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Abstract—Although limited research has explored the 

integration of electroencephalography (EEG) and deep learning 

approaches for attention deficit hyperactivity disorder (ADHD) 

detection, using deep learning models for actual data, including 

EEGs, remains a difficult endeavour. The purpose of this work 

was to evaluate how different attention processes affected the 

performance of well-established deep-learning models for the 

identification of ADHD. Two specific architectures, namely long 

short-term memory (LSTM)+ attention (Att) and convolutional 

neural network (CNN)s+Att, were compared. The CNN+Att 

model consists of a dropout, an LSTM layer, a dense layer, and a 

CNN layer merged with the convolutional block attention module 

(CBAM) structure. On top of the first LSTM layer, an extra 

LSTM layer, including T LSTM cells, was added for the 

LSTM+Att model. The information from this stacked LSTM 

structure was then passed to a dense layer, which, in turn, was 

connected to the classification layer, which comprised two 

neurons. Experimental results showed that the best classification 

result was achieved using the LSTM+Att model with 98.91% 

accuracy, 99.87% accuracy, 97.79% specificity and 98.87% F1-

score. After that, the LSTM, CNN+Att, and CNN models 

succeeded in classifying ADHD and Normal EEG signals with 

98.45%, 97.74% and 97.16% accuracy, respectively. The 

information in the data was successfully utilized by investigating 

the application of attention mechanisms and the precise position 

of the attention layer inside the deep learning model. This 

fascinating finding creates opportunities for more study on large-

scale EEG datasets and more reliable information extraction 

from massive data sets, ultimately allowing links to be made 

between brain activity and specific behaviours or task execution. 
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I. INTRODUCTION 

The well-being of children's minds is incredibly important, 
and it's essential to address their mental health needs promptly 
(1). Several factors, like genetics, environment, and 
experiences, can influence how children's mental health 
develops [1, 2]. Young individuals commonly face 
psychological challenges such as anxiety, attention-
deficit/hyperactivity disorder (ADHD), and depression [3]. 
ADHD is a mental condition characterized by hyperactivity, 
inattention, and impulsive behaviours. Studies show that 
around five per cent of children have ADHD, with a higher 
prevalence among boys [4, 5]. The symptoms of ADHD can 

vary, with some individuals showing more hyperactivity and 
impulsivity while others experience difficulties with 
attentiveness [6]. Generally, ADHD symptoms emerge during 
preschool years, but significant struggles can occur during a 
child's school years. One of the main difficulties for children 
with ADHD is controlling and regulating their behaviours, 
often resulting in inappropriate responses to their surroundings 
[7]. Managing and regulating their behaviours poses a 
significant challenge for them. This struggle may manifest as 
difficulty staying seated, constant fidgeting, or excessive 
physical activity, making it hard for them to concentrate in a 
classroom setting. Additionally, they may encounter problems 
sustaining attention as they easily get distracted by external 
stimuli or their own thoughts. These difficulties can negatively 
impact their ability to focus on tasks, leading to difficulties 
with organizing work and completing assignments [8]. 

Detecting ADHD in a timely manner is crucial for 
preventing potential complications and ensuring the well-being 
of children's social interactions. Traditionally, ADHD 
diagnosis has relied on diagnostic assessments based on criteria 
outlined in various editions of the International Classification 
of Diseases (ICD) or the Diagnostic and Statistical Manual of 
Mental Disorders (DSM) [9]. However, this method heavily 
relies on parents and teachers understanding psychologists' or 
psychiatrists' questions and providing accurate responses. To 
address these challenges, researchers have been exploring and 
implementing objective techniques for ADHD diagnosis, such 
as electroencephalography (EEG) [10]. These approaches 
analyze neurophysiological irregularities and provide valuable 
insights into identifying ADHD [11]. Neurophysiological 
examinations like EEG offer a deeper understanding of brain 
structure and functioning [12, 13], enabling healthcare 
professionals to gather significant information [14, 15]. Studies 
show that individuals with ADHD often exhibit distinct brain 
wave activity patterns, including increased theta waves and 
decreased beta waves. These specific patterns indicate 
difficulties related to attention management and impulse 
control. By leveraging these neurophysiological findings, 
healthcare providers can better comprehend and diagnose 
ADHD, leading to more targeted and effective treatments and 
interventions for those affected by this condition [16, 17]. 

