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Abstract—Recently, software products have played a vital role
in our daily lives, having a significant impact on industries and
the economy. Software product line engineering is an engineering
strategy that allows for the systematic reuse and development
of a set of software products simultaneously, rather than just
one software product at a time. This strategy mainly relies on
features composition to generate multiple new software products.
Unwanted feature interactions, where the integration of multiple
feature implementations hinders each other, are challenging
in this strategy. This leads to performance degradation, and
unexpected behaviors may happen. In this article, we propose an
approach to detect and visualize all feature interactions early. Our
approach depends on an unsupervised clustering technique called
formal concept analysis to achieve the goal. The effectiveness of
the proposed approach is evaluated by applying it to a large
and benchmark case study in this domain. The results indicate
that the proposed approach effectively detects and visualizes all
interacted features. Also, it saves developer efforts for detecting
interacted features in a range between 67% and 93%.
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I. INTRODUCTION

Nowadays, software products have played a vital role
in our daily lives, having a significant impact on industries
and the economy. Software products are always described
by their provided features. A feature is often defined as a
specific software functionality that offers a service to end users
(different from a feature in machine learning), often identified
by a name and supplemented with a description [33]. In the
context of software development, a feature can be implemented
in software by a set of various elements belonging to dif-
ferent levels of abstraction (e.g., source code, requirements,
architectural components, etc.) [9]. We refer to this set of
elements as artefacts. Also, the concept of feature plays a
pivotal role in software product line engineering (SPLE) which
is an engineering strategy to support the production of a family
of software products at the same time distinguished by their
provided features [25]. This family is called the software
product line (SPL) and it is the final output of SPLE.

SPLs are seldom built from scratch [21]. The most com-
monly used process to build SPLs is the extractive process [6]
[19] [16]. In this process, the implementations of an already
existing family of software variants, developed by clone-and-
own, are reused to build SPL’s core assets [34]. As features are

important to build SPLs, the essence of the extraction process
is feature location. Locating features in software variants aims
to find source code artefacts that implement each feature,
which is out of the scope of this article [23]. To build SPL
from these extracted features, their implementations must be
compatible and integrate with one another. Otherwise, the
performance of the generated products will be degraded, and
unexpected behavior may occur. This is known as unwanted
feature interactions [13], and it occurs when multiple feature
implementations are combined in a new product, and their
behaviors are unexpected even if the implementation of each
individual feature is working correctly and independent in their
domain. This kind of feature interaction at the source code
level is known in the literature as structural interaction or
implementation dependency [19] [17]. However, other forms
of feature interactions do not manifest as dependencies such as,
logical dependency or domain dependency [17]. In this study,
the implementation dependency within extracted features of
product variants is only addressed as it exists mostly in
SPL [18].

The implementations of extracted features from product
variants are overlapped in some classes or methods as features
interact in software [19] [13] [10]. These overlapped artifacts
(shared artefacts) do not represent the core implementations of
features but they are added to allow two or more features to
work as a combination in their hosted software variants. When
these shared artifacts are not properly isolated or encapsulated,
changes made to one feature may inadvertently affect other
features [10], leading to feature interaction. Also, when these
features (with shared artefacts) are combined in a new software
product in SPL, these features will not operate as expected. For
example, ArgoUML is a well-known open-source software for
UML modeling. The original source code of ArgoUML is re-
engineered to create SPL called ArgoUML-SPL1 by extracting
optional features from the source code of ArgoUML [22]
[8]. During the extraction process, there are features with
shared source code classes (for example, State feature and the
Activity feature). They share the following classes and others:
ModelElementInfoList, FigStateVerte. The detection of feature
interactions becomes increasingly difficult as the number of
extracted features in the core assets grows. The number of
feature interactions is exponential in relation to the number of
features [2].

1https://github.com/marcusvnac/argouml-spl
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In the literature, there are proposed approaches to de-
tect feature interactions during or after the implementation
phase [4] [27] [3] [31]. However, these approaches rely on a
model checker, which poses challenges in practical application
and lacks scalability to actual SPLs [14]. Other approaches
were proposed to detect unwanted feature interactions late
(on testing) in the development process after the product has
already been implemented [30]. Therefore, we propose in
this article an approach to detect and visualize all feature
interactions in extracted core assets from implementations of
software variants early. Here, early means that the detection
process is performed before the derivation of SPL’s products
from the core assets. Our approach depends on an unsupervised
clustering technique called Formal Concept Analysis (FCA) to
achieve the goal [7]. The main contribution of this work is to
provide insight for experts about shared implementation among
extracted features and exclude it during the derivation process
of SPL from the core assets. Such implementation does not
have a direct correspondence to any feature [13].

