
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 3, 2024 

199 | P a g e  

www.ijacsa.thesai.org 

Underwater Image Enhancement via Higher-Order 

Moment CLAHE Model and V Channel Substitute 

Chen Yahui1, Liang Yitao2*, Li Yongfeng3, Liu Hongyue4, Li Lan5 

College of Information Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China1, 2, 3, 4, 5 

Henan Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou, Henan, China1, 2 

 

 
Abstract—Images captured underwater often exhibit low 

contrast and color distortion attributed to special properties of 

light in water. Underwater image enhancement methods have 

become an effective solution to address these issues due to its 

simplicity and effectiveness. However, underwater image 

enhancement methods (such as CLAHE) face challenge of 

increasing image contrast, improve generalization of method. 

Here, underwater image enhancement via higher-order moment 

CLAHE model and V channel substitute is proposed to enhance 

contrast and correct color distortion. Firstly, analyze statistical 

features of image histograms, use higher-order moments to 

quantify features in a targeted manner, add them to CLAHE, so 

that improved CLAHE can accurately enhance contrast of 

underwater image according to dynamic features of image 

blocks, avoiding over- or under-enhancement of image. Then, for 

problem of color distortion, this paper novelty uses gray data to 

substitutes V channel in HSV color space, compensated for lost 

information, so as to achieve purpose of color correction in terms 

of visual perception. Finally, color correction of image through 

gray world method, which effectively improve color distortion 

problem. Our method is qualitatively and quantitatively 

compared with multiple state-of-the-art methods in public 

dataset, demonstrating that this method better solved low 

contrast and color distortion, in addition, details were more 

realistic, and evaluation indexes of underwater image quality 

were better. 
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I. INTRODUCTION 

As a huge part of the Earth, the ocean still has many 
unknown and unexplored fields for humanity. Driven by 
curiosity and longing for rich resources, it becomes an 
important way to know more about underwater world through 
imaging systems [1], technologies linked to underwater 
exploration and resource development have consistently 
commanded substantial attention [2] [3]. Throughout the ages, 
within exploration in this field, images have consistently been 
one of essential instruments of cognition. Unfortunately, due to 
strong absorption and scattering of underwater light, 
underwater imaging usually faces degradation problems that 
seriously affect detection of underwater environment [4], 
resulting in the destruction of the structural and dynamic 
properties of different areas of the image, leading to problems 
such as low contrast, color distortion [5]. The degraded 
underwater image severely limits performance of various 
computer vision algorithms. In Fig. 1, examples of real-world 

underwater images, which have obvious different features of 
underwater image quality degradation, e.g., low contrast and 
color casts. In order to promote further research and 
application, it is necessary to improve underwater image. The 
variation of light with different wavelengths traveling 
underwater leads to uneven pixel distribution in underwater 
optical images and further results in low contrast and color 
distortion in images. However, using a single contrast 
enhancement method ignores extraction of texture features of 
images and results in localized contrast over or under 
enhancement and color distortion. Similarly, a single-color 
correction method cannot improve contrast and detail of 
images. To address these problems simultaneously, a variety of 
approaches have been presented in the last decade [6]-
[11],[13]-[17],[20]-[23], which can be broadly categorized into 
three types: image enhancement methods, image restoration 
methods, and deep learning methods. 

A. Image Enhancement Methods 

Image enhancement is based on the direct modification of 
image pixel values to adjust one or more image attributes to 
improve the overall visual quality of underwater images [19]. 
Zhang et al. [9] used an extended multiscale retinex-based 
method (Lab-MSR) to process underwater images in the 
CIELab color model. Zhang et al. [10] presented a new color 
correction and dual-interval contrast enhancement method 
supported by multiscale fusion, using a simple linear fusion 
method to fuse the processed high and low frequency 
components. Wang et al. [11] proposed an intelligent protocol 
called meta-underwater camera that uses reinforcement 
learning to intelligently configure seven underwater image 
enhancement techniques, including fading channel 
compensation, white balance, tone mapping, saturation 
adjustment based on the hue-saturation-luminance (HSL) 
model, contrast stretching, gamma correction, and high-pass 
fusion. This protocol works while the underwater camera is 
capturing the underwater image and optimizes the original, 
poorly visible underwater image into a highly visible image. 
With these methods, the structural and dynamic properties of 
the underwater image are hardly taken into account. Image 
enhancement methods aim to change the pixel values of the 
image to improve the visual quality and have the advantage of 
improving the contrast of distorted underwater images with 
relatively little computational effort. However, the same 
processing technique is used for all scene images, which means 
that the texture details of underwater images are not fully 
utilized, resulting in over- or underestimation [12]. 
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Fig. 1. (a) Real-world underwater images. (b) - (e) our method enhanced results (bottom) for several raw images with degraded quality (top).