Extensive research has been conducted on various aspects 
of EEG signals in individuals with ADHD, including power 
spectrum density, event-related potentials, multivariate and 
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univariate EEGs, complexity analysis, and alpha asymmetry 
[18, 19]. While machine learning (ML) algorithms like logistic 
regression, LDA, SVM, KNN, principle component analysis, 
and various neural network models have commonly been used 
to classify EEG patterns in ADHD [20], deep learning models 
in this field have received relatively less attention and require 
further investigation. Some studies have focused on applying 
convolutional neural networks (CNNs) to detect ADHD using 
functional and structural MRI [21, 22]. However, limited 
research has explored the integration of EEG and deep learning 
approaches for ADHD detection. Traditional ML methods 
typically employ shallow architectures with limited capacity 
for nonlinear feature transformation [23]. For example, SVMs 
utilize a shallow linear pattern separation model that requires a 
larger number of computational elements and struggles to 
model complex concepts and multi-level abstractions. 
Moreover, due to their single-layer construction, traditional 
ML methods lack effectiveness in identifying anomalous points 
in the deep hidden layers. 

The extraction of preexisting designed characteristics and 
intensive preprocessing were key components of previous ML 
methods [24]. Nonetheless, a number of deep learning models 
have been effectively launched in the last ten years [25]. 
Consequently, the challenge has shifted from developing 
relevant engineered features to the need for large-scale data 
collection, which is crucial for effectively training optimal 
deep learning models. Finding the most important information 
has become a critical task due to the growing number of data. 
One of the newest and most important deep learning principles 
is attention, which makes it possible to understand which 
portions of the data are pertinent to the output and to 
seamlessly integrate outside information into a deep learning 
model [26]. This approach seeks to facilitate the adoption of 
parallel computing while improving a deep learning network's 
explainability and interpretability [27]. Hence, over the past 
few years, several diverse attention techniques have been 
implemented in EEG-based recognition [28-30]. Therefore, in 
this research, the potential of employing different attention 
strategies is investigated. Indeed, this study focused on the 
application of attention in various deep learning models for the 
EEG classification of ADHD and typical children. For this 
purpose, commonly utilized deep learning models for EEG 
recognition, namely CNN and LSTM, were re-implemented. 
Each of these models was augmented with attention 
mechanisms, and the influence of attention on the resulting 
classification accuracy was assessed. In Section II, a detailed 
explanation of the methodology is presented. Section III 
provides the experimental results and findings. The findings of 
the study are discussed in the Section IV and finally Section V 
concludes the paper. 

II. METHODS 

A. Dataset 

A freely available dataset from the "First EEG Data 
Analysis Competition with Clinical Applications" was 
employed for the study [31]. This dataset comprises EEG 
recordings collected from 61 children aged between 7 and 12 
years. In the ADHD group, there were 31 children, consisting 

of 22 boys and 9 girls, with an average age of 9.64±1.73. 
Conversely, the control group consisted of 30 children, 
including 25 boys and 5 girls, with an average age of 
9.85±1.77. None of the subjects in the control group exhibited 
any psychiatric conditions. In order to maintain consistency, 
specific criteria were established to exclude children with 
ADHD and those who were healthy. These criteria 
encompassed a history of significant neurological disorders or 
cortical damage (e.g., epilepsy), major physical illnesses, 
learning or speech disabilities, other psychiatric issues, and the 
use of barbiturates and benzodiazepines. 