To assess the effectiveness of the proposed approach, we
applied it to a large benchmark case study within this field,
known as ArgoUML-SPL. The core assets of this SPL are
built using the extractive approach via reusing already existing
software variants. The results indicate that the proposed ap-
proach effectively detects and visualizes all interacted features
in ArgoUML-SPL’s core assets. Also, the proposed approach
saves developer efforts for detecting interacted features in a
range between 67% and 93%.

The remaining work in this article is organized into four
main sections. Section II presents our motivational example
and background. Section IV details the proposed approach.
Section V presents the obtained results with a discussion.
Related work is listed in Section III. Finally, the article is
concluded in Section VI.

II. MOTIVATION EXAMPLE AND BACKGROUND

A. Motivation

In this subsection, we present the motivation of our pro-
posal. To simulate product variants, we use three products
of a simple software product line called Drawing Product
Line(DPL) [11]. This SPL is only used for clarification pur-
poses. Each product is a subset of a combination of the
following features. DPL feature is to handle a drawing area,
Line feature is to draw lines, Rect feature is to draw rectangles,
Color feature is to select a color, Fill feature is to fill the
shapes, and Wipe feature is to clean the drawing area.

Fig. 1 shows the representation of selected variants in terms
of feature and source code views. The left Venn diagram dis-
plays the feature view of these product variants. For example,
the pink circle represents ProductVariant2 (PV2) with three
features: Fill, Line, and DPL. The right Venn diagram displays
the source code view of these variants. For example, the pink
circle represents PV2 with four sets of source code artefacts
group (AG): AG1, AG2, AG5, and AG6. The links between
feature and source code views displayed in the figure are
implementation links. For example, the source code artefacts
group 4 (AG4) implements the Color feature.

It is worth noting that most features in this mapping
between feature-source code views are directly linked to or
associated with an AG. This allows us to speculate that these
AGs represent the core implementations of their corresponding
features. In our motivation example, the core implementation
of the Color feature is AG4. However, AG2 does not have a
direct implementation with any feature. This is because AG2
is not a feature-specific implementation but it is shared source
code artefacts between Line and Rect features. This shared
implementation between features causes unwanted feature in-
teractions when these features are combined together to create
a new software product in an SPL. Usually, this type of inter-
action is not easy to detect by analyzing the implementation
of each feature separately. Especially when these features are
not developed from scratch but they are reused and collected
from product variants over time. Therefore, in this article, we
propose to use FCA to automatically detect and visualize such
feature interactions in SPL’s core assets before building new
products from such features.

B. Background

This section introduces software product line engineering
(SPLE) and formal concept analysis (FCA).

1) Software Product Line Engineering: It is a systematic
reuse mechanism to support the development of multiple
similar software products from common core assets [24]. A
core asset is a reusable software artefact that includes source
code, features, architectural components, test cases, etc. These
artefacts are linked together to support the automatic derivation
of new SPL members from the core assets. The development
life cycle of SPL consists of two phases: domain engineering
and application engineering phases. Fig. 2 shows these phases.

Domain Engineering: It is the first phase in the SPL
life cycle that aims to develop SPL’s core assets and define
commonality and variability in terms of the provided features
by SPL members. These commonalities and variability are
managed by the feature model. The assets include any de-
velopment artefacts. Typically, the core assets are not built
from scratch but they are reused from already existing software
variants developed using ad-hoc reuse techniques, such as
clone-and-own. One of the important assets that can be reused
from these variants are features and their implementations
which are always available. This good practice to build core
assets allows to reduce time to market and maximize the return
on investment. In the literature, this practice is called extractive
approach [32].

Application Engineering: This is the second phase in SPL’s
lifecycle which aims to derive software products from the
established core assets in the previous phase. These products
are called SPL. The derivation process is performed automati-
cally by exploiting traceability links among core assets. Also,
the derivation process exploits commonality and variability in
these assets to provide multiple products to meet the different
needs of customers at the same time.

2) Formal Concept Analysis(FCA): Formal Concept Anal-
ysis (FCA) is a lattice-based method employed for data anal-
ysis and knowledge representation [12]. In our case, FCA is
utilized as an unsupervised clustering algorithm, identifying

www.ijacsa.thesai.org 1355 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

Fig. 1. Shared feature implementations problem.

