811 0.1078

RF - Bagging-SVM 1.646 0.1383

RF - Bagging-DT 1.595 0.1495

SVM - Bagging-RF -1.569 0.1553

DT - Bagging-DT -1.380 0.2050

SVM - Bagging-SVM -0.785 0.4553

RF - Bagging-RF 0.368 0.7227

DT - AdaBoost-DT 0.172 0.8678

RF - AdaBoost-RF 0.000 0.9997

SVM - Bagging-DT 0.000 0.9998

Using the t-test while examining possible significant dif-
ferences by the ML classifiers, the authors calculated p-
values among a set of weak ML classifiers, namely the RF,
DT, and SVM methods, against the AdaBoost and Bagging
methods. Table IX shows the p-values obtained. By comparing
the RF, SVM, and DT methods against the AdaBoost-SVM
method, the p-value was less than 0.05, indicating a significant
difference and resulting in the rejection of the null hypothesis.
Comparing the RF method against the AdaBoost-DT method,
with a p-value below 0.05, there is clear evidence of a signifi-
cant difference, leading to a rejection of the null hypothesis. In
addition, when the authors compared the DT method against
the AdaBoost-RF and Bagging-RF methods, the authors found
a significant difference, as the p-value fell below 0.05, thereby
leading to the rejection of the null hypothesis.

By comparing the DT, RF, and SVM methods against
the Bagging-SVM method, the p-value was larger than 0.05,
indicating insufficient evidence to reject the null hypothesis
and suggesting no significant difference. Comparing the RF,
DT, and SVM methods against the Bagging-DT method, the
p-value exceeding 0.05 implies a lack of substantial evidence
to reject the null hypothesis, suggesting the absence of a
significant difference. Moreover, when the authors compared
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Fig. 5. Performance metrics of the ML classifiers, AdaBoost, and Bagging methods.

97
.4
4%

97
.2
4%

96
.6
5%

95
.8
6%

94
.8
7%

94
.4
8%

88
.3
6%

88
.1
7%

30
.9
7%

Accuracy

Fig. 6. Accuracy scores of the applied ML classifiers, AdaBoost and
Bagging methods.

the SVM and RF methods against the AdaBoost-RF method,
the authors found insufficient evidence exists to reject the
null hypothesis based on the p-value being larger than 0.05,
implying no significant difference.

B. Error Rates

The accuracy of the ML classifiers was ensured compared
to the evaluation of classifier error rates by Table X or Fig. 10.
In Fig. 11 – Fig. 14, the different error rates obtained for
different classifiers are shown, respectively. Using the RMSE,
MAE, RAE, and RSE rates, was calculated the error rate of
each predictor.

The RMSE rate computes the median value of the absolute
differences between observed and predicted values. MAE is
a statistical method used to determine the average absolute
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Fig. 7. Precision scores of the applied ML classifiers, AdaBoost and
Bagging methods.

TABLE X. AN OVERVIEW OF DIFFERENT ERROR METRICS GIVEN BY
THE ML CLASSIFIERS, ADABOOST, AND BAGGING METHODS

Classifiers RMSE MAE RAE RSE
AdaBoost SVM 1.32 1.74 1.55 1.63

DT 0.65 0.43 0.33 0.81

AdaBoost DT 0.63 0.40 0.31 0.78

Bagging DT 0.44 0.20 0.15 0.55

SVM 0.42 0.18 0.14 0.52

Bagging SVM 0.39 0.15 0.12 0.48

RF 0.37 0.13 0.10 0.45

Bagging RF 0.33 0.11 0.08 0.41

AdaBoost RF 0.32 0.10 0.08 0.40

difference between expected and observed values, where each
differences weight remains constant. RAE and RSP rates are
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equivalent, determined by dividing MAE by simple classifier
error received. A lower RAE value enhances prediction accu-
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Fig. 11. Root Mean Squared Error (RMSE) rate of the applied ML
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racy. The RSP rate offers more accurate results by normalizing
data values obtained from simple classifiers, providing the
squared error of forecasts relative to the mean of each data
value.

From Fig. 11, the authors can see the AdaBoost-RF and
Bagging-RF methods gave RMSE rates of 32%—33.2% with
accurate classification of COVID-19 ICU recoveries, death,
and recoveries, whereas the AdaBoost-SVM method indicated
an RMSE rate of 131.8% with inaccurate classification. Other
ML models, namely the Bagging-SVM, Bagging-DT, and
AdaBoost-DT methods, fell between the RMSE rates of 39%
and 63% of the remaining ML classifiers.

