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Abstract—The warning of fire and smoke provides security 

for people's lives and properties. The utilization of deep learning 

for fire and smoke warning has been an active area of research, 

especially the use of target detection algorithms has achieved 

significant results. For improving the fire and smoke detection 

performance of model in different scenarios, a high-precision and 

lightweight improvement based on the model of You Only Look 

Once (YOLO), is developed. It utilizes partial convolutions to 

reduce the complexity of model, and add an attention block to 

acquire the cross-space learning capability. In addition, the neck 

network is redesigned to realize bidirectional feature fusion. 

Experiments show that it has significantly improved the results 

for all metrics in the public Fire-Smoke dataset, and the size of 

the model has also been widely reduced. Comparisons with other 

popular target detection models under the same conditions 

indicate that the improved model has the best performance as 

well. In order to have a more visual comparison with the 

detectability of the original model, the heatmap experiments are 

also established, which also demonstrate that it is characterized 

by less leakage rate and more focused attention. 

Keywords—Fire and smoke detection; deep learning; computer 

vision; YOLO  

I. INTRODUCTION 

The warning of disaster is a broad field that many 
researchers have devoted themselves to study in recent years. 
There are many categories of disasters, including floods and 
fires, which must be monitored at an early stage, so that 
precautionary measures can be taken. It is very necessary to 
detect and monitor disasters including floods, typhoons and 
fires at an early stage and take relevant preventive measures. 
Among these disasters, fire is one of the most hazardous, 
which often inflicts a serious threat to people's property and 
lives, and also causes huge losses to public facilities and 
ecological resources [1]. 

In many cases, the fire detection is still based on the 
traditional smoke sensor and temperature sensor [2], [3], [4]. 
When the value detected by the sensor exceeds a certain 
threshold, the alarm and fire extinguishment system will be 
activated [5]. This method is more effective in some relatively 
small indoor environments, but in some scenes, like a factory 
and forest, which are relatively open and easy to cause the 
rapid spread of fire, this method is often unable to quickly 
detect the occurrence of fire, and it is difficult to accurately 
provide the fire location information. Therefore, how to 
improve the ability of fire detection, as well as accurately and 
rapidly detect the fire have become the focus and direction of 
current research in this area. With the popularity of video 
surveillance and the iteration of image processing, it becomes 

a mainstream of current research to detect the occurrence of 
fire by learning the characteristics of flame and smoke through 
processing image sets. This research is mainly divided into 
three categories: target classification models, target 
segmentation models and target detection models [6]. 

Since target classification models can only determine 
whether flame and smoke are present in the image, and target 
segmentation models need to build a large number of pixel-
level labelled datasets for training, both types of models have 
certain limitations when performing such tasks. Target 
detection models have the functions of classifying and 
locating the target to be detected, which can quickly detect 
whether a fire occurs or not, and also accurately select the 
target through the anchor box, so the target detection model is 
more suitable for dealing with this type of task, which is also a 
future research direction. 

Existing models have two shortcomings in flame and 
smoke detection, which are worthy of continuous 
improvement. Firstly, at the time of initial fire, the 
measurement of object is little and the feature is not distinct 
enough, thus making it more difficult to be detected. 
Secondly, the current target detection models for the flame 
and smoke are generally too complicated to be applied to the 
equipment with different performance, resulting in insufficient 
practicability. The main reason for this problem is that the 
modules used in the model improvement scheme proposed by 
the researchers, as well as the improvements to the model 
structure, significantly increase the complexity of inference, 
resulting in slower model computation [6]. For the existing 
issue, the objective of paper is to achieve a lightweight and 
high-precision object detection model by improving an 
existing model. The significance of this study is to make the 
improved model more practical, which can be easily deployed 
on various terminal devices for detection tasks in different 
scenarios, so that the model has the ability to detect and locate 
the flame and smoke targets more quickly and accurately in 
order to reduce the losses caused by disasters. 

