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Abstract—Diabetes mellitus is a chronic disease affecting over
38.4 million adults worldwide. Unfortunately, 8.7 million were
undiagnosed. Early detection and diagnosis of diabetes can save
millions of people’s lives. Significant benefits can be achieved if we
have the means and tools for the early diagnosis and treatment of
diabetes since it can reduce the ratio of cardiovascular disease and
mortality rate. It is urgently necessary to explore computational
methods and machine learning for possible assistance in the
diagnosis of diabetes to support physician decisions. This research
utilizes machine learning to diagnose diabetes based on several
selected features collected from patients. This research provides
a complete process for data handling and pre-processing, feature
selection, model development, and evaluation. Among the models
tested, our results reveal that Random Forest performs best
in accuracy (i.e., 0.945%). This emphasizes Random Forest’s
efficiency in precisely helping diagnose and reduce the risk of
diabetes.
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I. INTRODUCTION

The Centers for Disease Control (CDC) reported several
statistics on the number of people diagnosed with diabetes.
It was found that 38.4 million people were diagnosed with
diabetes. This ratio presents 11.6% of the adult of 18 years
or older. The healthcare system afforded in 2022 more than
$413 billion [1]. For example, by 2030, it is anticipated that
more than 20% of the population of West Virginians will be
diagnosed. The public’s health is being devastated by this.
Following Alabama, the following two states with the highest
disease rates are Mississippi and Florida. South Americans
have a significantly high chance of being diagnosed with
diabetes by 2030.

The Economic Report published by the American Diabetes
Association in 2022 shows that the total yearly cost of diabetes
exceeds $412 billion, including a direct and indirect medical
cost of $306.6 billion and $106.3, respectively. It is worth
mentioning that diabetes is the eighth reason of death in the
United States. There were more than 399,401 deaths linked to
diabetes in the USA.

Diabetes is a metabolic condition that supports the devel-
opment of high blood sugar levels. When left undiagnosed,
the high sugar in the blood could lead to severe damage
to organs such as the kidneys, heart, and eyes [2]. Diabetes

can emerge in two different ways: type 1 complications and
type 2 complications. Those who have type 2 diabetes have
insulin production that is either insufficient or nonexistent.
Sometimes, the patient’s body is not reacting to the effects
of insulin appropriately. Although type 2 is more dangerous
than type 1, it is widespread for people aged 19 and over
[3]. The authors of [4] investigated the possibility of utilizing
Artificial Neural Networks (ANN), Support Vector Machines
(SVM), and Decision Trees (DT) to classify the Pima Indians
Diabetes and Breast Cancer Coimbra datasets that are available
in the UCI Machine Learning Repository.

Diagnosing diabetes is currently very challenging for sev-
eral reasons, including the following:

1) The availability of an adequate dataset to build an ML model
with high confidence [5]. It is normally a lengthy process to
get permission to access the patient’s medical records, given
that the patient has a medical history and is always check-
ing his medical condition citenoisy-data-diabetes. The Obama
Administration invested over $27 billion to support hospitals
and medical service providers to implement electronic health
records (EHR). Currently, clinics adopt a software platform
to store medical data. The problem arises when trying to
integrate these HER systems. Thus, medical data is commonly
unstructured since each software platform has a different
design, and integrating this system is always challenging.

2) A multidisciplinary method is essential to develop reliable
diagnosis (i.e., prediction) models. Experts from diverse fields
such as medicine, statistics, and data scientists need to collab-
orate to verify the correct diagnosis of the disease [6], [7].

3) There is always a need to develop diagnosis models that are
explainable and easy for physicians to interpret. Physicians are
always interested in understanding the cause and being able to
generate a resonating of the findings.

4) Finally, in many cases, it is important to integrate these
diagnosis models to perform on a computer platform or mobile
devices [8], [9]. These models should be integrated into the
EMR systems.

For these reasons, this research aims to demonstrate the
effectiveness of machine learning, particularly Random For-
est, in efficiently diagnosing diabetes. By selecting the most
compelling features collected from patients and providing a
comprehensive process of data handling, pre-processing, model
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development, and evaluation, we have achieved a high accu-
racy diagnosis rate of 94.5%. This emphasizes the potential
of machine learning algorithms like Random Forest to help
physicians diagnose diabetes early and effectively moderate
its risks.

The subsequent sections delineate the structure of this
paper. Machine learning models for classification are covered
in Section II. Section III provides a comprehensive explanation
of the machine learning approaches employed. The steps of
classifying diabetes, from dataset preparation to the evaluation
of machine learning models, are illustrated in Section IV.
Sections V and VI outline the results of three distinct machine-
learning algorithms for classifying diabetes. Additionally, var-
ious evaluation criteria are used to evaluate the compared
algorithms. Section VII presents this research’s main findings,
and some future directions are mentioned.

II. MACHINE LEARNING

Traditional diagnosis models adopted correlation methods
between symptoms and cause(s) [10]. Additional approaches
were also utilized, including examining environmental and
genetic factors that influence the development and risk of type
1 and type 2 diabetes [11], [12]. AI has helped accelerate
the diagnosis of medical diseases and the advancement of
drugs and medicines. Healthcare systems with AI and ML
have become more modernized. ML techniques significantly
support advancing diagnosis methods such that they enhance
the precision in medical diagnosis [4], [13], [14]. Diagnosis
using ML involves the development of models that utilize input
data to build a relationship between various medical features
(i.e., attributes) to produce a corresponding diagnosis (i.e.,
label). This process involves training a model to recognize
if there is a disease or not. As seen in Fig. 1, there are
several stages to the ML diagnostic process, including pre-
processing of the dataset, selection of the most promising
features, utilizing the most appropriate model, and finally
assessing the model. The medical industry has successfully
used this technique for diagnosis and prediction, leading to
improved patient outcomes [15], [16]. Various research has
validated using artificial intelligence in conjunction with ma-
chine learning [15]–[20] in solving real-world problems.

Fig. 1. Machine learning classification process.

III. METHODS

This section outlines the basic concepts of diverse machine-
learning techniques for developing the proposed diabetes clas-
sification model.