From Fig. 12, the AdaBoost-RF and Bagging-RF methods
gave the lowest MAE value at 10% and 11%, whereas the
AdaBoost-SVM method gave a 173.8% MAE value. Other
ML models, namely the Bagging-SVM, Bagging-DT, and
AdaBoost-DT methods, fell between 15.4% and 40% MAE
values of the remaining ML classifiers.

Fig. 13 shows the AdaBoost-RF method attained 7.6%,
a superior RAE value, whereas the AdaBoost-SVM method
showed a worst RAE value of 155%. Other ML models, the
Bagging-SVM, Bagging-DT, and AdaBoost-DT methods, fell
between 11.8% and 31.5% RAE values of the remaining ML
classifiers.

As shown in Fig. 14, the AdaBoost-RF and Bagging-
RF methods held an RSE rates of 39.5% and 41%, whereas
the AdaBoost-SVM method maintained RSE rate of 162.6%.
Other ML models, such as the Bagging-SVM, Bagging-DT,
and AdaBoost-DT methods, fell between RSE rates of 48.4%
and 78.1% of the remaining ML classifiers.

C. Confusion Matrices

To thoroughly break down the proposed models perfor-
mance and identify whether a ML model might be biased
toward a specific class, the authors calculated the confusion
matrices for the Bagging-DT, Bagging-SVM, Bagging-RF, and
AdaBoost-RF methods. Fig. 15 - Fig. 18 exhibit the confusion
matrices for Bagging-DT, Bagging-SVM, Bagging-RF, and
AdaBoost-RF methods, respectively.
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Fig. 15. Confusion matrix computed from the Bagging-DT method.

Fig. 16. Confusion matrix computed from the Bagging-SVM method.
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Fig. 17. Confusion matrix computed from the Bagging-RF method.

Fig. 18. Confusion matrix computed from the AdaBoost-RF method.
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Fig. 19. Feature importance computed from the Bagging-DT method that was fitted to the dataset.

Fig. 20. Feature importance computed from the Bagging-SVM method that was fitted to the dataset.

Fig. 21. Feature importance computed from the Bagging-RF method that was fitted to the dataset.
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Fig. 22. Feature importance computed from the AdaBoost-RF method that was fitted to the dataset.

D. Feature Importance

From Fig. 19 – Fig. 22, the authors can see the feature
importance of the dataset. From Fig. 19, Nationality Indonesia
is the most important feature among all the dependent fea-
tures, whereas some diseases (e.g., cardiac1, CRF1, and
C lungdisease) are the least important features of the dataset.
From Fig. 20, LOSdays is the most important feature among
all the dependent features, whereas some nationalities (e.g.,
Nationality Canada, Nationality British Indian Ocean Terri-
tory) are the least important features of the dataset. From
Fig. 21, HCW totalpop is the most important feature among all
the dependent features, whereas LYMPHOCYTES is the least
important feature of the dataset. From Fig. 22, HCW totalpop
is the most important feature among all the dependent features,
whereas Nationality Tanzania is the least important feature of
the dataset.

V. DISCUSSION

The findings in this study emphasize the importance of
advanced ML in health-care decision-making for better predic-
tive capabilities and resource allocation. Traditional methods
have trouble gathering complex health-care data patterns, and
this was especially true during COVID-19. ML methods can
help health-care practitioners extract insights and construct
predictive models, identify patients who need extra support,
optimize resource allocation, reduce readmission rates, and
improve patient care quality.

This study successfully validated the findings of a previous
investigation [32], bringing greater credence to its conclu-
sions. The previous study employed the same dataset features,
approach, and assessment schema, and included a variety
of weak classifiers including, NC,18 KNN, SVM, DT, RF,
ANN, and Ensemble learners methods. By reproducing these
experimental settings, the current study not only confirmed
earlier findings but also reinforced their robustness and gener-
alizability.

Several factors can be attributed to the limitations of the
study. Firstly, the used dataset was relatively small, due to

18Nearest Centroid method

not only its limiting scope to a single geographical territory
but also it was intended for health-care facility readiness
and epidemiological surveillance. Moreover, there were a few
administrative challenges that had an impact on the curat-
ing of the dataset. These challenges include: 1) insufficient
systematic procedures regarding the collection, storage, and
sharing of medical data, 2) applying data privacy and security
measures to protect sensitive and personally identifiable patient
information, 3) applying data standardization processes were
necessary to consolidate inputs from different sources that
used diverse data formats and coding systems, and 4) ensuring
data completeness to rectify potential errors in data entry
and inconsistent recording practices. As a result of these
challenges, different methods or research groups may utilize
the data to varying extents, affecting its applicability and
reliability.