Fig. 2. Software product line phases [24].

significant clusters of objects with shared attributes. It accom-
plishes this by analyzing and structuring data according to
the relationships between objects and attributes. It is currently
applied to perform various tasks: valuable insights in software
engineering, requirements analysis, software understanding,
etc. To easily understand the FCA technique, it is illustrated
with a familiar example. Consider a list of Mexican dishes as
well as a list of ingredients for each dish, as shown in Table I.
In this representation, dishes are listed in the rows, while the
columns contain the respective ingredients for each dish.

Definition 1 (Formal Context): "A formal context is a 3-
tuple K = (O,A,R) where O and A are two sets, and R ⊆
O × A is a binary relation. Elements of O are called objects
and elements of A are called attributes. A pair (o, a) of R
means the object o owns the attribute a" [7].

The formal context corresponding to Mexican dishes and
their ingredients is shown in Table II. As shown in this table, it
shows the binary relationships between Mexican dishes and the
ingredients they contain. Rows (objects) are dishes, columns
(attributes) are ingredients, and cross marks (binary relations)
determine which dishes own which ingredients.

For a given subset of objects M ⊆ O, then M ′ = {a ∈
A|∀o ∈ M : (o, a) ∈ R} is the set of common attributes.
Also, for a given subset of attributes B ⊆ A, then B′ = {o ∈
O|∀a ∈ B : (o, a) ∈ R} is the set of common objects. For
example, assume that M = {Enchiladas, Quesadillas, Tacos}
from Table II, the set of common attributes is M ′ ={chicken,
cheese, corn-tortilla}. In the same way, if B = ({pork, rice})
then, B′ = {Burritos}.

Definition 2 (Formal Concept): "Let K = (O,A,R) be a
formal context. A concept is a pair (E, I) such that E ⊆ O
and I ⊆ A. E = {o ∈ O|∀a ∈ I, (o, a) ∈ R} is the concept
extent and I = {a ∈ A|∀o ∈ E, (o, a) ∈ R} is the intent of
the concept. We denote by Ck the set of all concepts of K" [7].

For example, ({Quesadillas, Tacos, Enchiladas}, {cheese,
chicken, corn-tortilla}) is a concept, while ({ Nachos },
{cheese, vegetables, guacamole, beans}) is not, because ({
Nachos})’ = {cheese, vegetables, guacamole, beans} while (
{cheese, vegetables, guacamole, beans})’ = {Nachos, Burritos}.

Definition 3 (Concept Specialization Order): "Let K be a
formal context, and let C1 = (E1, I1) and C2 = (E2, I2) be
two formal concepts of CK . C1 is a specialization of C2,
denoted by C1 = (E1, I1) ≤s C2 = (E2, I2) if and only if
E1 ⊆ E2 (and equivalently I2 ⊆ I1). C1 is called a sub-
concept of C2. C2 is called a super-concept of C1" [7].

For example, ({Burritos}, {beans, rice, beef, cheese, gua-
camole, chicken, pork, vegetables, sour-cream, lettuce, flour-
tortilla}) is a sub-concept of ({Burritos, Nachos}, {cheese,
vegetables, beans, guacamole}). This is deduced by the defi-
nition of specialization order; one obvious property is that a
sub-concept has (inherits top-down) the qualities of its super-
concepts, but a super-concept has (inherits bottom-up) the
objects of its sub-concepts.

Definition 4 (Concept Lattice): "Let CK be the concept
set of the formal context K. The concept lattice of K is the
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TABLE I. MEXICAN DISHES AND THEIR INGREDIENTS

Mexican dish Ingredients

Burritos chicken, beans, rice, cheese, beef, pork, vegetables, guacamole, sour-cream,
lettuce, and flour-tortilla

Enchiladas chicken, cheese, sour-cream, and corn-tortilla

Fajitas vegetables, cheese, guacamole, chicken, beef, sour-cream, lettuce, and flour-
tortilla

Nachos vegetables, beans, cheese, and guacamole

Quesadillas chicken, corn-tortilla, beef, cheese, and flour-tortilla

Tacos beans, cheese, lettuce, corn-tortilla, chicken, beef, and flour-tortilla

TABLE II. A FORMAL CONTEXT FOR MEXICAN DISHES
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Quesadillas X X X X X

Enchiladas X X X X

Nachos X X X X

Fajitas X X X X X X X X

Tacos X X X X X X X

concept set CK provided with the partial order ≤K , and is
denoted by (CK , ≤K)" [7].