During the EEG recording, the 10-20 standard was 
followed, and a total of 19 channels were utilized. The specific 
channels employed were F7, Cz, Fz, T3, Pz, Fp1, C3, T5, C4, 
F8, T4, Fp2, F3, P4, F4, P3, T6, O1, and O2. Reference 
channels A1 and A2 were placed on the ears. The signals were 
digitized at a sampling rate of 256 Hz and captured within the 
frequency range of 0.1 to 60 Hz. To eliminate unwanted noise 
and interference, a FIR band-pass filter with cut-off 
frequencies of 0.4 and 60 Hz was applied, along with a notch 
filter set at 50 Hz to cancel out any electrical interference from 
the city. Throughout the EEG recording, the child was 
presented with various images of animal figures or cartoon 
characters displayed on a nearby monitor. These images were 
shown both at the top and bottom of the screen (see Fig. 1). 
The child's task was to count the characters at the top, then 
count the pictures at the bottom, and finally add the two 
numbers together to announce the total. The accuracy of the 
sum was not a crucial factor in this protocol; the primary 
objective was to keep the child consistently engaged in a 
cognitive state throughout the EEG recording process. 

B. Feature Extraction 

In this study, the focus was on analyzing EEG data, which 
consisted of both ADHD and typical frames or segments. A 
recent study found that nonlinear and frequency features are 
better markers of EEG patterns for diagnosing ADHD [32]. 
Therefore, this study focused on nonlinear and frequency 
features as input to deep classification models. 15 well-
established characteristics were evaluated in the frequency and 
temporal domains for each unique EEG channel. Specifically, 
in the time domain via different nonlinear analysis approaches, 
the following features were extracted: Higuchi fractal 
dimension, Hurst exponent, correlation dimension, Lempel-Ziv 
complexity, sample entropy, permutation entropy, Katz fractal 
dimension, Lyapunov exponent, detrended fluctuation analysis, 
and Petrosian fractal dimension, as mentioned in prior studies 
[32-34]. Moving on to the frequency domain, the spectral 
power within clinically relevant frequency bands was 
calculated. These bands include delta band ranging from 0.5 
Hz to 4 Hz, theta band ranging from 4 Hz to 8 Hz, alpha band 
ranging from 8 Hz to 13 Hz, beta band ranging from 13 Hz to 
30 Hz, and gamma band ranging from 30 Hz to 45 Hz. To 
collectively refer to the set of features extracted from each 
channel in both time and frequency domains, it is termed the 
vector: 

𝑆𝑐(𝑡) = [𝐹1(𝑡), 𝐹2(𝑡), … , 𝐹𝑛(𝑡)]  (1) 
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Fig. 1. An instance of images depicted to subjects during signal capturing. 

where, n = 15 and t = 1, 2, …, E, where E denotes the data 
segment count. Furthermore, for every time segment t, the 
Spearman's correlation coefficient among all EEG electrodes 
was calculated, resulting in a distinct correlation matrix m for 
every given time segment t: 

𝑚(𝑡) = [
𝑚11(𝑡) ⋯ 𝑚1𝐶(𝑡)

⋮ ⋱ ⋮
𝑚𝐶1(𝑡) ⋯ 𝑚𝐶𝐶(𝑡)

]  (2) 

For each time segment, the deep learning networks used in 
this study receive inputs consisting of the correlation matrix m 
and the feature vector Sc for all EEG electrodes, where 𝑐 runs 
from 1 to C. Here, mij(t) denotes the correlation coefficient in 
the segment t between channels i and j. To prevent any 
confusion, unless stated otherwise, the reliance on the time 
segment, denoted as t, will be disregarded. 

C. Attention Models 

Within this study, two deep learning models that benefit 
from attention mechanisms exhibit similar structures, with the 
variation occurring in the initial layer. To efficiently handle 
time-related information in the input data, the LSTM with 
attention model includes an LSTM unit in the first layer. In 
contrast, the CNN with attention model processes the input 
using a one-dimensional convolution operation. The LSTM 
layer, the dense layer, and the classification layer are the next 
three layers that both models have in common. In each model, 
the attention mechanism is designed to meet the specific 
processing needs of the corresponding initial layers. With the 
exception of the LSTM model with attention, which places the 
attention mechanism after the second LSTM layer, the 
attention mechanism is typically positioned between the initial 
layer and the LSTM layer. In all of the models, cross-entropy 
was implemented as the loss function for optimizing the 
parameters, determined as follows: 

𝐿 = −
1

𝑁
∑ ∑ (𝑌𝑖,𝑗 log(𝑃𝑖,𝑗))

𝑀
𝑗=1

𝑁
𝑖=1   (3) 

Here, Yi,j denotes the desired class label for the segment i, 
Pi,j denotes the estimated outcome for that class, N denotes the 
total sample count, and M denotes the count of classes. During 
this research, sole focus was placed on two classes, and one-
hot encoding was utilized for the output. Every model had the 
softmax function in its final layer. The settings were updated 
using a mini-batch gradient descent method. This method 
updated the model's parameters using a batch of B samples, 
where B is the batch size that was determined empirically. 