A. Artificial Neural Networks

Prominent machine-learning models include artificial neu-
ral networks (ANNs). It draws its inspiration from the bi-
ological neurons of the human brain. Multiple layers make
up an ANN. These layers include input, hidden, and output.
These layers are organized sequentially so that the output
from the first layer feeds into the next one. The input layer
contains neurons corresponding to the model’s input features.
Depending on the specific application, the number of neurons
in the hidden layer might vary from a few to many. Ultimately,
the number of neurons in the output layer equals the number of
labels, or classes, in the data set. We use the sigmoid function
to produce model nonlinearity, which gives the model more
flexibility. The literature has well-known functions, such as
the tanh and ReLU functions. ANN was used in many medical
diagnosis applications [13], [21]. The process of using ANNs
for classification involves the following steps:

• Pre-processing of Dataset: It is an essential process
for preparing the data for modeling to clean it by
various means, such as dealing with noise, outliers,
missing values, normalization/scaling, data imbalance,
and many others.

• Network Architecture: The adoption of a specific
architecture of the ANN is domain-independent. An
adequate number of layers and neurons in the hidden
layer is essential for the ANN to model the input and
output data successfully.

• Training the Network: Many models have been uti-
lized in the literature for training ANN, which mainly
depends on the adopted structure. A famous example
is the employment of a backpropagation learning
method for training the Feedforward ANN model,
which is based on gradient descent [22].

• Testing and Validation: To verify the ANN model’s
ability to diagnose a disease, we utilize a new dataset
to test the ANN-developed model and calculate its
performance, such as accuracy and precision.

• Deployment: The ANN model can now be deployed
in real-world applications.

Fig. 2 shows a Feedforward ANN model with five inputs:
xi, i = 1, . . . , 5. given that, the network has four hidden nodes
hj , j = 1, . . . , 4 and one output node. The output y can be
presented in Eq. 1. wi and bi correspond to the weights and
biases of the ANN.

y = f

(
n∑

i=1

wixi + b

)
(1)

B. Decision Tree

Given the features of the data, a powerful machine-learning
technique called a Decision Tree (DT) may be constructed
according to a set of rules. DT can be used for various machine
learning classification and regression applications [23]. DT
learning algorithm depends on picking up the best-split point
on each node. The process of splitting utilizes the concept
of Entropy and Information Gain [23], [24] and provides
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Fig. 2. Feedforward ANN model.

the best data splitting. Information theory inspires entropy,
determining the sample values’ impurity. The entropy (i.e.,
S(Z)) is calculated using Eq. 2.

S(Z) = −
∑
i

P (Z = zi) · log2(P (Z = zi)) (2)

Given that S(Z) represents the entropy of the random
variable Z and P (Z = zi) denotes the probability of the
occurrence Z = zi, the table summarizes key symbols and
their descriptions.

The process for creating a decision tree for diagnosis (i.e.,
classification) consists of the following phases:

1) Utilize the training data to explore the best feature to
be considered as a root node for data splitting using
entropy.

2) Based on step 1, several child nodes will be created.
The process adopted in phase one is repeated to build
the new tree level and create new sets of children
nodes.

3) Repeat phases 1 and 2 pending a stopping criterion
is satisfied. For example, approaching the maximum
tree depth or having a minimum number of samples
per leaf. Fig. 3 illustrates a simplified example of
the development of a decision tree, showcasing the
creation of child nodes at each step.

To minimize the complexity of the DT and avoid over-
fitting, we adopt the concept of pruning. Pruning allows the
DT to overcome the problem of overfitting and supports the
reduction of the tree’s complexity.

C. Random Forest

One of the ensemble learning algorithms used for regres-
sion analysis and classification is the random forest (RF) [25].
The RF model’s central concept is to generate many decision

Feature f1

Threshold < 2.5

Class A Feature f2

Threshold < 1.5

Class B Class A

True False

True False

Fig. 3. Example of a simple decision tree.

trees, each constructed using a random subset of the training
data and features.

The basic idea of bagging may be depicted as follows: As-
sume we have a dataset U = {(f1, c1), (f2, c2), . . . , (fm, cm)}.
Assuming that fi represents the feature vector of the i-th
sample and ci denotes the class or label. The RF algorithm
bagging starts by generating multiple bootstrap samples U∗

i
from the original dataset U . Each bootstrap sample produces
DT models, as Fig. 4 shows. A rule of thumb for RF is to
utilize

√
m features for each split. To predict the class or label

of a new dataset b, we adopt Eq. 3.

P̂ (b) =
1

L

L∑
i=1

Qi(x) (3)

Given that the random forest has L decision trees. The
trees’ prediction outputs are denoted by Qi(x).

It can be seen that the bagging process in RF encompasses
training multiple DTs using bootstrap training data and merg-
ing the output predictions of trees to produce the overall output
of the model. This collaborative approach is very beneficial
since it avoids overfitting and reduces the model’s sensitivity
to noise. It was reported that RF was positively utilized in
many application domains, such as healthcare and medicine
[12], stock market prediction [27], [28], and many others [29].

D. K-Nearest Neighbor

K-Nearest Neighbors (KNN) is a nonparametric and es-
sential technique used in supervised machine learning. The
process of KNN involves classifying objects within the input
space based on the distance to the nearest samples. The KNN
classification method addresses the challenges of classification
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Fig. 4. Illustrating of RF-based bagging method [26].

and regression. Here is a basic overview of how to use KNN
for data classification:

• Data preparation: Commence by collecting and or-
ganizing the dataset. Every data point must possess
distinct characteristics (attributes) that provide a de-
scription and a matching label with the appropriate
format for classification.

• Choosing K: For prediction purposes, the parameter
’K’ indicates how many nearest neighbors should be
considered. A reasonable value for K must be selected.
Unreliable predictions result from a small K value,
while a large one could introduce bias. Obtaining
an optimal K value requires utilizing techniques like
cross-validation. Our model utilized a k value equal
to 5 for better results.

• Calculating Distance: To find a new data point’s K-
nearest neighbors, the distance between it and all of
the points in the dataset is calculated. Assuming two
data points X and Y with n features for each such as
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn), the
Euclidean distance (ED) can be computed according
to Equation 4.

ED(X,Y ) =

√∑n
i=1 (xi − yi)

2

n
(4)

• Sorting & Selecting k-neighbors: Sort the data points
based on their distance from the new data point in as-
cending order. Consequently, the K-nearest neighbors
are selected from the sorted list and corresponding
data points.

• Voting for the majority class: Set the predicted class
label or target value for the new data point based on
the majority class.

• Model evaluation: Analysis of the KNN classifier
using several metrics, including F-measure, recall, and
accuracy, demonstrates the classification algorithm’s
performance.