Fig. 3 displays the concept lattice corresponding to the
formal context of Table II. This lattice is known as the Galois
Sub-Hierarchy (GSH). It is a set of free empty concepts, each
with at least one object or one attribute. Each concept in this
lattice consists of three ordered counterparts: concept name,
intent, and extent. Additionally, by examining the lattice, we
can unveil numerous insights about these dishes, including
their relationships with one another. For instance, concerning
the presented Mexican dishes:

• Because cheese appears as the top concept’s intent
(Concept_10), which encompasses all the dishes in
its extent, it can be deduced that all Mexican dishes
contain cheese.

• When a concept has just Mexican dishes without
ingredients, it signifies that these dishes lack specific
ingredients and instead share common ingredients
with dishes from other concepts. In Concept_3, for in-
stance, Nachos inherits guacamole, vegetables, beans
and cheese from other concepts.

• When a concept has ingredients and no dishes, it
implies that these dishes are not exclusive to any
particular Mexican dish; rather, they are shared by
other dishes from different concepts. In Concept_9,
for example, beans is shared between Nachos, Tacos
and Burritos dishes.

III. RELATED WORK

In the literature, unwanted feature interactions were studied
in both SPL context and in single software products. Since
we are interested in feature interactions in SPL, we present
in this section only proposed approaches that detect unwanted

Fig. 3. GSH-Lattice for the formal context in Table II.

feature interactions in SPL and exclude studies addressing such
interactions in single software products.

Feature interaction approaches are classified into two cat-
egories based on the lifecycle phase when the feature interac-
tions are detected [31]: before actual coding and source code
level. The former detect feature interactions without the need to
deal with the source code (focused on design, and requirements
levels) [5]. However, the source code approaches detect such
interactions using the source code. In this section, we present
only studies in the second category since they are the closest
to our topic in this article.

In [27], Scholz et al. proposed to use design by contract
to detect feature interactions. The design-by-contract strategy
includes preconditions, postconditions, and class invariants to
specify the expected behavior of methods and classes. This
strategy is performed using Java Modeling Language (JML) to
specify the behavior of methods and classes, and then a model
checker to identify unwanted interactions. In [3], Apel et al.
proposed an approach based on feature-based specifications
and verification to detect feature interactions. The feature
implementations are annotated by feature specifications. Then,
a model checker is used to automate the detection of feature
interactions. Another similar approach was proposed by Apel
et al. [4]. They provide a tool called SPLVERIFIER which is
a model-checking tool for C-based and Java-based SPL. The
above-mentioned approaches use a model checker, which is
difficult to apply in practice and is not scalable to actual SPLs.
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Also, these proposed approaches depend on prior knowledge
about features, such as specifications, that are not always
available for extracted features from legacy software variants.

Other studies [29] [20] [26] were proposed to parse the
source code to identify feature interactions. Abstract syntax
trees (ASTs) were built using different parsers: TypeChef,
Java Compiler Tree API, and Fuji tool. These trees are used
to compute dependencies among features. Schulze et al. [28]
proposed a technique for analyzing feature co-changes based
on association rule mining. This helps to identify features
that commonly change together and to extract implicit feature
dependencies. Korsman et al. [15] proposed a Python-based
tool for automated reasoning of structural feature interactions
in preprocessor directives of programs written in C and C++.

These studies do not support the detection of shared or
common source code artefacts among extracted features from
existing software variants. Also, they do not pay attention
to classify interacted features into mandatory and optional
interacted features for priority purposes. This is because these
studies and other approaches presented in this section assume
that features and their implementations are developed from
scratch proactively or reactively.

IV. PROPOSED APPROACH

This section introduces our proposed approach for identi-
fying and visualizing interacting features within the extracted
core assets of the SPL. Initially, we provide a broad overview
of the proposed approach. Subsequently, we delve into the
specifics of each step in subsequent subsections.

A. An Overview

Fig. 4 gives an overview of the proposed approach. As
shown in this figure, the approach takes a list of extracted
features (from software variants) with their corresponding
implementing artefacts. Then this input goes through four se-
quential steps to detect and visualize the interacted features. In
the first step, these feature implementations are parsed to create
a Feature-Artefact matrix. Then, a GSH-lattice corresponding
to this matrix is built in the second step. In the third step, this
lattice is reversed to detect the interacted features. Finally, the
interacted features are categorized into mandatory or optional
features based on the available feature model of those core
assets.