1) CNN with attention: The model utilized in this research 

is known as CNN with Attention (CNN+Att). This network 

was inspired by a previous work [35] introducing the 

Convolutional Block Attention Module (CBAM), an attention 

process particularly adjusted for convolutional architectures. 

The spatial attention and channel attention sub-modules, 

which functioned in tandem, made up the two different 

attention processes that made up the CBAM module. The 

channel attention focused on identifying relevant information 

in the input, whereas the spatial attention determined the 

meaningful placement of that information. The relevance was 

established by the attention coefficients matrix, which was 

represented by the symbols As for spatial attention (arising 

from the convolution operations) and Aa for channel attention 

(derived using a shared MLP). These processes were applied 

to this model in a sequential fashion, starting with the channel 

module and moving on to the spatial module. Fig. 2 illustrates 

the overall architecture of CNN+Att, which includes a CNN 

layer integrated with the CBAM structure, a dense layer, an 

LSTM layer, and a dropout. This structure conducts one-

dimensional convolutional operations on every input vector, 

indicating time segment (t) from 1 to E. Two improvements 

were applied to the input feature matrix: one included 

multiplication with the channel attention sub-module (Aa) and 

the other with the spatial attention sub-module (As). After 

integration, the CNN layers' outputs were fed into the LSTM. 
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Fig. 2. The structure of the CNN+Att model. 

2) LSTM with attention: For the second attention-based 

framework, inspiration was drawn from a structure introduced 

in the previous work [36], and the LSTM with attention 

(LSTM+Att) was implemented. In the implementation, a two-

layer LSTM structure was opted for instead of the original 

three-layer version to maintain consistency with the other 

model examined in the current work. An additional LSTM 

layer with T LSTM cells was added on top of the initial LSTM 

layer. The information from this stacked LSTM structure was 

then passed to a dense layer, which, in turn, was connected to 

the classification layer, which comprised two neurons. During 

training, the described loss function was utilized. To create the 

input vector for every EEG segment (t), Spearman's 

correlation coefficients from m(t) were concatenated with the 

extracted feature vector, Sc(t). The integrated vector 

representing one segment is denoted as: 

𝑠(𝑡) = [𝑠1||𝑠2||. . ||𝑠𝐶]         (4) 

Every si is explained through Eq. (3). The attention layer 
was positioned above the second LSTM layer, as seen in Fig. 
3. The attention layer designates suitable weights, represented 
by αi, to every ith cell's output (hi) in the LSTM layer. Each 
vector hi was multiplied by the weight αi that corresponded to 
it. E vectors were concatenated to create a single vector, which 
was then transmitted to a dense layer without any dropout. The 
last layer, which made use of the softmax activation function, 
carried out the EEG categorization. In this model, each cell of 
the LSTM layer constructed its own delineation of the input 
segment. The attention process in this model specifically relied 
on segments/time steps that contained more distinguishing 
information, assigning higher coefficients αi to these time 
steps. To calculate the attention coefficients, a transformation 
function was applied, ui = tanh(Wshi), where i belongs to the 
set 1, 2, …, E and Ws represented the weight matrix. 
Subsequently, softmax(ui) was utilized to determine the 
attention weights αi after normalizing the attention coefficients. 
Furthermore, as mentioned in Eq. (3), the model was trained 
using the cross-entropy loss function, which is different from 
the original work. 
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Fig. 3. The structure of the LSTM+Att model. 