To more fully understand the COVID-19 implications,
there are still many missing puzzles. In China, at least 5%
of COVID-19 patients develop severe illness and become
critically sick, with critically ill patients having an ICU death
rate of 50%—60%. Early detection and treatment of warning
symptoms can minimize mortality and increase cure rates [20].
Specialized tests, such as lactate dehydrogenase level and total
blood count, are utilized in developing countries like Iran
to assess patient deterioration. Although these tests are not
specific, they can be used in combination with RT-PCR tests,
the most commonly used test for COVID-19 identification, to
improve accuracy [17]. In addition, individuals infected with
COVID-19 are more prone to develop neurological and mental
diseases such as dementia and psychosis, even two years after
diagnosis. Adults had a greater risk of mental diseases or anx-
iety resulting from COVID-19; however, for those with other
respiratory infections, this risk decreased to baseline levels
after two months. Even two years after the first infection, the
risk of cognitive damage remained significant six months after
infection. Oxford University researchers discovered mental
problems, strokes, and dementia in COVID-19-infected people.
The Lancet journal released research that revealed a worldwide
increase in serious depression and anxiety disorders [18].

Studying the impact of the illness on age extremes (elderly,
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pediatrics) revealed special attention should be given to the
elderly. The epidemiological profiles, clinical characteristics,
risk factors, and final outcomes for COVID-19 cases have
been extensively documented. One of the early studies showed
young men are the most affected and that cough, fever, and
sore throat were the most dominant clinical manifestations
of the disease [21]. Nevertheless, another recent study doc-
umented risk factors associated with unfavorable outcomes in
COVID-19 cases. This included male gender, elderly (above
age 60), and specific comorbidities (cardiac and chronic res-
piratory diseases) [33, 34, 35].

To manage the negative impact of COVID-19 on Saudi
Arabia’s territories, many technological and administrative
initiatives have taken place. First, a nationwide plan was
developed following WHO-suggested frameworks to delay the
recording of the first case in the country. The plan included (1)
structuring a ministerial committee to make proper decisions
and monitor their implications, (2) sending messages related
to the disease via different media platforms and engaging the
community, (3) deploying rapid response teams and disease
surveillance, (4) controlling points of entry, (5) escalating lab-
oratory capabilities, (6) sharing protocols and guidelines, (7)
providing COVID-19 cases with management and establishing
surge capacity plans, (8) providing logistic support, and (9)
ensuring health-care services for non-COVID-19 cases [36]. In
addition, the implementation of the eight pillars of response
has been carried out by Saudi Arabia by the Operational
Planning Guidelines to Support Country Preparedness and
Response provided by the WHO. This implementation includes
the integration of digital technologies to enhance the effective-
ness of preparedness and response efforts. These technologies
have been widely implemented on a global scale to address
a range of pandemic-related objectives, such as preventative
measures and contact tracing efforts [37].

To make it more comprehensive, effective, and integrated,
many Saudi health-care-related projects hava prioritized in-
novation, financial sustainability, illness prevention, and in-
creased access to health care. For instance, SEHA virtual
hospital launched in 2022 integrating over 150 institutions with
over 30 specialized health services [38].

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE

Using the AdaBoost and Bagging methods, the authors
investigated the utilization of the both ML models to correctly
predict ICU rates in COVID-19 patients. The models have a
high degree of accuracy, sensitivity, and positive predictive
value. The models generated using AdaBoost-RF and Bagging-
RF demonstrated the highest levels of precision among all the
models, with an accuracy of 97.4% and 97.2% respectively.
These models could assist health-care institutions in identify-
ing who is at a higher risk of readmission, allowing for more
targeted interventions and improved patient outcomes. Similar
to previous research, this work demonstrates the feasibility of
creating, validating, and utilizing ML predictive models for
forecasting ICU admission in cases of COVID-19 infection.
The models have the potential to be integrated into decision-
support systems for semi-autonomous diagnostic equipment,
enabling them to screen and diagnose potential outbreaks
quickly. Subsequent research endeavors should focus on the
development of ML prediction models aimed at identifying

individuals who are susceptible to experiencing severe conse-
quences as a result of influenza, emphysema, or pulmonary
fibrosis.
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