B. Parsing Feature Implementations

In this step, the source code artefacts implementing each
feature are parsed. These artefacts can be any level of gran-
ularity (fine and coarse granularity): package, class, methods,
etc. This depends on the implementation artefacts for features.
In this study, we assume that features are implemented by
coarse granularity, such as classes and methods, since the
proposed approach is evaluated using large case studies. Using
the Eclipse Java Development Tool (JDT), the implementing
source code of each feature is statistically analyzed to extract
these classes and methods.

The output of this step is stored in a matrix called Feature-
Artefact matrix. Rows represent source code artefacts, columns
represent features, and cross signs refer to which artefact

implements which feature. Table III is an example of such
a matrix from our motivation example.

C. Building GSH Lattice of Features and Source Code Arti-
facts

After parsing the implementing artifacts for each feature,
we rely on FCA in this step for detecting and visualizing
shared implementing artifacts among features. We employ
FCA because it enables the identification and visualization
of source code artifacts shared among all features, subsets of
features, and those exclusive to each feature. This capability
arises from the hierarchical organization of lattice concepts.

To achieve the goal of this step, we use the Feature-
Artefact matrix produced in the previous step (see Table III)
as a formal context for FCA. Features and their implementing
artifacts are attributes and objects in this formal context,
respectively. The relation between a feature (Line) and a source
code artifact (A2) refers to that this feature is implemented
by this artifact. Using this formal context definition, we can
generate a concept lattice comprising concepts composed of a
set of source code artifacts shared by a set of features. Fig. 5
illustrates the resulting concept lattice, which represents a
hierarchical arrangement of source code artifacts and features.
In this lattice, each concept inherits its intents (features) from
its ascendants (super-concepts) and its extents (source code
artifacts) from its descendants (sub-concepts). Leveraging this
lattice and FCA definitions (refer to subsection II-B2), we
derive the following observations:

- The concept lattice includes isolated and linked con-
cepts. The linked concepts together form a sub-
hierarchy. The lattice may include more than one
hierarchy. In Fig. 5, Concept_5 is an example of an
isolated concept while the set consisting of {Con-
cept_2, Concept_3, Concept_0} is an example of a
sub-hierarchy.

- Each isolated concept in the lattice has non-empty
intent and extent (For example Concept_5). The in-
tent contains always a single feature and the extent
represents the implementing source code artefacts for
that feature. This implementation is the core imple-
mentation of the feature.

- The extent of each concept with empty intent in the
sub-hierarchy (Concept_2) does not represent a core-
feature implementation but it represents shared source
code artefacts among features located in the intents
of upper concepts (Concept_3 and Concept_0) in the
same sub-hierarchy.

D. Detecting Interacting Features

This step aims to identify interacted features by traversing
this produced lattice. The GSH lattice produced in the pre-
vious step visualizes interacted features by clustering shared
source code artefacts among them. To end this, we propose
Algorithm 1 to describe how to traverse the lattice.

In the beginning, the algorithm visits each concept in
the lattice. Each concept with empty intent (cpte) (such as
Concept_2 in Fig. 5) is the target and stored in a set called
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Fig. 4. An overview of the proposed approach.

Fig. 5. GSH-Lattice for the formal context defined in Table III.

CEI while other concepts are discarded since they are isolated
concepts (lines 1–5). The extent of each concept in CEI
represents shared source code artefacts among two or more
features. These features are interacted features. To identify
these features, we rely on the depth-first search algorithm
(DFS) to get all upward reachable concepts from each concept
in CEI and store them in a set called URC (upward reachable
concepts) (lines 7-10). The intent of URC’s concepts is inter-
acted features. To extract these features from URC’s concepts,

TABLE III. A FORMAL CONTEXT FOR FEATURE-ARTEFACT OF DRAWING
PRODUCT LINE (DPL), A: REFERS TO A SOURCE CODE ARTEFACT
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we use a function called getIntent() (lines 11-13). Finally, for
each cpte in CEI, we store cpte and its corresponding set of
interacted features (SIFs) in a hashmap where cpte is the key
and SIFs is the value (line 14).
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Algorithm 1 Detecting Interacted Features
Input: FAL //Feature-artefacts Lattice
Output: IFs // HashMap of (concept, set<string>) called In-

teracted feature s
1 Set CEI ← Φ // Concepts with Empty Intent s

2 foreach (Concept cpte ∈ FAL) do
3 if (cpte.getIntent() is empty) then
4 CEI.add( cpte )