D. Baseline Deep Learning Networks 

In order to compare the models discussed earlier with 
attention and also to investigate the effect of attention 
mechanisms included in deep structures on the classification 
performance of models, two additional deep learning models 
without attention mechanisms were considered in this work: a 
CNN and an LSTM. These models had identical structures to 
their respective attention-enhanced counterparts, with the 

exception of the removal of the attention layer. Whole 
networks were executed in Python through the Tensorflow 2 
approach. To optimize the performance of the models, the 
hyper-parameter values were carefully selected to obtain the 
highest F1-score averaged over all data. For parameter 
optimization, the Stochastic Adam optimizer was employed. 
The optimal parameters for CNN+Att and LSTM+Att 
networks can be found in Tables I and II. 

TABLE I. SELECTED HYPER-PARAMETER VALUES FOR CNN+ATT CLASSIFICATION NETWORK 

Hyper-parameter Range CNN CNN+Att 

Convolution kernel 3, 5, 7, 9, 11 3 3 

Convolution filters 8, 16, 32, 64 64 64 

LSTM hidden layers 8, 128, 256 8 256 

Dropout level [0.1, 0.5] 0.5 0.4 

Learning rate [0.0001, 0.001] 0.0002 0.0002 

CBAM reduction ratio 4, 8, 16 - 16 

CBAM spatial kernel 5, 7, 9, 11 - 7 

TABLE II. SELECTED HYPER-PARAMETER VALUES FOR THE LSTM+ATT CLASSIFICATION NETWORK 

Hyper-parameter Range LSTM LSTM+Att 

LSTM hidden layers 8, 128, 256 128 128 

LSTM L2 reg [0.001, 0.05] 0.002 0.001 

Input dropout level [0.1, 0.5] 0.4 0.4 

LSTM layer 1 dropout [0.1, 0.5] 0.4 0.2 

LSTM layer 2 dropout [0.1, 0.5] 0.3 0.2 

Learning rate [0.0001, 0.001] 0.0001 0.0001 
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E. Evaluation of Models 

A 10-fold cross-validation approach was used to increase 
the power of the estimate of error and guarantee the validity of 
the results. All models were trained with a batch size of 16 for 
50 epochs inside each fold. The models were evaluated using 
recognized classification measures, such as F1-score, 
sensitivity, specificity, and accuracy. Sensitivity and specificity 
are especially important when assessing how well a classifier 
works to detect uncommon but important samples. TP (True 
Positive) indicates the positively categorized samples that were 
correctly identified, with N being the total sample count for 
classification; TN (True Negative) indicates the accurately 
classified negative samples; FP (False Positive) represents the 
incorrectly classified positive samples, and FN (False 
Negative) representing the incorrectly classified negative 
samples, the accuracy, sensitivity, specificity, and F1-score 
values were determined. 

III. RESULTS 

In the current work, the performance of two attention-based 
models was evaluated in comparison to baseline models for a 
two-group classification problem for ADHD diagnosis. Fig. 4 
shows the scatterplots of nonlinear features extracted from the 
FP2 channel of ADHD and normal subjects. 

Table III presents a summary of all results for each 
classification model in terms of F1-score, sensitivity, 
specificity, and accuracy. As shown, the best classification 
result was achieved using the LSTM+Att model with 98.91% 
accuracy, 99.87% accuracy, 97.79% specificity and 98.87% 
F1-score. After that, the LSTM, CNN+Att, and CNN models 
succeeded in classifying ADHD and Normal EEG signals with 
98.45%, 97.74% and 97.16% accuracy, respectively. 

 

Fig. 4. Scatterplots of nonlinear features extracted from the FP2 channel of ADHD and normal subjects. 

TABLE III. MEAN AND STANDARD DEVIATION OF CLASSIFICATION RESULTS FOR ALL MODELS FOR ADHD DETECTION 

Model Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) 

CNN 97.16 ± 0.91 95.33 ± 1.03 98.89 ± 1.31 97.05 ± 0.70 

CNN+Att 97.74 ± 1.07 96.88 ± 0.85 98.57 ± 1.25 97.61 ± 0.99 

LSTM 98.45 ± 1.05 98.10 ± 1.02 98.82 ± 1.04 98.40 ± 0.95 

LSTM+Att 98.91 ± 0.64 99.87 ± 0.22 97.79 ± 1.03 98.87 ± 0.72 
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Fig. 5. Obtained classification results of a 10-fold cross-validation algorithm for all classification models for ADHD detection. 