P

Class 1

Class 2

Class 3

P Unidentified Class

Fig. 5. Illustration of a K-nearest neighbors model.

Generally, the kNN algorithm uses a voting system-like
approach for assigning a new data point’s class, considering
the majority class label among its nearest ’k’ neighbors in the
feature space, as illustrated in Fig. 5.

E. Support Vector Machine

According to [30], a Support Vector Machine (SVM) is
one of the classification techniques for supervised machine
learning. SVM selects the optimal hyperplane for class sepa-
ration by aligning the most significant number of points from
the same class on one side. The SVM classifier stretches
the interval of each class to a hyperplane, which isolates the
spots. The hyperplane’s nearest points provide the basis of the
support vectors. The shortest distance between any two points
in a given class and any given hyperplane is from the class
to the hyperplane. For a simple linear separable problem, the
hyperplane and SVM classifier can be defined according to Eq.
5 and 6.

wTx+ b = 0 (5)

ŷ =

{
1 : wTx+ b ≥ 0

0 : wTx+ b < 0
(6)

The variables in the equation are as follows: w represents
a weight vector, x represents a vector, b represents a bias,
and ŷ represents the projected output class. Minimizing the
Euclidean norm of the weight vector w (∥w∥) is necessary to
optimize the margin. Therefore, this can be formulated as an
objective function (i.e., min f : 1/2∥w∥2).

Here is a basic overview of how to use SVM for data
classification:

• Data Preparation: The data must be prepared for
classification before anything further can be done.
Achieving this requires gathering, cleaning, and ar-
ranging data so the SVM can readily process it.

• Train & Test Split: Splitting the entire dataset into
training and testing sets enables us to assess the
model’s accuracy.
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• Trains SVM with Kernal: The SVM searches for the
optimal hyperplane that divides the classes with the
most significant margin using kernel functions. Sup-
port vector machines (SVMs) may make use of a wide
variety of kernel functions, such as linear, polynomial,
sigmoid, and radial basis functions (RBFs) [31].

• SVM model prediction: During the training phase,
the objective is to determine the hyperplanes that
best discriminate between the two classes. During
the testing phase, the classification is determined by
evaluating the position of the test input relative to the
hyperplane.

• SVM model evaluation: Several measures, including
the confusion matrix and accuracy, may be used to
assess the SVM model’s performance on the tested
dataset.

Fig. 6 shows an illustrative example of finding the best
hyperplane for classifying data points. The hyperplane H1 fails
to classify the data points, whereas H2 classifies the data points
but has the narrowest margin. The hyperplane H3 is considered
the ideal classifier due to its ability to classify data points
effectively and its greatest marginal width.

Fig. 6. SVM model.

F. Gradient Boosting

In machine learning, Gradient Boosting (GB) is a very
effective method that may be utilized for classification [32]
as well as regression tasks. Boosting is based on transforming
weak learners into strong ones. To train weak learners, the
gradient boosting (GB) approach sequentially adds estimators
by modifying their weights one by one [33]. Using an iterative
approach for continuous improvement, the GB seeks to esti-
mate residual errors from prior estimators and minimize the
difference between predicted and actual values. The overall
process can be illustrated below and shown in Fig. 7.

1) Prepare the dataset in a way that the GB algorithm
can easily handle through various processes, includ-
ing cleaning the data, defining the feature variables,
and defining the target variable.

2) Select a base model for gradient boosting to fit the
data. It is a straightforward model with low variance
and high bias. Decision trees are employed as a base
learner.

3) Initialize the model by starting predictions based on
simple rules or some default values.

4) Calculate the residual error by subtracting the model’s
predictions from the actual values of the training data.

5) Construct a decision tree and predict the residuals of
the prior model. Adjusting the model’s parameters in
a gradient descent fashion minimizes the loss function
as in Eq. 7 during the training of the weak model.

F0(x) = argmin
γ

n∑
i=1

L (yi, γ) (7)

According to the equation, the predicted and actual
values are γ and yi, respectively. The loss function,
denoted as L = 1

n

∑n
i=0 (yi − γi)

2, applies to a set
of data points n.

6) Update and adjust the model so that the weak model’s
predictions combine with the prior model’s predic-
tions, resulting in an updated set of predictions using
Equations 8 and 9.

γm = argmin
γ

n∑
i=1

L (yi, Fm−1 (xi) + γhm (xi))

(8)

Fm(x) = Fm−1(x) + α ∗ hm(x) (9)

In the given context, m denotes the total number of
weak learners (e.g., a decision tree), hmleft(xiright)
represents the residual-based constructed model, and
α signifies the learning rate.

7) The steps from 4 to 6 are repeated iteratively until the
model achieves its highest accuracy (i.e., a negligible
residual error has been reached) or until no more
enhancements can be achieved.

8) A robust predictive model is produced by adding all
of the weak models’ predictions to arrive at the final
prediction.

Fig. 7. GB classifier model.

IV. CLASSIFICATION PROCESS

Machine learning faces a significant challenge in classi-
fying people with diabetes, which requires a multi-step data
preparation process. The process includes data collection,
cleaning, scaling, feature selection, data partitioning (into

www.ijacsa.thesai.org 1376 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

training and testing sets), and algorithm utilization. Fig. 8
illustrates the complete classification process for handling the
Pima data [21] classification problem.

Fig. 8. The workflow of the classification process for diabetes.

A. Pima Indian Diabetes Dataset

The Pima Indian Diabetes dataset is a popular public
resource frequently employed for diabetes-related classification
issues [34]. The dataset comprises information from 768
female Pima Indians aged 21 and older, initially gathered by
the National Institute of Diabetes and Digestive and Kidney
Diseases.

Among the numerous features of the diabetes data col-
lection are the following: age, pedigree function, pregnancy,
blood pressure, skin thickness, insulin, body mass index, and
the output class or label. The dataset is extensively utilized in
machine learning applications for evolving predictive models
for the diagnosis of diabetes [35], [36]. Table I shows a sample
of the data set. The diabetic dataset has 768 records, with 500
and 268 records of non-diabetic and diabetic cases, respec-
tively. As seen in Fig. 9, the dataset exhibits an imbalance.

In Fig. 10, we present a heat map demonstrating the
correlation between the sample data label and the various
variables in the adopted dataset. Fig. 11 shows the box plot
for various dataset features. The Distribution of a dataset and
any hidden outliers can be better understood using boxplots.