B. Image Restoration Methods 

Image restoration methods solve the parameters of the 
image model using priors to restore well-visible images [13]-
[17]. A representative method is the dark channel prior (DCP) 
theory proposed by He et al. [15] which was originally used for 
haze removal but has been adapted by many researchers for 
underwater image processing. In fact, the estimated 
transmittance is too large [15], which makes final enhanced 
image dark. Peng et al. [16] proposed a depth estimation 
method to accurately estimate depth of underwater scene. Zhu 
et al. [17] proposed an underwater image enhancement with 
dark channel prior, which improves contrast and color by 
advanced light estimation, retinex, and channel-specific 
coefficients. These methods achieve clear images by solving an 
inverse problem for the parameters of the image model. 
Although certain effects are achieved, spatial and textural a 
priori of the image are not adequately accounted for, resulting 
in insufficient detail in the restored image [18]. More 
importantly, these methods usually require a complicated 
mathematical optimization process, which is very 
computationally intensive [19]. 

C. Deep Learning Methods 

Deep learning has made remarkable advances in computer 
vision and has driven the development of techniques to 
enhance underwater images. The successful application of 
these methods is due to the extensive training data [18]. Han et 
al. [20] introduced a novel spiral generative adversarial 
network (GAN) to enhance image details and remove noise 
caused by scattering and attenuation. Fu et al. [21] designed 
SCNet for capturing desensitized underwater representations 
that can be adapted to different waters, but enhanced images 
have blurred detailed textures. Meanwhile, Cycle Generative 
Adversarial Network [22] and Twin Adversarial Contrastive 
Learning [23] have also been used to enhance underwater 
images. Although deep learning techniques have many 
advantages, the parameters in the networks remain unchanged 
after training is completed, which limits the adaptability of 
deep learning methods [19]. Most importantly, deep learning 
methods rely on an extensive dataset containing both distorted 
and clear underwater images. Many of these images are 
synthetically created and do not accurately represent the 

features of real underwater images [24]. Furthermore, deep 
learning methods require more time to train networks than 
traditional methods [4] , but they still have higher requirements 
for hardware equipment and training datasets. Different from 
deep learning methods, image enhancement and image 
restoration methods emphasize the specific performance of 
degraded underwater images. Image restoration methods utilize 
different prior assumptions to invert to a clear image before 
degradation [25]. However, the accuracy and universality of 
complex scenarios need to be improved because of the 
limitations of prior knowledge [16]. Image enhancement 
methods utilize processing technology to enhance contrast, i.e., 
CLAHE [26] and retinex-based [27] methods. 

Compared with general natural images, underwater images 
have some unique structural features. The acquisition of 
underwater visual images is affected by light attenuation, 
absorption, and scattering, resulting in the destruction of the 
structural and dynamic properties of different areas of the 
image. As a result, underwater images often suffer from color 
distortion, low contrast, and blurred details. Traditional image 
enhancement methods fail to effectively personalize and 
improve these features. We thus propose underwater image 
enhancement via a higher-order moment CLAHE model and a 
V-channel substitute. More precisely, our main contributions 
can be summarized as follows: 

1) CLAHE is widely used in underwater images; however, 

it lacks an accurate and comprehensive description of dynamic 

features. We propose to utilize higher-order moments to 

quantitatively portray statistical features of image histograms. 