The work established in this paper is based on the 
improvement of YOLOv8n. Under the premise of improving 
the precision, we compressed the magnitude of model by 
reducing the parameters required for the operation. As a result, 
the developed model has the characteristics of both high 
precision and light weight. Three major innovations are shown 
below: 

1) For the purpose of decreasing the size of model, A new 

block C2f-faster is constructed by replacing the Bottleneck 

Block in the original YOLOv8n with FasterNet Block. 
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2) By utilizing the Efficient Multi-scale Attention (EMA) 

block into the network, it is more conducive to fuse the 

contextual information at different scales, and make the neural 

network extract the feature from the input better. 

3) By redesigning the Neck layer of yolov8n, the 

Bidirectional Feature Fusion (BiFF) is realized to improve the 

detectability. 

The rest part involves five sections: Section II presents the 
related researches. Section III illustrates the structure of the 
YOLOv8n model and its advantages over previous versions, 
and then introduces the three improvements based on this 
model. Section IV mainly presents the dataset and setting used 
in the experiments. Section V demonstrates the effects of 
different improvement methods through ablation experiments, 
and the results of comparative experiment with YOLOv3t, 
YOLOv4t, YOLOv5n, YOLOv6n, YOLOv7t are shown in 
this Section. Moreover, comparisons of detection and heatmap 
are also finished. Section VI analyzes the experimental results 
and summarizes the whole work. 

II. RELATED WORKS 

The algorithm based on object classification models 
determines whether the input image contains fire or smoke 
category information and outputs the corresponding label. 
Based on the VGG16 model, He et al. [7] introduced an 
attention block and FPN feature fusion block to obtain an 
improved classification effect of smoke and smoke-like 
targets. However, the usage scenario of the improvement has 
some restrictions. Besides, the situation of smoke cannot be 
identified. RYU et al. [8] used Harris corner detector and HSV 
channel to pre-process the flame, and then captured features 
from Inceptionv3 model to improve the accuracy, but the pre-
processing took a long time. Nguyen et al. [9] developed a 
method which combines the CNN and Bi-LSTM to extract 
spatial domain and temporal domain features of flame 
simultaneously. However, the large number of fully connected 
layers in the network made the computation heavy, and made 
it difficult to deploy. 

Compared with the target classification model that can 
only judge whether there are flame and smoke in the image, 
the target segmentation model can get the shape, size and 
other details from the loaded pictures, and then judge the 
spread trend of fire. U-net, proposed by Ronneberger et al. 
[10], is a model which is applied extensively in the image 
segmentation field. It constructs a network similar to the letter 
U through the encoder and decoder structure, and utilizes this 
structure to make the output which is extracted by the encoder 
part fuse in the decoder part to get multi-scale features. 
Inspired by the complete convolutional network (FCN), Yuan 
[11] proposed a target segmentation model with good 
performance in the segmentation of fuzzy smoke images. 
Frizzi et al. [12] established a network structure based on 
VGG16 to detect and locate flame and smoke, and 
outperformed U-net and Yuan-net in different indicators. The 
algorithm based on the target segmentation model can provide 
more detailed fire information, but the size of the model is 
usually large. Besides, a large number of pixel-level labeled 
datasets are used in the training of this type of model, which 
will undoubtedly consume a lot of time. 

The algorithm based on object detection model can 
classify and locate multiple flame and smoke targets by 
different anchors in the input image. Park et al. [13] integrated 
the ELASTIC block [14] into the backbone of YOLOv3 to 
detect candidate regions, generated a bag-of-features (BoF) 
histogram for the target region, and then passed the BoF into 
the random forest classifier to detect the target. It is difficult to 
deploy the model to embedded devices because of its high 
requirement of graphics operation. Xue et al. [15] mainly 
added a 160*160 head into the YOLOv5 model to obtain a 
better capability when detecting small targets and utilized the 
CBAM [16] that includes broader identities to improve the 
perception of model. From the experimental results, the value 
of mAP is improved, but the value of Frame Per Second (FPS) 
is decreased. 