Fig. 5 shows the Obtained classification results of a 10-fold 
cross-validation algorithm for all classification models for 
ADHD detection. As can be seen, the CNN and CNN+Att 
models had more variance than the LSTM and LSTM+Att 
models. 

IV. DISCUSSION 

Using deep learning models for actual data, including 
EEGs, remains a difficult endeavour. These datasets 
encapsulate intricate scenarios where various factors, such as 
technological instruments, recording interference, and both 
emotional and physical states, intertwine. Consequently, the 
classification performance can be heavily influenced by 
disparities between subjects and within individuals themselves. 
Reflecting on this observation, two attention-enhanced deep 
learning models were executed and juxtaposed (alongside their 
respective counterparts lacking attention) across an EEG 
dataset for ADHD detection. This approach aimed to explore 
how attention can augment deep learning models in identifying 
ADHD EEG patterns. The accuracy and F1 scores for all 
models were remarkably close, surpassing the 97% threshold. 
Compared to previous deep learning models without an 
attention mechanism, this study improved the accuracy of 
ADHD diagnosis. Chen et al. reported an accuracy of 94.67% 
in diagnosing ADHD using a novel connectivity matrix and a 
CNN model [37]. Vahid et al achieved 83% accuracy in 
diagnosing ADHD using EEGNet deep model [38]. Using a 
four-layer CNN model, Dubreuil-Vall et al. achieved an 
accuracy of 88% in diagnosing ADHD [39]. Cisotto et al. also 
showed that attention-based deep learning models can improve 
the classification performance of EEG datasets [40]. 

It is important to remember that attention processes were 
purposefully kept simple in order to evaluate their influence on 
each suggested model. Each model was composed of an LSTM 

layer, a dense layer for output generation, and a single attention 
layer that stored a model-specific attention mechanism. This 
simple yet efficient design made it easier to compare various 
attention-enhanced versions. Every attention mechanism was 
created to make use of input properties in a unique way. The 
LSTM+Att model employed attention in the temporal 
dimension to filter out irrelevant information. On the other 
hand, the CNNs+Att model utilized the CBAM module to 
apply attention to each EEG channel individually. 
Interestingly, models primarily focused on spatial features 
demonstrated performance improvements when attention was 
introduced, such as with CNNs+Att outperforming CNN. Jiang 
et al. improved the performance of their CNN model in the 
EEG-based emotion recognition task by incorporating the 
temporal-channel attention mechanism into the designed deep 
model [41]. Altuwaijri and Muhammad improved the 
performance of their CNN model by adding CBAM structure 
to multi-branch EEGNet through attention mechanism and 
fusion methods for EEG-based motor imagery classification 
[42]. Notably, the proposed attention-enhanced models 
demonstrated versatility in leveraging different EEG 
descriptions that consider time, frequency, and spatial 
information (sensor locations) interchangeably or in 
conjunction. These considerations offer valuable insights for 
devising suitable experimental protocols and data processing 
pipelines based on the specific behaviours or task 
performances under study. For instance, in cognitive tasks 
where individuals are expected to respond promptly to external 
stimuli, architectures like LSTM+Att can effectively filter 
time-dependent features. Zhou et al. showed that the attention-
based LSTM performs better than the LSTM structure without 
the attention mechanism in detecting abnormal behavior [43]. 
It is important to emphasize that despite their simple designs, 
the attention mechanisms enabled the models to achieve high 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 3, 2024 

241 | P a g e  

www.ijacsa.thesai.org 

levels of accuracy in a range of real-world scenarios with 
minimal preprocessing. This statement has been shown in 
previous studies for EEG-based sleep stage classification [44, 
45], clinical events prediction in the intensive care unit [46], 
and diagnosis of various diseases [47, 48]. Preprocessing is 
usually directed by domain expertise or knowledge, and 
depending on the analyst performing the data analysis, it may 
provide non-reproducible findings. As a result, minimizing the 
need for preprocessing offers a big benefit over traditional ML 
or other deep learning techniques. However, it's worth 
mentioning that this work still requires further investigation on 
larger datasets impacted by artefacts, where preprocessing is 
often crucial. Nonetheless, it paves the way for future research 
aiming to minimize preprocessing in extensive EEG datasets 
empirically. 