These quantitative data are incorporated into the clipping 

model to improve the description of statistical features of the 

histogram in CLAHE. The improved algorithm has stronger 

generalization ability and a wider application range and 

effectively solves the problem that underwater images are 

prone to over- or under-enhancement. 

2) In view of the fact that light is absorbed in water, 

which leads to the destruction of the structural and dynamic 

properties of the regions in the underwater image, triggering 

the color distortion of the underwater image, To address this 

challenge, this paper proposes a color compensation strategy 
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with V-channel substitution. By compensating the color-

damaged channels with the histogram distribution 

characteristics of underwater images, color correction in visual 

perception is achieved. 

3) We use contrast enhancement and color correction to 

enhance underwater images. Compared with existing similar 

methods, our proposed method has achieved better results on 

PSNR, AMBE, UCIQE, and UIQM. 

The rest of this paper is organized as follows: Section II 
delves into related work, proposed method is given in Section 
III, and an experimental comparison is given in Section IV. 
Finally, Section V concludes the paper. 

II. RELATED WORK 

CLAHE pipeline consists of 4 main steps. First, input 
image is divided into non-overlapping blocks of equally sized, 
each block contains M pixels, and histogram adjustment is 
performed in each block. Secondly, histogram adjustment 
includes histogram creation, clipping histogram, and 
redistributing pixels according to a clipping point. The higher 
clipping point is, more contrast is enhanced, clipping limit 

value
clN    is calculated as follows: 

[ ( )]cl Aver x y AverN N N      
   (1) 

where, 
AverN   is average number of block pixels,   is 

clipping factor,  
x  is number of pixels in horizontal direction 

of block image;  y  represents number of pixels in vertical 

direction, and calculation formula of  
AverN  is 

x y
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gray

U U
N
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

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where, grayL  is number of gray levels in block. The number 

of pixels exceeding  
clN  in histogram of each block are cut out 

and reassigned. Then, mapping function is obtained by 
cumulative distribution function (CDF) of clipped histogram. 
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where,  ( )H i   is gray histogram of block;  ClipN  is total 

number of cut pixels;  AcpN  is number of pixels assigned to 

each gray level; after cutting, it becomes a piecewise function. 
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Finally, bilinear interpolation is performed to remove 
artifacts that exist between blocks [28]. CLAHE not only 
expands the contrast range but also optimizes the entropy of 

the image, so it is widely used in underwater image processing 
[29]. CLAHE is different from conventional HE in that 
contrast is limited by a clipping point, which changes the 
kurtosis of each block histogram. To keep the total count of the 
histogram the same, clipped pixels are required to be evenly 
redistributed to each gray level. If there are pixels that have not 
been allocated, cyclic allocation is required. During allocation, 
the remaining pixels will be evenly allocated to gray levels less 
than the clipping point until the remaining pixels are fully 
allocated [30]. To eliminate artificially induced boundaries, 
each pixel value is obtained by linearly interpolating the pixel 
values of surrounding blocks [31]. In CLAHE, bilinear 
interpolation is used; that is, interpolation is performed in two 
directions. This allows CLAHE to achieve contrast 
enhancement, eliminate block artifacts, and improve image 
quality at a lower computational complexity [32]. Therefore, 
CLAHE is widely used in underwater images to improve 
contrast and to use a uniform clipping point for different image 
block histograms. 

Algorithm1：CLAHE 

Input：image-input 

Parameter：block size (eg：88), clipping limit (threshold value in 

[0, 1], eg：0.1), nbins (eg：256) 

Output：image-output 

1：Divide image-input into non-overlapping blocks (nbins) of 

equal size 

2：Calculate block histogram 

3：Calculate clipping point 

4：Pixel point reassignment. For each block, use extra pixels 

from step 3 to reassign. 