III. IMPROVED METHODOLOGY 

YOLOv8 is a one-stage target detection algorithm released 
by Ultralytics in January 2023 based on YOLOv5 [17]. This 
version can be used in performing image classification, target 
detection, target tracking and other tasks. The entire network 
is composed of three components: the Backbone extracts 
feature maps from the loaded picture; the Neck aggregates the 
features of different layers and passes it to the predicting part; 
and the Head makes predictions about the target and its 
location information. Compared with the previous version of 
YOLO algorithm, YOLOv8 demonstrates better detection 
performance on the COCO dataset. Moreover, YOLOv8 
provides different models according to the size, such as n, s, 
m, l, and x. The model becomes larger in turn, which is 
controlled by depth, width, and max channels. The model 
chosen for improved is the smallest of the above, YOLOv8n, 
which suits better with the objective of this work. 

The constitution of YOLOv8 is displayed in Fig. 1. To 
realize further lightweight, the C3 block in the former version 
is updated by the C2f block in YOLOv8 [18]. In the Neck 
layer, the former convolutional module in the up-sampling 
layer in YOLOv5 is deleted, and the output from different 
layers are straightly loaded into the up-sampling stage [19]. 
Decoupled Head is adopted in the Head part, which captures 
the position of target and category information separately and 
aggregates them after learning in different paths of network. 
Compared with the Coupled head in YOLOv5, it can 
efficiently enhance the model’s performance to generalize and 
increase its robustness [20]. Unlike the Anchor-Base used in 
the previous YOLO series to predict the position and size of 
the Anchor, YOLOv8 uses the Anchor-Free detection method, 
which means it does not need to preset the Anchor, thus 
reducing the time-consuming and required arithmetic power 
[17]. 

The flame and smoke detection task is often limited by 
device resources. In order to be applied to as many different 
scenarios as possible, a lightweight and low latency model is a 
basic condition for it to be deployed on different devices. On 
this basis, realizing high accuracy as much as possible is also 
an improvement direction for the model. A new model called 
YOLOv8n-EBF is improved and proposed. 

Fig. 2 shows the main structure of YOLOv8n-EBF. As 
mentioned before, YOLOv8n-EBF mainly makes three 
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improvements on the original network. Firstly, a new 
FasterNet Block consisting of partially convolution is used to 
change the Bottleneck in the C2f to constitute a new module 
called C2f-faster. There are total seven C2f-faster modules 
used in the network, which can effectively decrease the 
magnitude of the network and further affect the computing 
speed. Secondly, the EMA block is used to strengthen the 
extraction of target features. Finally, a modified Neck layer 
structure is utilized for fusing the output feature maps of four 
C2f-faster modules in the Backbone across space. The 
extracted multi-scale features are loaded into the network to 
obtain the detecting improvement. The three followed 
subsections specify the details of each modified module. 

A. The Improved C2f Module 

The C2f references the design idea of Efficient Layer 
Aggregation Networks [21] to obtain richer gradient 
information by branching more gradient streams in parallel, 
which in turn results in higher accuracy and lower latency. 

The convolutional kernels and operations are widely used 
in deep learning networks, and the process often require a 

large amount of computational support. For alleviating the 
issue of slow inference process generated by convolutional 
operation in the model, Chen [22] proposed a new partial 
convolution, called PConv. It replaces the regular form of 
convolution by utilizing one PConv of 𝑐𝑝  channels and one 

1×1 convolution of 𝑐 − 𝑐𝑝 channels to combine a hammer-like 

structure, as shown in Fig. 3(a) and Fig. 3(b). Compared with 
one regular 𝑘 ∗ 𝑘 ∗ 𝑐 kernel convolution, shown in Fig. 3(c), 
the participants in the improved convolution module is 

reduced from 𝑘2 ∙ 𝑐  to 𝑘2 ∙ 𝑐𝑝 + (𝑐 − 𝑐𝑝) , which not only 

achieves a similar effect but also greatly reduces the amount 
of computation when it is used for calculation. Based on the 
partial convolution, they constructed a new network module, 
FasterNet Block, shown in Fig. 4 below, which is used to 
extract features. It contains one 3×3 PConv layer and two 1×1 
regular Convolution layers, which has a similar structure and 
function with Bottleneck block. Therefore, it is utilized to 
propose an improved module called C2f-faster, shown in Fig. 
5 below. 