B. Oversampling

Creating an accurate machine learning model when the
data is imbalanced is challenging. One issue arises from the

TABLE I. SAMPLES OF THE PIMA INDIANS DIABETES

Preg. Gluc. BP Skin Th. Insulin BMI Pedig. Age Label

6 148 72 35 0 33.6 0.627 50 1

1 85 66 29 0 26.6 0.351 31 0

8 183 64 0 0 23.3 0.672 32 1

1 89 66 23 94 28.1 0.167 21 0

0 137 40 35 168 43.1 2.288 33 1

5 116 74 0 0 25.6 0.201 30 0

3 78 50 32 88 31 0.248 26 1

10 115 0 0 0 35.3 0.134 29 0

2 197 70 45 543 30.5 0.158 53 1

8 125 96 0 0 0 0.232 54 1

4 110 92 0 0 37.6 0.191 30 0

10 168 74 0 0 38 0.537 34 1

10 139 80 0 0 27.1 1.441 57 0

1 189 60 23 846 30.1 0.398 59 1

5 166 72 19 175 25.8 0.587 51 1

Fig. 9. Distribution of the dataset (0: non-diabetic, 1: diabetic).

Fig. 10. A heatmap showing the correlation between various features in the
dataset.

possibility that the model can learn the class with more data
records than the other. It is essential to strike a balance between
classes as much as possible. Imbalanced data can lead to
biased models and poor performance in the minority class.
To address this issue, oversampling techniques can be used
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Fig. 11. Box Plot for various attributes of the pima indian diabetes dataset.

to balance the dataset and improve model performance [37],
[38]. However, oversampling can also lead to overfitting if
not done carefully. Our study addressed the imbalance using
the Synthetic Minority Oversampling Technique (SMOTE).
The basic concept of SMOTE is to generate synthetic data
points between each sample from the minority class and its
”k” nearest neighbors according to Eq. 10.

xsyn = xi + γ (xknn − xi) (10)

Where xsyn, and xknn are the synthetic data point and the
closest neighbor to the point xi, respectively. γ is a randomly
generated number between 0 and 1. Subsequently, following
the oversampling process, the number of instances in both
classes becomes equal.

C. Feature Selection

An essential method for machine learning is feature se-
lection. This strategy can improve model performance, reduce
the time required for training, boost interpretability, and reduce
overfitting. Selecting the most pertinent features enhances the
machine learning models’ accuracy. This is because the model
can focus on the most critical predictors rather than being
distracted by noisy or irrelevant features. Therefore, Principal
component analysis (PCA) can be utilized for feature selection
in this study.

To extract the most variation from the data, the PCA
approach converts the initial features into a new collection
of independent features known as principal components (see
Algorithm 1). In this research, the top five features are selected
for further processing, which are ”Pregnancies,” ”Glucose,”
”BMI,” ”Pedigree Function,” and ”Age.”

D. Data Scaling

Data scaling is an essential preprocessing step in machine
learning that can improve machine learning models’ perfor-
mance, convergence, and efficiency. Scaling methods depend
on the nature of the data and the machine-learning model’s
requirements.

Many data scaling methods are reported in the literature
[39]. MinMaxScaler method is among these methods. This
method scales data features to a domain between 0 and 1.
Eq. 11 shows how the MinMaxScaler method works.

Algorithm 1 Principal Component Analysis (PCA)
Input: Training data X , number of desired principal compo-
nents k.
Output: Transformed data X ′

Step 1: Calculate the mean vector X for each feature in X
using X = 1

n

∑n
i=1 Xi, where n is the number of samples in

X and Xi is the i-th sample in X .
Step 2: Compute the covariance matrix C for X as C =
1

n−1

∑n
i=1(Xi −X)(Xi −X)T .

Step 3: Obtain the eigenvectors V and eigenvalues λ of C
using λ, V = eig(C), where eig(C) returns the eigenvalues
and eigenvectors of C.
Step 4: Build the transformation matrix W by picking the
top k eigenvectors and sorting them in descending order by
eigenvalue.
Step 5: Transform the data using the transformation matrix W
as X ′ = XW .
Step 6: Return the transformed data X ′.

fscaled =
f − fmin

fmax − fmin
(11)

where the feature’s minimal value, its maximum value,
and its scaled value are denoted by fmin, fmax, and fscaled,
respectively.

E. Evaluation Metrics

Various evaluation metrics can be used to assess the utilized
diagnostic (i.e., classification) models [40] based on the actual
and predicted results. As an illustration, consider the case
when the classifier’s output and the actual value are positive;
use the notation TP . Meanwhile, the notation TN indicates
that the real value and the classifier’s output are negative.
If the classifier’s result is opposed to the actual value, this
indicates either a FP or FN . Various metrics for evaluation
were calculated based on these values.

• Accuracy (Acc): It indicates the percentage of correct
predictions compared to the entire number of predic-
tions, denoted by T (T = TP + FP + TN + FN ).

Acc =
TP + TN

T
(12)
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• Precision (P ): It denotes the proportion of positive
predictions that were accurate to the overall count of
positive predictions.

P =
TP

TP + FP
(13)

• Recall (R): It quantifies the proportion of correctly
predicted positive cases relative to the total number of
positive cases.

R =
TP

TP + FN
(14)

• F-measure (F ): It is a single-value representation of
the well-balanced combination of recall and precision.

F −measure =
2× P ×R

P +R
(15)

• At various classification thresholds, the Area under the
Receiver Operating Characteristic (ROC) Curve shows
how the true positive and false positive rates relate to
one another. To find the Area under the curve (AUC-
ROC), we integrate the TP rate from 0 to 1 (where
FPR is the independent variable).

V. EXPERIMENTAL RESULTS

Over the past several years, diabetes has become the lead-
ing cause of mortality among humans. The prevalence of this
disease is on the rise due to several factors, including unhealthy
dietary habits and the availability of unhealthy food options.
Early detection of diabetes can aid in clinical management
decision-making. In our research, we have utilized various
evaluation measures to determine and quantify the performance
of our ensemble of algorithms, which include ANN, DT, RF,
KNN, SVM, and GB classifiers. These techniques were tested
and evaluated on the Pima Indian Diabetes Dataset. However,
picking the most effective one was a top priority, so we
measured each algorithm accurately, even after five iterations,
to find which one was superior. The results of each algorithm
are illustrated below.