5：Histogram equalization 

6：Bilinear interpolation reconstructs gray values 

7：Show result image 

This does not fully and accurately characterize the 
dynamics of the histogram, which causes the processed image 
to be prone to over-enhancement or under-enhancement. To 
address this problem, researchers have proposed some 
improvement methods. For example, Chang et al. [33] and Kan 
et al. [28] pointed out that for uniform regions in an image, 
lower shear values are needed to avoid over-enhancement, 
while for textured regions (non-uniform regions), higher 
clipping values are needed to emphasize texture details and 
contrast. For uniform regions, a lower clipping value is used to 
maintain the natural color tone and brightness of the image; 
while for textured regions, a higher clipping value is used to 
highlight texture details and contrast. Such processing can 
more accurately capture the localized features of the 
underwater image and avoid over-enhancement or under-
enhancement. Chang et al. give Eq. (6) and Khan et al. give Eq. 
(7). 

max( ( ))
100

cl Aver Aver

Aver

l
N N N p

R N c

 
   


         (6) 

where, p  and   are the parameters that control the 

dynamic range of the histogram and the relative magnitude of 
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data change respectively,  
maxl  is the maximum value in the 

sub-block, R  indicates the dynamic range of the histogram of 
the whole sub-block, and is generally taken as 255,   is the 

standard deviation of the sub-block, and c  is a very small 

value that prevents it from being divisible by zero. Chang et al. 
use the sub-block mean as the main part, the sub-block 
maximum value, and the standard deviation as the quantitative 
index of the dynamic features, and the standard deviation is 
called the second-order central moment in statistics, and the 
order moment (moment) is a statistic that describes the 
distribution of the data, which measures the expected value of 
the values in the data set to the power of a particular value. 

( )cl Aver

LcGc
N N E


  

  (7) 

Local complexity+Global complexityLcGc 
 (8) 

where,  and LcGc are both control parameters, is the 

complexity of the local and global information of the image, 
obtained using Laplace operator filtering, and E  is the sub-
block information entropy. Khan et al. use the sub-block mean 
value as the main part and use the local information, global 
information, and information entropy as the dynamic feature 
expression. This formula undoubtedly aggravates the 
computational efficiency of the program and prevents the 
algorithm from being widely used. 

Based on the three formulas introduced previously, this 
paper is inspired to find a more accurate quantitative way to 
feature the dynamics of histograms and hopefully to ensure the 
efficiency of the algorithm. 

III. PROPOSED METHOD 

In this work, the paper aims to improve the visual quality of 
underwater images based on dynamic features of image 
histograms. While CLAHE excels in local detail handling, it 
suffers from over-enhancement and halo artifacts, when 
processing darker images. CLAHE restricts enlargement by 
pruning the histogram at a user-defined value called clipping 
value. However, clipping level determines how much noise 

information in the histogram should be smoothed out and 
therefore how much contrast should be increased [34]. That is 
why, the global clipping point is not suitable for the 
enhancement of dark regions, and adaptively setting the 
clipping point is of importance in image enhancement. Eustice 
et al. [35] experimented with different ideal gray distributions 
and proposed that the Rayleigh distribution is most appropriate 
for underwater images. Fig. 2 shows the overview of the 
proposed method. 

In this work, we integrate histogram dynamic features into 
the clipping model to adaptively set clipping points based on 
image textures for enhancing contrast. By applying this 
approach to the CIELab color space, we improve the contrast 
of underwater images by enhancing the L channel. Histogram 
equalization applied to sub-channels ensures a more uniform 
color distribution across the entire image [36]. Next, we utilize 
the Gradient Correlation Similarity (Gcs) method to merge 
information from the R, G, and B channels and substitute the V 
channel in the HSV color space, achieving color correction for 
human visual perception. This compensates for the absence of 
R channel information in underwater images. The replaced 
image undergoes color correction using the gray world method, 
effectively avoiding red shading in the enhanced image. 
Subsequent sections will delve into the details of these sub-
modules. 

A. High-Order Moment-based Clipping Point Acquisition 

To improve texture and image details more effectively by 
CLAHE, this paper uses mean gray value and standard 
deviation represent texture of block, skewness represents 
symmetry of histogram distribution, skewness is close to 0, and 
histogram distribution is close to symmetry. The kurtosis 
indicates peak height of histogram distribution, and high 
kurtosis indicates that there are more extreme values in 
histogram, and variance increases. Their combination makes 
clipping value smaller in homogeneous regions and larger in 
texture regions, which more accurately describes dynamic 
features of different blocks. Thus, we adaptively set clipping 
points as follows: 

( )cl AverN N S K    
               (9) 

 

Fig. 2. Overview of the proposed method. 
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where,   is a parameter that controls weights of dynamic 

range. The S  and K  represent skewness and kurtosis of block 

histograms, respectively. Different actual scenes can use 
different  , S  and K  to make the method describe dynamic 

feature of block more accurately, which enables the method to 
obtain better contrast enhancement effects in different 
underwater scenes as shown in Fig. 3. 