 

Fig. 1. The structure of YOLOv8.
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Fig. 2. The structure of YOLOv8n-EBF. 

 

Fig. 3. (a) Structures of convolutional variants; (b) A hammer-like structure which is constituted by one PConv and one 1*1 Conv; (c) One regular k*k*C kernel 

Conv. 

 

Fig. 4. The structure of FasterNet block. 
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Fig. 5. An improved C2f formed by replacing bottleneck blocks with FasterNet blocks. 

B. Efficient Multi-Scale Attention (EMA) Module 

By invoking the attention module can capture the 
important image information, allowing the model to focus on 
detecting the key areas and obtaining the significant features 
of the target, which plays an important character in all kinds of 
computer vision tasks [23]. In this paper, EMA module [24] is 
utilized into the improved model to enhance the detection 
capability. Fig. 6 reveals the principle of EMA module. For 

the input feature map X∈RC×H×W, EMA divides the channel 

dimension into G sub-features, X=[X
0
,Xi,…,XG-1] ， Xi∈

RC×H×W, and makes G≪C, which enable the model to obtain 
different semantic features. This module captures the weights 
of grouped features during two parallel paths which contains 

one 1×1 convolution path and one 3×3 convolution path. The 
parallel substructure reduces the depth of the networks, and 
avoids the dimensionality reduction by merging some of the 
channels at the same time, maintaining the features of each 
channel. Similar to the Coordinate Attention [25], a global 
average pooling operation is added for encoding operations in 
the X and Y directions of the channel in the 1×1 branch, and 
these two encoded features are concatenated and convolved 
with a 1×1 kernel convolution. The output is then decomposed 
into two vectors and fitted using a Sigmoid nonlinear 
activation function. Finally, the cross-channel interaction is 
achieved by multiplying the aggregated channel attention, 
which efficiently captures the inter-channel dependencies and 
preserves the spatial information in the channel. 

 

Fig. 6. The structure of EMA module. 

In another branch, one 3×3 convolutional kernel is added 
for capturing multi-scale features and constitutes with the 1×1 
branch for aggregating the cross-space information. The main 
approach is to encode the outputs of the 1×1 branch and the 
3×3 branch by a global average pooling operation and convert 
them to a 1×C//G dimensional shape after passing through a 
normalization function and a reshape operation, and then 
multiply it with the feature vector C//G×H*W  of the other 

branch after dimensionality reduction, as shown in the formula 
below: 

R=R1
1×C//G×R2

C//G×H*W       (1) 

The output 𝑅 that fuses contextual information from 
different branches enables the neural network to produce a 
better attention for the feature map. Moreover, it is multiplied 
with the original input after a Sigmoid activation function and 
a dimensional transformation to obtain the final output feature 
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map. Since the size of EMA’s input and output are same, 
which makes it convenient to directly add into the YOLOv8n 
network. 

C. Redesigned Neck Layer 

The feature fusion of different scales is a significant 
approach to improve image processing. To obtain richer image 
feature information, an improved structure for YOLOv8n 
network with Bidirectional Feature Fusion (BIFF) is proposed, 
as shown in Fig. 7. To entirely utilize the important semantic 
information in the high-dimensional feature maps as well as 
the target feature information contained in the medium- and 
low-dimensional feature maps, we aggregated the feature 
maps of four different layers in the backbone and then fused 
them with others in the neck part. 

 

Fig. 7. The process of BiFF network. 