5 end
6 end
7 foreach (Concept con ∈ CEI) do
8 Set URC ← Φ //URC: Upward Reachable Concepts from

Co2.
Set URC ← DFS (con)
SIFs ← Φ // SIFs: Set of Interacted Features
foreach (Concept rc ∈ URC) do

9 SIFs.add (rc.getIntent())

10 end
11 IFs.put (con, SIFs)

12 end
13 return IFs

E. Detecting Mandatory and Optional Interacted features

After the identification of the interacted features, it is im-
portant to classify these features into mandatory and optional
features. This classification is important for different reasons
depending on the size and context of software products. For
example, for prioritization, resource allocation, and estimation
the effort should be spent to manage these interactions. In this
aspect, we encounter four scenarios:

- If the interacted features are only mandatory features,
each derived product from the core assets will behave
in an unexpected way. Therefore, the interaction will
negatively impact the entire generated SPL in the
future.

- If the interacted features are mandatory and optional
features, only derived products with at least one of
these optional features will behave unexpectedly, as
these products have duplicated source code artefacts.

- If the interacted features are two or more optional
features, only derived products with at least two of
these optional features will behave unexpectedly, as
these products have duplicated source code artefacts.

- If the interacted features are mutual-exclusive optional
features, the interacted features have no negative im-
pact on the generated SPL.
To perform the goal of this step, it takes the feature
model as an input in addition to the list of interacted
features identified in the previous step. This model is
used to determine mandatory and optional features and
other constraints, like mutual exclusive relations [1].

It is important to mention that also the GSH Lattice in
Fig. 5 is utilized to visualize the implementation interactions

TABLE IV. STATISTICAL INFORMATION FOR ARGOUML-SPL
FEATURES [8]

Feature Package Class Method LOC
State Diagram 0 48 15 3,917
Activity Diagram 2 31 6 2,282
Sequence Diagram 4 5 1 5,379
UseCase Diagram 3 1 1 2,712
Collaboration Diagram 2 8 5 1,579
Deployment Diagram 2 14 0 3,147
Cognitive Support 11 9 10 16,319

within features. The shared source code artifacts are always
located in the extent of concept(s) with empty intent (see
Concept_2). These artifacts are not specific implementation of
a feature but they are common between two or more features
(Line and Rect features).

V. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we evaluate the proposed approach’s effec-
tiveness by applying it to a large benchmark case study on the
subject.

A. Data Collection

In the literature, there is no ground truth dataset for imple-
mentation feature interactions. such datasets often depend on
the context, domain, and nature of the software systems being
considered. Therefore, to evaluate the proposed approach, we
use the ArgoUML-SPL case study. The core assets of this
SPL are built in an extractive way (reused from their existing
variants). The implementation feature interactions within the
features of this SPL are manually investigated.

ArgoUML, an open-source project written in JAVA, encom-
passes various UML diagrams and functionalities, including
source code generation [8]. ArgoUML-SPL is derived from
ArgoUML, wherein software products are generated from its
source code base. This generation involves annotating the
implementation of optional features with conditional com-
pilation directives. The optional features include Sequence
Diagram, Collaboration Diagram, State Diagram, Activity Di-
agram, UseCase Diagram, Cognitive Support, and Deployment
Diagrams. Additionally, the source code base includes the
implementation of a mandatory feature named Class Diagram,
identified manually. Each feature in this case study is realized
as a collection of packages and classes. Statistical details
regarding the annotated features, such as the number of pack-
ages, classes, methods, and lines of code (LOC), are presented
in Table IV. In this table, "Package," "Class," and "Method"
represent the total number of annotated packages, classes, and
methods constituting a feature implementation, respectively.

B. Evaluation Procedures and Research Questions

Two research questions are introduced in the course of this
research work to evaluate the effectiveness of the proposed
approach. These questions are as follows:

- RQ1: How effectively the proposed approach can de-
tect shared source code artefacts that cause unwanted
feature interactions?
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- RQ2: How much effort could the proposed approach
save for the developer?

To answer the first research question (RQ1), we validate
the relevance of the detected shared source code artefacts
across the implementations of ArgoUML-SPL’s features. We
apply the proposed approach to the feature implementations
in the ArgoUML-SPL’s core assets. Then, we investigate and
analyze the shared artefacts to determine the relevancy of these
artefacts to the resulting interacted features.