 

Fig. 3. Clipping point with different block image. 

To validate the validity and reliability of the proposed 
formulas, we employed various combinations of clipping 
models for comparison with the original model. The dataset 
utilized in this experiment is the SUID dataset [37], as depicted 
in Table I. From the results, it is evident that although our 
method does not perform satisfactorily in no-reference 
evaluation metrics (PSNR, SSIM), it exhibits a clear advantage 
in underwater image evaluation metrics (UIQM, UCIQE). It is 
important to note that higher values of PSNR, SSIM, UIQM, 
and UCIQE indicate better performance. 

TABLE I. ABLATION EXPERIMENT OF CLIPPING MODE 

Clipping Model 
Quality Evaluation 

PSNR SSIM UIQM UCIQE 
Run 

Time/s 

Original 19.83 0.79 2.88 0.49 0.0394 

N NAvercl    20.43 0.77 3.07 0.48 0.0843 

N N KAvercl     18.62 0.76 3.20 0.49 0.0763 

N N SAvercl     19.83 0.79 3.10 0.48 0.0737 

This study 19.37 0.80 3.21 0.51 0.0814 

Ref. [28] 14.08 0.61 3.10 0.55 0.1441 

Ref. [33] 14.39 0.62 1.06 0.46 0.0475 

TABLE II. ABLATION EXPERIMENT OF CLIPPING LIMIT 

Clipping 
limit 

Quality Evaluation 

PSNR SSIM UIQM UCIQE Run Time/s 

0.1 15.18 0.34 4.53 0.34 0.0783 

0.2 14.17 0.61 3.21 0.51 0.0786 

0.3 20.23 0.66 4.24 0.40 0.0773 

0.4 21.36 0.81 3.75 0.49 0.0771 

0.5 19.51 0.80 3.22 0.49 0.0781 

0.6 17.28 0.74 2.77 0.50 0.0775 

0.7 15.91 0.69 2.43 0.51 0.0785 

0.8 15.08 0.65 2.20 0.51 0.0776 

0.9 14.54 0.63 2.10 0.51 0.0780 

1.0 19.90 0.80 1.85 0.52 0.0776 

To determine optimum clipping limit, we increased it from 
0.1 to 1, each time by 0.1, to test performance of different 
clipping limit on image enhancement. Table II shows the 
ablation experiment of clipping limit. 

B. Color Correction Based on Fusion Channel Substitution 

The Gray World method, commonly used for color 
distortion correction in engineering applications [38], often 
leads to red shading in underwater images when directly 
applied. This is because the method assumes equal average 
gray values for the R, G, and B channels. Additionally, the R 
channel frequently lacks sufficient information due to 
underwater imaging conditions, resulting in an overall greenish 
or bluish appearance in the original image [39]. Directly 
applying the Gray World method to correct the color of 
original underwater images can thus lead to overcompensation 
issues. 

+ +
=

3

R G B
Gray

   (10) 

, ,r g b

Gray Gray Gray
k k k

R G B
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  (11) 

Gray  represents average gray value of RGB; R , G , B is 

average value of R, G, B channels, respectively; 
rk  , 

gk  , 
bk  

means gain coefficients. Based on VonKries diagonal model, 
each pixel C  in underwater optical image is adjusted for its R, 

G, B channels. 

0 0

= 0 0

0 0

r

g

b

R k R

G k G

B k B

     
      
     
                 (12) 

In this paper, we present a processing compound based on 
HSV color space to improve overall correction algorithm and 
further refine solution to underwater color distortion problem 
[40]. 