According to the structure diagram of the original 
YOLOv8n, it can be known that there are four C2f modules in 
the backbone, which can generate four different scales of 
feature maps, i.e., 160×160, 80×80, 40×40, and 20×20. In the 
redesigned neck network, the low-dimensional feature maps of 
160×160 and 80×80 are chosen to be reduced to the 40×40 
size by the average pooling operation, and the high-
dimensional feature map of 20×20 was scaled up to the size of 
40×40 by up-sampling operation. The low-dimensional feature 
maps tend to contain more spatial information due to smaller 
receptive fields, while the high-dimensional feature maps with 
larger receptive fields tend to contain more semantic 
information [26]. The reason for choosing to scale these three 
feature maps to the size of 40×40 is that this size of feature 
map can contain the information in both the low- and high-
dimensional feature maps, and will not cause the loss of 
information due to being too large or small. These four feature 
maps are concatenated in series and then downscaled by a 
point wise convolution and fed into the EMA module. As 
mentioned in the subsection above, The EMA module mainly 
works on slicing the feature information of C channels into G 
groups and performs feature extraction on different parallel 
paths, and finally generates the feature maps that incorporate 
multi-scale information. In one branch, it is combined with 
another 40×40 map in the original Neck network, and in 
another branch, it is scaled to 20×20 for combining with the 
same size feature map in the network by average pooling 
operation. At this point, an improved Neck network for cross-
space feature fusion induced by the backbone layer is 
constructed. 

The network has three main advantages as followed: 

1) This network is combined with the original Neck 

network to realize two-way feature fusion, which strengthens 

the expression of features, and thus improves the performance 

of the detector; 

2) It mainly consists of parallel structure, which is faster 

in computation; 

3) It mainly utilizes four existing feature maps. The 

subsequent experimental part shows that this improvement 

only increases a few parameters. 

IV. ENVIRONMENT AND DATASET 

A. Experimental Environment and Evaluation Criterion 

This work is established in the following environment: the 
CPU is an 8-core Xeon Gold 5218R; the memory capacity is 
32GB; the graphics card is a Tesla V100-SXM2 with 16GB of 
memory. The version of Python is 3.8.8, Pytorch is 1.8.0, 
CUDA is 11.7, and YOLOv8n is ultralytics 8.0.147. The 
models in the experiments did not use pre-trained weights, and 
the main hyperparameter values are shown in Table I below. 

In the experiment, the Precision, Recall, Average 
Precision, mAP@.5, Parameters and GFLops are chosen as the 
evaluation criterion. The criteria for sample classification are 
shown in Table II. 

TABLE I. DESCRIPTION OF THE MAIN HYPERPARAMETERS 

Hyperparameter Value 

Lr 0.01 

Lrf 0.01 

Momentum 0.937 

Weight_decay 0.0005 

Batch-size 16 

workers 8 

Epochs 200 

TABLE II. CRITERIA FOR SAMPLE CLASSIFICATION 

Classification Explanation 

TN Predicting the correct quantity of negative samples 

FN Predicting the incorrect quantity of negative samples 

TP Predicting the correct quantity of positive samples 

FP Predicting the incorrect quantity of positive samples 

1) P (Precision), the scale of positive samples predicted 

correctly to samples predicted as positive, is calculated as: 

P=
TP

TP+FP
                (2) 

2) R (Recall), the scale of positive samples predicted 

correctly to all true positive samples, is calculated as: 

R=
TP

TP+FN
    (3) 

3) AP (Average Precision), which reflects the average 

prediction ability for a single target category. The higher the 

value of AP, the better the detectability of the model in this 

category. The calculation formula is: 
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AP=∫ P(R)
1

0
dR     (4) 

4) mAP, which reflects the average predictive ability of 

the model for all categories, i.e., averaging the AP values for 

all categories, is calculated as follows: 

mAP=
1

n
∑ (AP)

i
n
i=1   (5) 

where, n means all predicted categories, and (AP)
i
 means 

the average precision of the ith category. mAP@.5 is used as 
an evaluation criterion in the experiment, which means that 
when the overlap between the predicted box and the GT box is 
greater than 0.5, i.e., IoU>0.5, the prediction is judged to be 
correct, and the relevant values are calculated using this as a 
benchmark. 

5) Parameters and GFLops which reflect the model size 

and computational complexity, are used to measure the ease 

with which a model can be deployed in end devices. 

B. Dataset 

A high-quality dataset allows the model to extract features 
more efficiently during training. We selected a public dataset 
Fire-Smoke, which contains 3961 photos. The labels of the 
dataset are categorized into Fire, Smoke, compared to the 
single-label dataset, this dataset enables the model to detect 
both fires that can be directly observed and fires that are 
obscured by objects by detecting smoke. 