To answer the second research question (RQ2), we need
an assessment method to measure the saved effort by the
developer. To perform this, we propose a metric called the
Development Effort Saving ratio (DES). This metric should
be applied to products derived from common core assets of
a given SPL. The idea behind the DES metric is to calculate
the efforts that should be spent (but saved) by the developer
to detect interacted features after generating products from the
core assets. This effort will be saved when we detect interacted
features early (in the core assets) and before generating prod-
ucts. Higher DES’s values are higher detection efforts saved
by the developer(s) and vice versa. The range of values in DES
is 0 to 1.

DES mainly measures the occurrence of products with
features that share artifacts. Therefore, we follow the following
evaluation protocol to apply this measure:

1- We randomly generated three sets with different sizes
(small, medium, large) of products from ArgoUML-
SPL’s core assets.

2- Determine the interacted features in each generated
set.

3- Determine mandatory and optional interacted features.

4- We apply Eq. 1 and 2 for mandatory and optional
features, respectively.

DESm =
(
∑

all possible products− 1)

(all possible products)
(1)

DESo =
(
∑

all impacted products− 1)

(all generatd products)
(2)

In these equations, all possible products refers to all valid
software products that can be generated from the core assets,
all impacted products refers to randomly generated products
with unwanted feature interactions, and all generated products
refers to all randomly generated products for evaluation.

C. Results

In this section, we answer the introduced research questions
to validate the proposed approach.

1) The Relevancy of Shared artefacts to the resulting in-
teracted features (RQ1): Table V lists shared source code
classes among all feature implementations in the ArgoUML-
SPL’s core assets. Also, it shows interacted features and their
type (mandatory or optional feature). As shown in Table V, all
interacted features are optional and in pairs, as feature inter-
actions exist mostly between two features [18]. For example,

Cognitive and Sequence features share a class called CrSe-
qInstanceWithoutClassifier. Also, State and Activity features
share 18 source code classes.

To validate whether the detected shared classes are relevant
to the implementation of features contributing to the interaction
or not, we manually investigate and analyze these shared
classes and their inline comments. For example, we analyzed
the shared classes between State and Activity features. We
found that all these classes are related and implement States
and Events. Also, by returning to the documentation of these
features, we found that State and Activity features are simi-
lar [8]. State feature is used to graphically represent objects
of a single class and track the different states of its objects
through the system. Activity feature is used to graphically
describe the system behavior as a set of activities, and these
activities are the state of doing something. Also, we studied
the shared classes between Cognitive and both Sequence and
Deployment features. We discovered that Cognitive feature
is a crosscutting feature in ArgoUML. This means that the
Cognitive’s implementation is spread over the implementation
of other features, such as Sequence and Deployment.

In summary, the suggested approach can effectively detect
interacting features in the core assets of ArgoUML-SPL by
determining shared source code artifacts among these features,
which answers the first research question. This is based on the
obtained results in Table V.

Due to the size of GSH lattice corresponding to ArgoUML-
SPL, we can not put it in the article but it is utilized to visualize
implementation interactions within ArgoUML-SPL’s features
as explained in the illustrative example (see Section IV).

2) Saving Developers Efforts (RQ2): Table VI shows all
unwanted feature interactions in three randomly generated sets
(A, B, and C) of products from the core assets of ArgoUML-
SPL. Also, the table shows the savings percentage of developer
efforts (DES) to detect these interacted features in these
generated products. As shown in this table, the range of DES’s
values for set A is [75% to 93%], set B is [80% to 90%], and
set C is [67% to 92%]. The reason behind the high saving
efforts in set A compared to other sets is that the products
of set A contain interacted features more than those of other
sets. This leads to spending more effort by developers to detect
these features manually.

Table VII shows statistics about the saving efforts obtained
by the proposed approach. As an overall evaluation, the amount
of effort saved by the proposed approach in all generated sets
is 67% to 93% which is a high range.

To summarize, the answer to the second research question
indicates that the proposed approach effectively minimizes
developers’ detection efforts concerning interacting features.
This is based on the findings shown in Tables VI and VII.