Color-distorted images can lead to unnatural or poor visual 
perception. The HSV color space was designed with 
psychological and visual considerations in mind [41]. It uses 
three channels to describe image to better match visual 
perception of the human eye. From Eq. (15), it appears that for 
underwater images, V channel more often takes pixel values 
from G channel (greenish images) or B channel (bluish images) 
and very rarely from R channel. To support this idea, we 
counted proportion of V-channel pixels from R, G, and B 
channels in 890 underwater images in the UIEB dataset. The 
results show that average gray value of pixels from R channel 
is 4.82, which is about five times lower than that of G channel 
and six times lower than that of B channel. The average 
percentage of pixels from R channel is about 9.67%, while G 
channel is about 41.52% and B channel is 48.81%. Based on 
this, we propose a color compensation algorithm with fusion 
channel replacement, which replaces V channel with gray 
image obtained by fusion of R, G, and B channels to 
compensate for problem of insufficient information in R 
channel of underwater images, together with gray world 
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method, to visually better improve color distortion of 
underwater images. 
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
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max ,G,BV R
       (15) 

where, max  means largest of R, G, and B, and min  stands 

by smallest. 

Substituting V channel with a Gcs image based on criteria 
of minimal loss of structural parameters and gradient 
information, effectively compensating for R channel 
information while preserving color image structure and detail. 
Combining this with the gray world method enhances 
compensation for V channel information in the HSV color 
space, facilitating color correction for visual perception. 
Additionally, substituting V channel with a grayscale image 
derived from merging R, G, and B channels mitigates 
distortion in blue or green-biased underwater images. This 
method, coupled with the gray world technique, achieves color 
correction. Experimental results demonstrate that the grayscale 
image optimally utilizes intensity and detail information in the 
RGB color space. For RGB format source images, intensity can 
be computed by linearly summing R, G, and B channels with 
fixed weights, exemplified by the traditional gradient error 
(GE) method. 

0.299 0.587 0.114GE R G B           (16) 

However, in some color images, such as color images with 
equal luminance regions, the use of luminance channel images 
alone does not truly reflect structure and contrast of image, Liu 
et al. [42] proposed a decolorization model based on Gcs 
measure to well solve above problem, proposed method can 
better reflect degree of feature distinguishability and color 
ordering preservation in color-grayscale conversion, using Gcs 
image can effectively compensate for loss of R channel 

information, and improve intensity values and details of 

underwater color image (see Fig. 4). The core model is 

2 , , ,
( , ) { , , } 2 2

, , ,

. . ; 1{ , , } { , , }

I I gc x c y x y
min x y P c r g bwc

I I gc x c y x y

s t g w I wc r g b c r g bc c c

 
  

  

   
(17) 

where, wc  is a unique weight that determines mapping 

function; p  is all pixel pairs; 
,c xI  is pixel value in horizontal 

direction on color map image; 
,c yI  is pixel value in vertical 

direction; weighting coefficients are { , , }cw c r g b . 

 

Fig. 4. (a) Original image; (b) GE image; (c) Gcs image; (d) GE image 

substitution V channel; (e) Gcs image substitution V channel. 

The proposed method possesses fast and robust 
performance and runs very fast and can be used in engineering 
practice. It can also be used directly in RGB color space for 
color correction without conversion to other color spaces [43]. 

IV. EXPERIMENTAL RESULTS 

To verify effectiveness of the method, six representative 
underwater images were selected from public underwater 
images UIEB [44] datasets. We have chosen four conventional 
methods for comparison, they are HE [45]; CLAHE proposed 
by Zuiderveld et al. in 1994 [46]; contrast enhancement of low-
contrast medical images using modified contrast limited 
adaptive histogram equalization is an improved CLAHE 
method proposed by Khan et al. [28]; automatic contrast-
limited adaptive histogram equalization with dual gamma 
correction is an improved CLAHE method proposed by Chang 
et al. [33], but this experiment did not reproduce double 
gamma correction, only modification of CLAHE was 
compared. The contrast-enhanced image is then color corrected 
using gray world method. This chapter evaluates the method 
from both subjective vision and objective image quality 
indicators. The platform is Matlab 2018a, computer processor 
is AMD Ryzen 5 5600H with Radeon Graphics, and CPU is 