Training and validation sets are split 9:1. Fig. 8 displays 
some representative pictures. The scenes cover indoor scenes 
such as living rooms, bedrooms, offices, and hallways, as well 
as outdoor scenes such as factories, forests, streets, and 
buildings. Besides, it contains pictures at different distances 
from close view to distant view, it contains pictures with only 
flames, pictures with only smoke, and pictures with both 
flames and smoke. 

Overall, the selected dataset contains a rich collection of 
scenarios covering enough features of flames and smoke to 
make the trained model generalizable and applicable to 
detection work in different environments. 

 

Fig. 8. Representative fire and smoke images selected from the dataset: (a) Fire in a corridor, (b) Fire in a building, (c) Fire in a forest, (d) Fire in close-up, (e) 

Fires in mid-range, (f) Fires in far-range, (g) Images dominated by flames, (h) Images with both flames and smoke, (i) Images dominated by smoke. 
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V. RESULTS AND ANALYSIS 

A. Ablation Experiment 

To verify the effects of different methods proposed in this 
work on the original network, four sets of ablation 
experiments were carried out for YOLOv8n. 

The first experiment used C2f-faster modules to replace all 
the C2f modules in the network. The second experiment added 
an EMA module after the SPPF module. The third experiment 
used BiFF to form a new Neck network. In the end, the fourth 
experiment used the three improvement methods mentioned 
above to form the complete network YOLOv8n-EBF. All the 
experiments were established on the same environment. The 
results are listed in the Table III. 

From the ablation experiments, the Precision, Recall, and 
mAP@.5 of the redesigned network are improved by 4.7%, 
1.9%, and 3.1%, respectively, compared to YOLOv8n, while 
the parameters decrease by 19.7%, and GFLops decrease by 
18.3%. Replacing C2f with C2f-faster efficiently reduces 
parameters, and increases Precision as well as mAP@.5 by 
3.7% and 1.5%, respectively, but Recall has a slight decrease. 
The addition of the EMA module increases the network with 
almost no parameters and GFLops, and enables the neural 
network to generate better attention for the feature maps by 
fusing contextual information at different scales, resulting in a 
certain improvement in the overall detection ability. A new 
neck network was constructed by adding a bottom-to-top path 
to enable bi-directional feature fusion with the network. With 
only a 3.7% growth in parameters, Precision increases by 
1.0%, Recall increases by 1.5%, and mAP@.5 increases by 
1.3%, indicating that the improved neck network can indeed 
have positive effects. In summary, compared to the 
YOLOv8n, the overall performance of YOLOv8n-EBF model 
is improved with a large reduction in complexity. These 
improvements result in a lighter model with higher accuracy at 
the same time. 

B. Comparative Experiment 

In order to further verify the difference in performance 
between the YOLOv8n-EBF and other models on the flame 
and smoke detection, this paper conducts comparative 
experiments. Five classical small-sized models in the field of 
target detection, i.e., YOLOv3-tiny, YOLOv4-tiny, 
YOLOv5n, YOLOv6n, YOLOv7-tiny, are selected. The 
performances of each model after training are displayed in 
Table IV. 

YOLOv3-tiny has the largest number of Parameters and 
GFLops among different versions of YOLO above. It has 
more than twelve million Parameters, which is five times more 
than the improved YOLOv8n-EBF, and 19.0 GFLops, which 
is 2.8 times more than the latter. In terms of model size, 
YOLOv8n-EBF is 4.8MB, only 10.4% of YOLOv4t, which is 
the smallest among all models and can be easily deployed in 
different devices. In terms of detection ability, YOLOv4-tiny 
has the worst performance in this experiment, with a value of 
mAP@.5 of only 43.1%, and YOLOv8n-EBF has an 
improvement of 74.2% for this parameter. The only other 
models with a mAP@.5 above 70% are YOLOv5n, 
YOLOv6n, and YOLOv8n, and their performance is relatively 
similar, with results close to 71.9%. Compared to YOLOv8n-
EBF, the latter has a mAP@.5 of 75.0%, which is the highest 
of all models. In addition to this, the other parameters of 
YOLOv8n-EBF are at the highest level compared to other 
models. 