A. ANN Results

In our research, we investigated different designs of Ar-
tificial Neural Networks (ANN) with varying complexities to
achieve the best classification results. Many benefits may be
achieved by increasing the number of neurons in an ANN’s
hidden layers, as listed below:

• It enhances the model’s capacity to learn complex
patterns and relationships in the data.

• It can lead to better fitting the model to the data,
resulting in improved accuracy and lower error rates.

• A more extensive network can better generalize to
unseen data as it has learned a more comprehensive
representation of the underlying patterns in the data.

Table II shows three different ANN models were consid-
ered, each with varying numbers of neurons in its hidden layer.
Furthermore, Fig. 12 shows the convergence curve of the three
developed ANN models. From Fig. 12, the ANN model with

TABLE II. VARIOUS ANN MODEL STRUCTURES

ANN Models Input Hidden (1) Hidden (2) Output

Model #1 5 5 2 1

Model #2 5 10 5 1

Model #3 5 20 10 1

Fig. 12. Convergence curves of the three ANN models.

several neurons equal to 20 and 10 at hidden layers 1 and 2,
respectively, has achieved superior convergence.

The confusion matrix summarizes predicted against actual
classification results, making it easy to assess a classifica-
tion model’s performance and identify its weak spots. The
corresponding confusion matrix for the superior ANN model
(Model #3) is shown in Fig. 13. Table III lists the results of the
developed ANN models concerning evaluation metrics for both
the training and testing datasets to assess the ANN models’
efficiency.

Fig. 13. Confusion matrix for ANN.

Regarding the classification results, the model trained and
tested had 323 and 94 diabetic patients predicted, respectively,
as TP . However, the model was incorrectly classified as
diabetic, with 51 positive data points belonging to a negative
class, and the predicted values, denoted as FN , were falsely
predicted.

Based on the results listed in Table III, the first model
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TABLE III. THE PERFORMANCE OF DIFFERENT ADOPTED ANN MODEL ARCHITECTURES

Model No. Train Test
Acc P R F Acc P R F

Model #1 0.748 0.736573 0.770053 0.752941 0.744 0.738462 0.761905 0.75
Model #2 0.797333 0.776119 0.834225 0.804124 0.752 0.766667 0.730159 0.747967
Model #3 0.846667 0.834625 0.863636 0.848883 0.756 0.764228 0.746032 0.75502

may have been overfitted because its accuracy score was lower
on the testing dataset than on the training dataset. Although
the second model performed better on both train and test
datasets, it had difficulty generalizing to the testing dataset
due to lower accuracy, recall, and F-measure scores. The third
model had the highest accuracy score on the training dataset
but a significantly lower accuracy score on the testing dataset,
indicating possible overfitting. However, the precision, recall,
and F-measure are better than other models in testing.

B. DT Results

The decision tree is an effective tool for interpretation, as it
can be presented visually and comprehended quickly, even by
those without expertise in the field. It follows a similar process
to a physician’s diagnostic criteria for identifying diseases.
The decision tree algorithm employs a greedy approach for
recursive binary splitting, selecting the optimal split at each
step rather than anticipating future steps and choosing a split
that may lead to a more optimal tree. This allows patients
to undergo laboratory tests in the sequence of the nodes and
potentially stop the testing process earlier if they meet certain
conditions [41].

Fig. 14 illustrates the decision tree used for diabetes
classification. The tree is composed of nodes, which are further
divided into sub-nodes. The parent node has one or more child
nodes. In this case, the tree has 13 nodes, with Glucose being
the root node. Then, we split the tree into another branch whose
root node is ’Age,’ with BMI as the child node. The tree’s root
node can be interpreted as ”Is the glucose level less than 43
(mg/dl)?”. If the patient’s glucose level is less than 43 (mg/dl),
the sub-tree is followed to check the patient’s age.

Fig. 14. Diabetic model using pruned DT.

We utilized the Minimal Cost Complexity Pruning (CCP)
approach to avoid overfitting and control the decision tree’s
complexity. This method adds a regularization parameter to
the criterion used to divide nodes in the tree. The parameter,
αccp, governs the balance between the tree’s complexity (i.e.,
its depth and breadth) and its capability to fit the training data.

By increasing the αccp, the algorithm can reduce the tree’s
depth and breadth, effectively curbing overfitting. Selecting an
appropriate evaluation metric is crucial in building effective
classification models. The accuracy of our model’s predictions
is evaluated by examining the confusion matrix shown in Fig.
15.

Fig. 15. Confusion matrix for DT.

The model correctly classified 604 out of 750 samples in
training and 188 out of 250 in testing. The number of samples
was classified as FP equals 92 in training and 40 in testing
(i.e., incorrect predictions).

C. RF Results

As an ensemble approach, a random forest uses many deci-
sion trees to arrive at one prediction. Since each decision tree
is constructed separately, the random forest may be enhanced
by pruning each tree before combining them.

”Bagging” represents the ensemble learning process known
as ”bootstrap aggregating.” This method uses bootstrapping
to divide the training data into B separate sets and then
builds a new decision tree for each iteration. The output is
then aggregated to give the class with the most votes from
the B trees. Bagging reduces variance and helps to avoid
overfitting since it aggregates multiple trees. Random forests
are a modified version of bagging that builds B number of de-
correlated sample trees. Like bagging, random forest builds B
decision trees on bootstrapped training samples. The difference
is that random forest builds de-correlated trees.

There is no specific algorithm to prune a random forest tree.
Nonetheless, one may indirectly affect the amount of overfit-
ting by controlling the tree complexity by RF algorithm hyper-
parameter adjustment. Furthermore, cost complexity pruning
can be used to post-prune the individual decision trees. Fig.
16 shows the pruned RF tree.

The confusion matrix that was generated using the RF
approach is also shown in Fig. 17. The matrix demonstrates
superior performance evaluation in training and testing the
Pima diabetic dataset. RF achieved a level of accuracy in
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Fig. 16. Diabetic model using pruned RF tree.

patient classification of 364 during the training phase and
101 during the testing phase (TP ). The number of correctly
classified negative class data points (TN ) during testing is 91,
while during training, it is 345.

Fig. 17. Confusion matrix for RFC.