3.30 GHz. In this experiment,   is 0.4; distribution is rayleigh 
distribution. 

A. Qualitative Evaluation 

The L channel of the CIELab color space underwent 
processing using the corresponding method, as shown in Fig. 5, 
to enhance contrast. Subsequently, color correction was applied 
using the gray world method. Comparative analysis revealed 
that the proposed method consistently outperformed other 
methods in terms of visual effects, resulting in visually 
pleasing underwater images. Histogram Equalization (HE) 
tended to excessively enhance contrast, resulting in an overall 
darker appearance in processed images. Specifically, Img1, 
Img2, Img5, Img7, and Img8 exhibited a reddish overall tint, 
along with some loss of detail. CLAHE effectively mitigated 
contrast over-enhancement caused by HE. Notably, (c) 
demonstrates the excellent contrast enhancement capabilities of 
CLAHE, but the processed image appears overexposed, with 
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an overall tendency to be white, worsening overall visual 
perception. Processing images using the method referenced in 
Ref. [28] resulted in significant red shadows and blurred 
details, leading to an overall poor visual impression. The 
method in Ref. [33] made the image darker overall, with lower 
contrast and fuzzy details. Red shading was prevalent in Img5, 
Img6, Img7, and Img8. Fig. 6 shows underwater color image 
enhancement results. This study resulted in images leaning 

towards a gray color tone while significantly enhancing 
contrast and improving portrayal of details compared to other 
methods. Importantly, it effectively mitigated the occurrence of 
red shadows caused by the gray world method and alleviated 
the common issue of underwater images appearing bluish or 
greenish. To objectively analyze experimental results, this 
paper selects underwater image quality measures such as 
UIQM [47], UCIQE [48], PSNR [49], and AMBE [50]. 

 

Fig. 5. (a) Original image; (b) Gray world method; (c) GE + gray world method; (d) Gcs + gray world method. 

 

Fig. 6. Underwater color image enhancement results based on different method. (a) Original image; (b) HE; (c) CLAHE; (d) Ref. [28]; (e) Ref. [33]; (f) Proposed 

method. 
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1) Underwater Image Quality measure (UIQM): UIQM is 

based on a model of human visual system and works without 

reference images. UIQM includes three main measurements, 

UICM underwater image color measurement, UISM 

underwater image sharpness measurement, and UIConM 

underwater image contrast measurement [51]. Higher values 

of UIQM indicate superior cumulative enhancement effects 

achieved by the algorithm. The results are outlined in the table 

below, with the most optimal outcome prominently 

highlighted in bold for easy reference. 

2) Underwater Color Image Quality Evaluation 

(UCIQE): UCIQE is a perceptual image quality assessment 

metric used to quantitatively assess color deviation, blurriness 

and low contrast in underwater images. It is a linear 

combination of color intensity, saturation and contrast. A 

higher value indicates better color intensity, saturation and 

contrast of the underwater image. 

3) Peak Signal-to-Noise Ratio (PSNR): PSNR measures 

quality of enhanced image from a statistical point of view by 

calculating difference between corresponding pixel gray 

values of image to be evaluated and reference image and is a 

measure of peak error. The higher PSNR value, less distortion 

between reference image and enhanced image, and the better 

image quality. 

4) Absolute Mean Brightness Error (AMBE): AMBE 

helps to compute brightness content that is preserved after 

process of image enhancement. Median values of AMBE 

metric indicate good preservation of brightness. The results 

are shown in the table below. The smaller the value, the better 

the image quality. 

The comparison indicates that the proposed objective 
metrics have yielded favorable results. As shown in Table III, 
images processed using the algorithms presented in this paper 
exhibit good performance across the comprehensive evaluation 
criteria of color, clarity, and contrast. In Table IV, except for 
Img5 and Img7, the images processed by the algorithm 
proposed in this paper outperform other algorithms in terms of 
overall visual effect, effectively mitigating biased color 
phenomena in underwater images. Table V demonstrates that 
the proposed algorithm performs well in terms of image 
distortion, with the enhanced images displaying improved 
texture features. Additionally, as shown in Table VI, the paper 
demonstrates good performance in contrast enhancement, 
effectively highlighting the fine details of underwater images. 