Similar researches have investigated the application of 
different deep learning models in EEG for epilepsy diagnosis 
[49, 50], psychiatric disorder diagnosis [20, 51], motion 
imagery classification [52, 53] and mental workload 
classification [54]. In Table IV, a comparison is made between 
the proposed approach and other leading ML methods for 
diagnosing ADHD using automated EEG data on the same 
dataset. The results revealed that this approach outperformed 
previous studies, showcasing a higher accuracy value. 
Specifically, it surpassed conventional ML techniques 
employed on unipolar EEG signals. Furthermore, when 
compared to other deep learning methods applied to the same 
EEG signals, the approach presented here produced 
satisfactory outcomes. This study introduces a newly 
developed deep learning model that utilizes EEG data for 
ADHD diagnosis. 

TABLE IV. COMPARING THE PERFORMANCE OF THE PROPOSED APPROACH WITH SOME STATE-OF-THE-ART RESEARCH IN ADHD DIAGNOSIS THROUGH EEG 

ANALYSIS ON THE SAME DATASET 

References Dataset Approach Accuracy 

[55] Same as this study Nonlinear features, MLP neural network 96.70% 

[56] Same as this study Nonlinear features, MLP neural network 93.65% 

[31] Same as this study 
EEG image generation based on spectral features, Deep CNN 

model 
98.48% 

The proposed technique 31 ADHD and 30 Normal children Nonlinear and spectral features and LSTM+Att model 98.91% 
 

The insufficient clinical implications of this paper and 
similar studies constitute a significant drawback. In general, 
there is a need for further evidence regarding the effectiveness 
of employing EEG-based ML techniques in diagnosing 
ADHD. For instance, it remains unexplored how these methods 
perform when applied to individuals who have undergone 
treatment for ADHD in the past. Furthermore, in order to 
utilize these approaches effectively, it is crucial to obtain a 
broader range of EEG datasets specific to ADHD. This is 
particularly significant for deep learning techniques as they 
necessitate extensive datasets to achieve optimal results. 
Furthermore, the segmentation of EEG signals on a second-to-
second basis for data augmentation, which was employed in 
this study and previous similar studies, may not possess 
clinical justification. In addition, the proposed models were 
only tested on a cross-sectional dataset, and it is necessary to 
examine their validity through longitudinal studies. 
Nevertheless, the proposed approach can serve as a CAD tool 
for clinical purposes. 

V. CONCLUSION 

The purpose of this work was to evaluate how different 
attention processes affected the performance of well-
established deep-learning models for the identification of 
ADHD. Two specific architectures, namely LSTM+Att and 
CNNs+Att, were compared. These models were employed for 
the classification of EEG patterns, including ADHD and 
Normal patterns. Notably, despite the simplicity of the 
suggested attention-enhanced models, the results showed state-
of-the-art performance across all categorization models. The 
information in the data was successfully utilized by 
investigating the application of attention mechanisms and the 
precise position of the attention layer inside the deep learning 
model. This fascinating finding creates opportunities for more 

study on large-scale EEG datasets and more reliable 
information extraction from massive data sets, ultimately 
allowing links to be made between brain activity and specific 
behaviours or task execution. Hence, attention is a viable 
method for evaluating the accuracy and applicability of EEG 
data in the identification of ADHD. Additionally, attention 
mechanisms facilitate parallel computation, thereby 
accelerating the analysis of significant electrophysiological 
datasets such as EEG. These promising results could encourage 
stakeholders to offer a CAD system for diagnosing ADHD 
through the suggested method. For future research, collecting 
more diverse EEG samples, exploring alternative ML and deep 
learning techniques, incorporating psychophysiological 
attributes and other neurophysiological recordings with EEG, 
and developing ML methods for automatically scaling the 
severity of ADHD is recommended. 
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