D. KNN Results

One of the well-known machine learning algorithms is
KNN. It uses a variety of distance metrics. The fact that KNN
does not instantaneously start learning from the training set
has prompted some to refer to it as a lazy learner algorithm.
However, it retains the dataset and performs a calculation while
doing classification. The data points are classified accordingly
based on the value of k, which determines the number of data
points chosen from the nearest neighbors. Overall, the KNN
algorithm operated into two primary phases (training phase
and classification phase). In the training phase, the algorithm
keeps track of the features of the training samples and matches
class labels. In the classification phase, the test samples are
classified based on the value of k and by calculating the feature
similarity. A voting procedure takes place to conclude the
classification process ultimately. The value of k determines
how well the KNN algorithm works. Based on our model,
k = 5 for better performance.

Fig. 18 shows a visualization of three (e.g., ’Pregnancies,’
’BMI,’ ’Age’) of best-selected features with each other at k =
5 according to the target class. The generated confusion matrix

from the KNN classifier is shown in Fig. 19. For example,
”the number of patients that are healthy (i.e., negative) and
are predicted as a diabetic disease (i.e., positive) equal to 78
in training and 36 in testing.”

Fig. 18. Feature visualization (Pregnancies, BMI, Age at k = 5.

Fig. 19. Confusion matrix for KNN.

E. SVM Results

Support vector machines (SVMs) are standard supervised
ML algorithms. The SVM classifier aims to locate the hy-
perplane with the most significant margin separating the
classes. The optimal hyperplane is located by finding the
maximum point of the hyperplane’s margin. Dealing with high-
dimensional data requires kernel functions to transform the
input space into the feature space. The Radial Basis Function
(RBF) is a popular kernel function that employs the similarity
between the two points as presented in Eq. 16.

K (X1, X2) = exp

(
−∥X1 −X2∥2

2σ2

)
(16)

where σ is a hyperparameter and ∥X1 −X2∥ is the L2

norm distance between two data points X1 and X2.

The SVM’s performance is impacted by two hyperparam-
eters: C, a punishment parameter, and gamma, a control
parameter. A small number of C leads to a decision boundary
with a large margin higher chosen at the expense of more
misclassification. On the contrary, a more significant value of
C minimizes the misclassified samples with a smaller margin
due to the high penalty. The gamma parameter specifies how
much a single training sample may be influenced; low values
indicate ’far’ and large values ’close.’ In our case, the values
of C and gamma are set to the default values to produce
the best results according to our dataset. Fig. 20 shows the
decision boundary of the target class in both training and test
of diabetic data.
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Fig. 20. Decision boundary at training and testing of SVM.

The confusion matrix resulting from the evaluation of the
SVM on the diabetes dataset is depicted in Fig. 21. It has
proven its efficiency in correctly classifying 602 instances
(positive and negative) out of 750 in the training phase, while
in the testing phase, it correctly classified 191 instances out of
250.

Fig. 21. Confusion matrix for SVM.

F. GB Results

As a subset of ensemble learning, boosting algorithms
repeatedly train a series of weak models to improve the
accuracy of predictions. Each model addresses the weaknesses
of its predecessors until a final robust model has been reached.
Boosting should specify a weak model (e.g., decision tree,
random forest) as a learner to improve it.

Gradient boosting is a technique that combines many weak
prediction models, often decision trees, in a sequential manner
to create a robust predictive model. GB iteratively improves
the algorithm based on the loss function [42] (i.e., minimizing
the residual errors) by fitting each new weak learner to the
residuals of the previous model. To simplify the gradient-
boosting classifier approach, one has to tweak parameters like
the learning rate and the number of estimators. The learning
rate determines the relative significance of each new tree in the
ensemble, while the number of estimators determines the over-
all number of trees incorporated into the model. Maintaining a
balance between these two parameters is necessary to prevent
overfitting.

Moreover, pruning the tree can influence the optimization
of gradient boosting by improving the generalization and
reducing the overfitting. Fig. 22 shows the initial estimator
(i.e., DT) with a depth equal to 3 for the trained GB classifier.
Due to the ensemble’s overall classifier nature, each tree in the

ensemble calculates values in the floating point value format.
Consequently, the resulting confusion matrix for training and
testing is shown in Fig. 23. The GB classifier has achieved
reasonable classification results in TP , which” reached up to
346 and 100 instances in training and testing, respectively. At
the same time, it misclassifies 128 instances over the train and
test.

Fig. 22. Diabetic model using pruned GB classifier.

Fig. 23. Confusion matrix for GBC.

VI. PERFORMANCE ANALYSIS

Table IV displays the results of all the machine learning
algorithms used in various assessment measures, with the top-
performing algorithms shown in bold.

The RF model has achieved a superior result in terms of
accuracy when compared with other algorithms in training and
testing, reaching up to 95% and 77%, respectively. Although
the ANN and DT performed impressively on the testing set,
showcasing high values for precision and recall, they still
achieved lower F-measure values than RF. According to other
compared algorithms, the GB got higher accuracy (91%) than
others in training. However, the SVM has achieved the lowest
accuracy values in training but a reasonable value in testing.

Analyzing Table IV, it is evident that the Random For-
est classifier (RF) achieved the highest training and testing
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TABLE IV. COMPARATIVE PERFORMANCE OF ML ALGORITHMS ON VARIOUS MEASURES

ML Algorithm Train Test
Acc P R F Acc P R F

ANN 0.868 0.857143 0.882353 0.869565 0.768 0.788136 0.738095 0.762295
DT 0.806667 0.77724 0.858289 0.815756 0.752 0.722222 0.825397 0.77037
RF 0.945333 0.921519 0.973262 0.946684 0.768 0.753731 0.801587 0.77692

KNN 0.832 0.806931 0.871658 0.838046 0.72 0.71875 0.730159 0.724409
SVM 0.802667 0.792746 0.818182 0.805263 0.764 0.76378 0.769841 0.766798
GB 0.908 0.894057 0.925134 0.90933 0.764 0.75188 0.793651 0.772201

accuracy among the evaluated algorithms. Additionally, RF
displayed notable precision, recall, and F-measure on the
training and testing sets. These results suggest that the RF
model performs effectively on the given dataset and exhibits
solid predictive capabilities.

Furthermore, Table V listed the total number of correctly
(CC) and mis-correctly (MC) classified instances in each
comparative algorithm’s training and testing phases. The Ran-
dom Forest algorithm counted the most prominent correctly
classified instances against other algorithms, with 709 out of
750 in training and 192 out of 250 in testing. It achieved the
lowest value of mis-correctly instances in training and testing,
with 41 out of 750 in training and 58 out of 250 in testing.