C. Comparison of Detection Effects 

At the end of training, the obtained weight parameter 
model is used to detect the target samples and mark the 
location of the detected objects. The results are shown in the 
Fig. 9 below, with the original image, the detected image of 
YOLOv8n, and the detected image of the improved model in 
the left-middle-right of each row, respectively. 

TABLE III. THE RESULTS OF ABLATION EXPERIMENTS 

Model Parameter GFLops P/% R/% mAP@.5/% 

YOLOv8n 3011238 8.2 73.1 63.4 71.9 

YOLOv8n-C2f-faster 2306038 6.4 76.8 63.2 73.4 

YOLOv8n-EMA 3011252 8.2 74.4 64.2 72.6 

YOLOv8n-BiFF 3122100 8.5 74.1 64.9 73.2 

YOLOv8n-EBF 2416914 6.7 77.8 65.3 75.0 

TABLE IV. THE RESULTS OF COMPARATIVE EXPERIMENTS 

Model Parameter GFLops Size/MB P/% R/% mAP@.5/% 

YOLOv3t 12133156 19.0 23.2 67.8 61.0 66.5 

YOLOv4t 6056606 16.4 46.3 30.4 69.9 43.1 

YOLOv5n 2508854 7.2 5.0 73.7 63.4 71.6 

YOLOv6n 4238342 11.9 8.3 75.7 62.8 71.5 

YOLOv7t 6017694 13.2 11.7 67.9 67.2 69.6 

YOLO8n 3011238 8.2 6.0 73.1 63.4 71.9 

YOLOv8n-EBF 2416914 6.7 4.8 77.8 65.3 75.0 
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1) In the detection comparison of Fig. 9 (a) with a bright 

light and unobstructed situation, both the original YOLOv8n 

and YOLOv8n-EBF are able to detect the smoke in the 

picture, but the anchor box of the former model locates 

inaccurate compared to the improved network, as shown in 

Fig. 9(b) and Fig. 9(c). 

2) In the detection comparison of Fig. 9(d) with a low 

light and obstructed situation, the original model is capable of 

detecting the fire in the picture, but the inaccuracy range of the 

anchor still exists. As shown in Fig. 9(e) and Fig. 9(f), a larger 

portion of the selected box for smoke is a building rather than 

a target to be detected, while the improved model is more 

accurate obviously. 

3) In the detection comparison of Fig. 9(g) with a high 

contrast, the YOLOv8n-EBF detects all four targets which is 

shown in Fig. 9(i), but the result of original YOLOv8n in Fig. 

9(h) only detects three large-sized targets but not the smallest 

flame in the picture, which appeared to be a missing detection. 

4) In the detection comparison of Fig. 9(j) with a low 

contrast, the original YOLOv8n model also occurs a similar 

result, which detects one smoke target and two flame targets, 

but not the small flame located in the center of the picture, as 

shown in Fig. 9(k). Moreover, when framing the flames on the 

left side, it appears more obvious that the anchor box cannot 

cover the target, i.e., the framing is inaccurate. However, it 

can be observed from Fig. 9(l) that YOLOv8n-EBF performs 

significantly better, detecting all targets and being able to 

accurately localize them. 

Overall, the improved model has a better detectability for 
different sizes, and can accurately recognize the target in the 
presence of environmental interference and object occlusion. 

 

 

 

 

Fig. 9. Comparison of detection effects of original image, YOLOv8n and YOLOv8n-EBF.
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D. Comparison of Heatmap Effects 

In order to have a more intuitive understanding of the 
focused region of the model on the image and to make the 
decision-making process of the network better interpretable, 
Grad-CAM [27] is applied to generate heatmaps in this paper. 
In order to better compare with for synthesis, we used the 
same images as above for the experiments. The same images 
chosen in the previous section are used for comparisons. The 
settings, especially the layer, are consistent in the experiment, 
and the results are shown in Fig. 10. The left-center-right of 
each row shows the original image, the heatmap of YOLOv8n, 
and the heatmap of YOLOv8n-EBF, respectively. 