D. Threats to Validity

In this section, we list potential threats that could com-
promise the validity of our proposed approach. We found the
following four main threats:

- We only used one case study to evaluate the effective-
ness of the proposed approach. However, ArgoUML-
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TABLE V. INTERACTED FEATURES IN THE ARGOUML-SPL CORE ASSETS

Shared Classes Interacted Features Feature Types

CrInterfaceWithoutComponent, CrObjectWithoutComponent, CrNodeInsideElement, CrInstanceWithoutClassifier, CrInstance-
WithoutClassifier, CrClassWithoutComponent, CrObjectWithoutClassifier, CrWrongLinkEnds, CrNodeInstanceWithoutClassi-
fier, CrWrongDepEnds, CrNodeInstanceInsideElement, CrComponentWithoutNode, CrNodeInstanceInsideElement, CrCompo-
nentInstanceWithoutClassifier

Cognitive-Deployment optional

CrSeqInstanceWithoutClassifier Sequence-Cognitive optional

ModelElementInfoList, FigStateVertex, ButtonActionNewSignalEvent, ButtonActionNewCallEvent, FigFinalState, StateDia-
gramGraphModel, ButtonActionNewEvent, UMLSubmachineStateComboBoxModel, PropPanelStubState, FigTransition, State-
DiagramRenderer, PropPanelSynchState, ButtonActionNewTimeEvent, UMLStubStateComboBoxModel, , ButtonAction-
NewChangeEvent, UMLSynchStateBoundDocument, StateBodyNotationUml, InfoItem,

Activity-State optional

ActionAddClassifierRole, FigClassifierRole, SelectionClassifierRole Collaboration-Sequence optional

TABLE VI. DES RESULTS OF RANDOMLY GENERATED PRODUCTS OF
ARGOUML-SPL

Interacted Features Feature Types Impacted Products DES Value

DES’s Results of Random 15 Product of ArgoUML-SPL (Set A)

Cognitive-Deployment optional

P4,P3,P2,P5

93%
P9,P8,P7,P6
P11,P10,P12
P15,P14,P13

Sequence-Cognitive optional

P6,P5,P4,P3

92%
P9,P10,P7,P8
P11,P13,P12
P15,P14

Activity-State optional P6,P10,P9,P7 75%

Collaboration-Sequence optional
P7,P8,P10

83%
P15,P14,P11

DES’s Results of Random 37 Product of ArgoUML-SPL (Set B)

Sequence-Cognitive optional
P36,P34,P35,P33

80%
P37

Activity-State optional
P19,P5,P7,P8,P4

90%P36,P22,P23,P20
P37

Collaboration-Sequence optional
P8,P12,P5,P9,P6

80%
P15,P13,P37,P16

DES’s Results of Random 50 Product of ArgoUML-SPL (Set C)

Sequence-Cognitive optional P50,P2, P1 67%

Activity-State optional

P6,P5,P8,P9

92%
P24,P22,P21
P36,P25,P37
P40,P39

Collaboration-Sequence optional
P23,P22,P2,P1

90%P25,P30,P29,P26
P33,P32

TABLE VII. DES’S STATISTICS OF RANDOMLY GENERATED PRODUCTS
OF ARGOUML-SPL

ArgoUML-SPL Set Min Average Max Standard Deviation

Set A (15 Product) 0.75 0.85 0.93 0.07

Set B (37 Product) 0.80 0.83 0.90 0.04

Set C (50 Product) 0.67 0.83 0.90 0.11

SPL is a large benchmark case study in this sub-
ject [8]. In addition, the proposed approach can be
applied to others without extra work.

- The studied case study contains only interacted op-
tional features and lacks interacted mandatory fea-
tures. Based on DES equations and the obtained
results, the DES results for interacted mandatory fea-
tures will not differ much.

- The proposed technique assumes that the feature is
implemented as a set of source code classes. However,
features in smaller SPLs can be implemented as a
collection of methods or other more detailed source
code artifacts. However, the proposed approach can
be adapted to consider any level of source code
granularity to implement features.

- The amount of effort saved is assessed using a bespoke
metric (DES). However, this metric reflects the reality
where we manually detect the shared artifact among
features to discover the detecting effort that could be
spent if the proposed approach was not used.

VI. CONCLUSION AND PERSPECTIVES

In this article, we have proposed an approach to detect and
visualize feature interactions in extracted core assets of SPLs
early. The approach is based on an unsupervised clustering
technique called Formal Concept Analysis. The application
of the proposed approach on a benchmark case study in the
subject shows that it is effective in detecting implementation
feature interaction. Also, it reduces detecting efforts spent by
developers in a range between 67% and 93%.

As perspectives, we plan to apply the proposed approach
to other case studies with different granularities (fine and
coarse grain) of feature implementations. Also, we plan to
detect unwanted feature interactions based on other structural
dependencies in source code (not only shared source code
artefacts) among feature implementations. Moreover, we will
try to detect domain or implementation feature interactions in
which features are not already modularized.
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