TABLE V. COMPARATIVE PERFORMANCE OF ML ALGORITHMS OVER
CLASSIFICATION INSTANCES

ML Algorithm Train Test
# CC # MC # CC # MC

ANN 635 115 189 61
DT 605 145 188 62
RF 709 41 192 58

KNN 624 126 180 70
SVM 599 148 191 59
GB 681 69 191 59

Furthermore, Fig. 24 shows the Boxplot of the six com-
pared ML algorithms. The ANN and SVM classifier’s box
plot reveals a positively skewed, which indicates a more
significant frequency of highly rated scores in the data (i.e., a
slight deviation from the data’s central tendency). However,
the GBC and DT boxplots show the median closer to the
upper quartile, indicating a negative skew with low-valued
scores occurring more frequently in the data classified by the
ANN. Concerning overall data distribution, the RF classifier
is superior to the normal Distribution. With more scattered
data points and a smaller range, the RF classifier indicates less
variability. RF appears more robust and stable among the ML
models examined, as evidenced by its box plot characteristics.

Fig. 25 represents all classification algorithms’ ROC curve
(AUC) area. It reveals the random probability that a positive
instance would receive a higher score than a negative one. A
classification method’s ability to discriminate between classes
is directly proportional to the AUC value, meaning that a
higher AUC indicates better performance. The random forest
classifiers had the most excellent ROC value of 0.95 compared
to ANN, DT, RF, SVM, and GB algorithms.

VII. CONCLUSION

The study evaluated six employed ML algorithms, ANN,
KNN, DT, RF, GB, and SVM, to assess their performance in
classifying diabetes. By utilizing an oversampled dataset, we

Fig. 24. Comparision of utilized ML models (BoxPlot Curves).

Fig. 25. Comparision of utilized ML models (ROC curves).

applied various machine learning models and identified five
crucial features - ”Pregnancies,” ”Glucose,” ”BMI,” ”Pedigree
Function,” and ”Age” - for diabetes classification. Our results
indicated that the RF model had the best level of accuracy in
diagnosing diabetes. The developed system ensures consistent
predictions, enabling more practical application to other dis-
eases. For future research, it would be beneficial to investigate
the potential advantages of utilizing algorithm combinations
instead of only depending on the top-performing algorithm
within the ensemble.

REFERENCES

[1] A. Steele, “Projected diabetes rates in america.” [Online]. Available:
https://psydprograms.org/projected-diabetes-rates-in-america/

www.ijacsa.thesai.org 1383 | P a g e

https://psydprograms.org/projected-diabetes-rates-in-america/


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 3, 2024

[2] J. Smith, M. Johnson, and D. Williams, “Diabetes mellitus: a compre-
hensive review,” Journal of Diabetes Research, vol. 2021, pp. 1–15,
2021.

[3] M. A. Rogers, B. S. Rogers, and T. Basu, “Prevalence of type 1 diabetes
among people aged 19 and younger in the united states,” Preventing
Chronic Disease, vol. 15, p. 180323, 2018.

[4] K. Bond and A. Sheta, “Medical data classification using machine
learning techniques,” International Journal of Computer Applications,
vol. 183, pp. 1–8, 06 2021.

[5] K. Patel, K. Kalia, and N. M. Patel, “Challenges and opportunities in
diabetes research: a machine learning perspective,” Current diabetes
reviews, vol. 14, no. 1, pp. 15–22, 2018.

[6] K. Al-Rubeaan, A. Al-Manaa, H. K. Al-Qumaidi, A. H. El-Malki,
M. A. Nasir, A. M. Al-Dhukair, and E. S. Ibrahim, “Diabetes mellitus,
hypertension and obesity—common multi-factorial disorders in saudis,”
Journal of family & community medicine, vol. 22, no. 1, p. 1, 2015.

[7] K. J. Gaulton, T. C. Nammo, T. Pasquali, N. M. Matqevalli, H. Benazzo,
P. A. Ostrowski, M. L. Johnson, J. Dannenberg, M. L. Kameswaran,
M. E. Brandt et al., “A map of open chromatin in human pancreatic
islets,” Nature genetics, vol. 42, no. 3, pp. 255–259, 2010.

[8] I. Kavakiotis, O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and
I. Chouvarda, “Machine learning and data mining methods in diabetes
research,” Computational and structural biotechnology journal, vol. 15,
pp. 104–116, 2017.

[9] S. K. Roy, A. Ali, M. Radeef, A. Alzahrani, and N. Khan, “Machine
learning-based diabetes prediction models: a review,” Journal of Ambi-
ent Intelligence and Humanized Computing, vol. 12, no. 9, pp. 8951–
8974, 2021.

[10] S.-J. Xia, B.-Z. Gao, S.-H. Wang, D. S. Guttery, C.-D. Li, and Y.-D.
Zhang, “Modeling of diagnosis for metabolic syndrome by integrating
symptoms into physiochemical indexes,” Biomedicine & Pharmacother-
apy, vol. 137, p. 111367, 2021.

[11] A. D. Association, “Classification and Diagnosis of Diabetes,” Diabetes
Care, vol. 40, pp. S11–S24, 12 2016.

[12] M. Z. Alam, M. S. Rahman, and M. S. Rahman, “A random forest
based predictor for medical data classification using feature ranking,”
Informatics in Medicine Unlocked, vol. 15, p. 100180, 2019.

[13] A. Sheta, H. Turabieh, M. Braik, and S. R. Surani, “Diagnosis of
obstructive sleep apnea using logistic regression and artificial neural
networks models,” in Proceedings of the Future Technologies Confer-
ence. Springer, 2019, pp. 766–784.

[14] A. Sheta, H. Turabieh, T. Thaher, J. Too, M. Mafarja, M. S. Hossain,
and S. R. Surani, “Diagnosis of obstructive sleep apnea from ECG
signals using machine learning and deep learning classifiers,” Applied
Sciences, vol. 11, no. 14, 2021.

[15] C. Haberfeld, A. Sheta, M. S. Hossain, H. Turabieh, and S. Surani, “SAS
mobile application for diagnosis of obstructive sleep apnea utilizing
machine learning models,” in 2020 11th IEEE Annual Ubiquitous Com-
puting, Electronics & Mobile Communication Conference (UEMCON),
2020, pp. 0522–0529.

[16] I. Aiyer, L. Shaik, A. Sheta, and S. Surani, “Review of application of
machine learning as a screening tool for diagnosis of obstructive sleep
apnea,” Medicina, vol. 58, no. 11, 2022.