1) Comparing the heatmaps in Fig. 10(a), (b) and (c), the 

focus area of YOLOv8n is more inclined to the right side of 

the image, and it is larger and more distributed in the whole 

heatmap. Compared with the improved network, which 

focuses on the region of the target to be detected, the latter is 

more concentrated, which obviously has a better detection 

effect. 

2) When comparing the heatmap effect of Fig. 10(d), (e) 

and (f), the focus area of YOLOv8n also appears to be more 

scattered, focusing on parts of the image not related to the 

flame, such as the building in the upper left corner and the 

extinguished vehicle in the lower right corner. However, the 

improved model focuses precisely on the flame region. 

 

 

 

 

Fig. 10. Comparison of heatmap effects of original image, YOLOv8n and YOLOv8n-EBF.
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1) In the comparison of heatmaps in Fig. 10(g), (h) and (i), 

YOLOv8n only focuses on two flame targets below the image, 

and only one flame target is highlighted, i.e. the red area in the 

picture, while the color covered another flame is lighter, 

which indicates that the level of attention is not high enough, 

in addition, this model does not focus on the flame target 

above the image. Multiple flame targets are better considered 

in the improved model, not only highlighting the two flames 

below the image, but also focusing on the target above the 

image. 

2) In the comparison of heatmaps in Fig. 10(j), (k) and (l), 

the highlighted area of the original model is in the upper right, 

which can be found from the original that this area is not 

smoke, but a brighter background. YOLOv8n-EBF focuses on 

a more scattered area than other situations, but it can be seen 

that the highlighted areas are still the part of flame and smoke. 

From the four sets of heatmap comparisons above, we can 
more intuitively see that YOLOv8n-EBF developed with more 
focused attention is able to locate the aim more accurately. 

VI. CONCLUSION 

In this paper, three improvements are made to the 
YOLOv8n model and all experiments are performed on a 
public dataset. First, ablation experiments are performed to 
show that each method contributes to the promotion of 
model's performance. Subsequently, comparison experiments 
with six different models are conducted to demonstrate that 
the algorithm not only has better detection capabilities but has 
a lightweight characteristic at the same time. Finally, the paper 
conducts detection comparison experiments as well as heat 
map comparison experiments to provide a more straight-
forward comparison with the original network. The conclusion 
of the established work are as follows: 

1) The dataset used in this experiment contains abundant 

pictures of flame and smoke, which makes the model can 

effectively detect both of them and has a good generalization 

to apply to detecting tasks in different environments. The 

ability to detect smoke makes the model capable of detecting 

obstructed combustible and early fire, reducing the leakage 

problem caused by single-target detection. 

2) The improved model involves the EMA blocks and a 

developed neck network to improve feature fusion in different 

dimensions. In the comparison experiments of detection and 

heatmap, this model shows a higher sensitivity and more 

focused attention to targets of different scales, which enables 

the model to locate the target more accurately and reduces the 

leakage rate. 

3) By replacing the Bottleneck in the original C2f module 

with a new FasterNet block composed of partial convolution 

to form the new module called C2f-faster, the complexity is 

effectively reduced. The parameters of YOLOv8n -EBF are 

about 2.4 million, the GFLops is about 6.7, and the size of the 

model is only 4.8MB. Therefore, it is convenient to be 

deployed in various terminals. 

4) The improved model achieves 77.8% precision, 65.3% 

recall and 75.0% mAP@.5. The network has improved 

Precision, Recall and mAP@.5 by 4.7%, 1.9% and 3.1%, 

respectively, compared to YOLOv8n, with a reduction of 

19.7% in parameters and 18.3% in GFLops. According to the 

experiments, it can be observed that the complexity of 

YOLOv8n-EBF has greatly decreased compared to 

YOLOv8n, while all the indicators measuring the detection 

performance have been significantly improved. It is superior 

to the former in terms of performance and complexity 

optimization, which further confirms the effectiveness of the 

improvement. 
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