TABLE III. EVALUATION RESULTS OF UIQM 

Images Original HE CLAHE Ref. [28] 
Ref. 

[33] 
Proposed 

Img1 5.46 6.63 7.41 6.01 7.67 7.73 

Img2 1.85 6.62 5.64 6.71 3.38 7.00 

Img3 3.07 6.64 5.08 6.55 5.59 6.79 

Img4 1.40 5.30 5.57 6.38 4.17 4.46 

Img5 0.50 6.66 5.83 6.68 4.18 6.81 

Img6 -0.83 4.79 10.39 6.85 1.24 5.92 

Img7 -3.12 1.20 2.25 2.57 0.58 4.10 

Img8 2.25 5.81 6.16 5.93 5.45 7.16 

TABLE IV. EVALUATION RESULTS OF UCIQE 

Images Original HE CLAHE 
Ref. 

[28] 

Ref. 

[33] 
Proposed 

Img1 0.50 0.57 0.48 0.56 0.49 0.67 

Img2 0.48 0.63 0.52 0.63 0.52 0.70 

Img3 0.56 0.54 0.54 0.59 0.57 0.72 

Img4 0.51 0.62 0.55 0.63 0.56 0.72 

Img5 0.58 0.63 0.57 0.64 0.61 0.55 

Img6 0.47 0.67 0.56 0.67 0.50 0.75 

Img7 0.57 0.65 0.57 0.67 0.64 0.56 

Img8 0.63 0.66 0.60 0.65 0.64 0.82 

TABLE V. EVALUATION RESULTS OF PSNR 

Images HE CLAHE Ref. [28] 
Ref. 

[33] 
Proposed 

Img1 13.54 11.16 12.29 9.48 19.37 

Img2 12.23 9.68 10.47 9.41 14.17 

Img3 15.64 7.56 12.11 15.38 18.61 

Img4 12.69 12.70 11.82 8.84 16.39 

Img5 13.68 7.98 11.93 11.90 13.90 

Img6 9.60 11.36 8.90 7.69 11.95 

Img7 9.77 8.55 9.06 9.04 10.87 

Img8 15.00 8.69 13.83 12.10 14.85 

TABLE VI. EVALUATION RESULTS OF AMBE 

Images HE CLAHE Ref. [28] 
Ref. 

[33] 
Proposed 

Img1 51.92 48.10 48.34 88.48 11.37 

Img2 35.06 51.91 27.74 83.85 13.97 

Img3 24.38 86.98 26.62 20.57 4.92 

Img4 51.67 33.32 47.59 95.74 19.48 

Img5 0.38 78.16 5.65 49.39 25.29 

Img6 46.34 25.94 39.89 91.32 10.58 

Img7 55.55 63.59 49.86 65.02 33.03 

Hence, it can be concluded that the proposed method 
exhibits significant improvements in contrast, chromaticity, 
and brightness based on objective evaluation metrics. 

V. CONCLUSION 

We propose a method for underwater images through the 
higher-order moments CLAHE model and V-channel 
substitution. Specifically, in the contrast enhancement stage, 
higher-order moments describe the dynamic features of image 
sub-blocks, improving CLAHE's fuzzy and incomplete 
description of histogram statistical features and achieving more 
accurate contrast enhancement. In the color correction stage, 
we utilize gray data instead of the V-channel to compensate for 
information loss in the color channel, effectively achieving 
color correction aligned with human visual perception. 
Extensive experiments on real underwater images across 
various challenging scenarios demonstrate the robustness and 
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effectiveness of the proposed method in contrast enhancement 
and color correction. Both qualitative and quantitative 
experimental results further validate the method's superiority 
over other state-of-the-art methods. 

In summary, our proposed method effectively addresses 
color distortion, low contrast, and blurred details in underwater 
images, offering valuable insights into the marine world. 
Future research may consider introducing higher-dimensional 
histogram dynamic features or unique scene-specific features 
to further enhance the effect and quality of image 
enhancement. 
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