[17] S. Afzali and O. Yildiz, “An effective sample preparation method for
diabetes prediction,” The International Arab Journal of Information
Technology, vol. 15, no. 6, November 2018.

[18] M. K. Hossain, S. M. Ehsan, K. Abdullah-Al-Mamun, and S. Baharun,
“Machine learning techniques for diabetes decision support: A review,”
Journal of medical systems, vol. 43, no. 9, p. 268, 2019.

[19] A. F. Sheta, S. E. M. Ahmed, and H. Faris, “A comparison between
regression, artificial neural networks and support vector machines for
predicting stock market index,” International Journal of Advanced
Research in Artificial Intelligence, vol. 4, no. 7, 2015. [Online].
Available: http://dx.doi.org/10.14569/IJARAI.2015.040710

[20] B. Byers and A. Sheta, “Design of convolutional neural networks
for fish recognition and tracking,” Artificial Intelligence and Machine
Learning AIML, vol. 22, no. 1, pp. 1–9, 5 2022.

[21] V. Chang, J. Bailey, Q. Xu, and Z. Sun, “Pima indians diabetes
mellitus classification based on machine learning (ml) algorithms,”
Neural Computing and Applications, 03 2022.

[22] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016.

[23] J. Fürnkranz, Decision Tree. Boston, MA: Springer US, 2010, pp.
263–267.

[24] A. Saud, S. Shakya, and B. Neupane, “Analysis of depth of entropy and
gini index based decision trees for predicting diabetes,” Indian Journal
of Computer Science, vol. 6, pp. 19–28, 01 2022.

[25] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[26] U. Bollikonda, “Random forest machine learn-
ing algorithm,” 2021, accessed: December 8,
2021. [Online]. Available: https://medium.com/@uma.bollikonda/
random-forest-machine-learning-algorithm-401bdcd7a0b8

[27] A. B. Omar, S. Huang, A. A. Salameh, H. Khurram, and M. Fareed,
“Stock market forecasting using the random forest and deep
neural network models before and during the covid-19 period,”
Frontiers in Environmental Science, vol. 10, 2022. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fenvs.2022.917047

[28] S. Du, D. Hao, and X. Li, “Research on stock forecasting based on
random forest,” in 2022 IEEE 2nd International Conference on Data
Science and Computer Application (ICDSCA), 2022, pp. 301–305.

[29] P. Josso, A. Hall, C. Williams, T. Le Bas, P. Lusty, and B. Murton,
“Application of random-forest machine learning algorithm for mineral
predictive mapping of fe-mn crusts in the world ocean,” Ore Geology
Reviews, vol. 162, p. 105671, 2023.

[30] J. Cervantes, F. Garcia-Lamont, L. Rodrı́guez-Mazahua, and A. Lopez,
“A comprehensive survey on support vector machine classification:
Applications, challenges and trends,” Neurocomputing, vol. 408, pp.
189–215, 2020.

[31] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods
in machine learning,” The Annals of Statistics, vol. 36, no. 3,
pp. 1171 – 1220, 2008. [Online]. Available: https://doi.org/10.1214/
009053607000000677

[32] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O.
Adetunmbi, and O. E. Ajibuwa, “Machine learning for email
spam filtering: review, approaches and open research problems,”
Heliyon, vol. 5, 2019. [Online]. Available: https://api.semanticscholar.
org/CorpusID:189930761

[33] N. Aziz, E. Akhir, A. P. D. I. Aziz, J. Jaafar, M. H. Hasan, and
A. Abas, “A study on gradient boosting algorithms for development
of ai monitoring and prediction systems,” 10 2020, pp. 11–16.

[34] R. Saxena, S. Sharma, and M. Gupta, “Analysis of machine learning
algorithms in diabetes mellitus prediction,” Journal of Physics: Confer-
ence Series, vol. 1921, p. 012073, 05 2021.

[35] J. J. Khanam and S. Y. Foo, “A comparison of machine learning
algorithms for diabetes prediction,” ICT Express, vol. 7, no. 4, pp. 432–
439, 2021.

[36] J. Chaki, S. Thillai Ganesh, S. Cidham, and S. Ananda Theertan,
“Machine learning and artificial intelligence based diabetes mellitus
detection and self-management: A systematic review,” Journal of King
Saud University - Computer and Information Sciences, vol. 34, no. 6,
Part B, pp. 3204–3225, 2022.

[37] A. Moreo, A. Esuli, and F. Sebastiani, “Distributional random over-
sampling for imbalanced text classification,” in Proceedings of the 39th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, ser. SIGIR ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 805–808.

[38] T. Wongvorachan, S. He, and O. Bulut, “A comparison of undersam-
pling, oversampling, and smote methods for dealing with imbalanced
classification in educational data mining,” Information, vol. 14, no. 1,
2023.

[39] M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, and
Z. Siddique, “Effect of data scaling methods on machine learning
algorithms and model performance,” Technologies, vol. 9, no. 3, 2021.

[40] M. Ucar, “Classification performance-based feature selection algorithm
for machine learning: P-score,” IRBM, vol. 41, 02 2020.

[41] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 103.

[42] J. Friedman, “Stochastic gradient boosting,” Computational Statistics &
Data Analysis, vol. 38, pp. 367–378, 02 2002.

www.ijacsa.thesai.org 1384 | P a g e

http://dx.doi.org/10.14569/IJARAI.2015.040710
https://medium.com/@uma.bollikonda/random-forest-machine-learning-algorithm-401bdcd7a0b8
https://medium.com/@uma.bollikonda/random-forest-machine-learning-algorithm-401bdcd7a0b8
https://www.frontiersin.org/articles/10.3389/fenvs.2022.917047
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677
https://api.semanticscholar.org/CorpusID:189930761
https://api.semanticscholar.org/CorpusID:189930761

	Introduction
	Machine Learning
	Methods
	Artificial Neural Networks
	Decision Tree
	Random Forest
	K-Nearest Neighbor
	Support Vector Machine
	Gradient Boosting

	Classification Process
	Pima Indian Diabetes Dataset
	Oversampling
	Feature Selection
	Data Scaling
	Evaluation Metrics

	Experimental Results
	ANN Results
	DT Results
	RF Results
	KNN Results
	SVM Results
	GB Results

	Performance Analysis
	Conclusion
	References

