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Abstract—Cooling Load (CL) estimation in residential 

buildings is crucial for optimizing energy consumption and 

ensuring indoor comfort. This article presents an innovative 

approach that leverages Artificial Intelligence (AI) techniques, 

particularly K-Nearest Neighbors (KNN), in combination with 

advanced optimizers, including Dynamic Arithmetic 

Optimization (DAO) and Wild Geese Algorithm (WGA), to 

enhance the accuracy of CL predictions. The proposed method 

harnesses the power of KNN, a machine-learning algorithm 

renowned for its simplicity and efficiency in regression tasks. By 

training on historical CL data and relevant building parameters, 

the KNN model can make precise predictions, 768 sample with 

considering factors such as Glazing Area, Glazing Area 

Distribution, Surface Area, Orientation, Overall Height, Wall 

Area, Roof Area, and Relative Compactness. Two state-of-the-art 

optimizers, DAO and WGA, are introduced to refine the CL 

estimation process further. The integration of KNN with DAO 

and WGA yields a robust AI-driven framework proficient in the 

precise estimation of CL in residential constructions. This 

approach not only enhances energy efficiency by optimizing 

cooling system operations but also contributes to sustainable 

building design and reduced environmental impact. Through 

extensive experimentation and validation, this study 

demonstrates the effectiveness of the proposed method, 

showcasing its potential to revolutionize CL estimation in 

residential buildings. The results indicate that the hybridization 

of KNN with DAO optimizers yields promising outcomes in 

predicting CL. The high R2 value of 0.996 and low RMSE value 

of 0.698 demonstrate the accuracy of the KNDA model. 

Keywords—Cooling load; K-nearest neighbor; dynamic 

arithmetic optimization; wild geese algorithm 

I. INTRODUCTION 

In an era marked by burgeoning concerns over energy 
efficiency and environmental sustainability, the demand for 
more innovative and precise methods of managing cooling 
loads (CL) in residential buildings has never been more 
pressing [1]. Achieving the delicate balance between 
maintaining indoor comfort and minimizing energy 
consumption is a multifaceted challenge that resonates with 
homeowners and the broader global community [2]. The need 
to develop innovative approaches to predict, control, and 
optimize cooling loads is paramount, and this article delves 
into the forefront of these advancements [3]. Residential 
buildings constitute a substantial portion of global energy 
consumption [4]. Cooling systems, essential for creating 
comfortable living environments, contribute significantly to 
this energy usage [5]. CL management inefficiency can lead to 
excessive energy consumption, elevated utility bills, and 
increased carbon emissions. Hence, the stakes are high, both 

economically and environmentally, in devising strategies that 
can predict and optimize cooling loads with unparalleled 
accuracy [6]. 

Precisely forecasting building energy consumption 
represents a crucial aspect of energy modeling. Yet, it 
frequently struggles to provide a comprehensive reflection of 
real-world performance [7], [8]. Conventional energy models, 
well-suited for initial assessments, rely on engineering 
calculations grounded in physical principles to gauge building 
energy consumption [9]. Multiple research investigations have 
highlighted the significant gap between these forecasts and 
actual energy usage, sometimes surpassing the predictions by a 
factor of two or three. Numerical simulation techniques address 
these constraints when simulating building energy usage [10]. 
However, their capacity to accurately replicate the intricacies 
of the actual world remains limited. Through a systematic 
review of past research findings and limitations, these 
simulations play a pivotal role in tackling the challenges linked 
to using machine learning models to enhance building energy 
efficiency [11]. 

Artificial Intelligence, particularly Machine Learning (ML) 
[12], has emerged as a potent tool for addressing complex 
challenges across various domains. In the context of cooling 
load estimation, ML algorithms shine as they have the capacity 
to assimilate vast datasets encompassing diverse parameters 
such as outdoor temperatures [13], humidity levels, occupancy 
patterns, and architectural features. Among the myriad of ML 
algorithms, the K-Nearest Neighbors (KNN) algorithm stands 
out for its simplicity and effectiveness in regression tasks [14]. 
KNN operates on the premise that similar data points in a 
feature space tend to have similar output values [15]. 
Leveraging this principle, KNN can predict cooling loads by 
identifying neighboring data points with known CL values. The 
algorithm computes weighted averages of these neighbors, 
providing an accurate CL estimate based on the historical data 
[16]. The application of KNN in cooling load estimation is a 
cornerstone of this article, offering a foundation upon which 
advanced optimization techniques can be built [17]. 

In order to accurately capture intricate energy consumption 
patterns, the system harnessed the capabilities of a 
Convolutional Neural Network (CNN) and a Long Short-Term 
Memory (LSTM) network. Kim and Cho [18] addressed the 
challenge of accurately predicting housing energy consumption 
in the context of a rapidly increasing human population and 
technological development. The authors proposed a CNN-
LSTM neural network, combining Convolutional Neural 
Network (CNN) and Long Short-Term Memory (LSTM), to 
effectively predict energy consumption. The method 
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demonstrated nearly perfect prediction performance, 
outperforming conventional forecasting methods and achieving 
the smallest root mean square error, especially for datasets on 
individual household power consumption. Empirical analyses 
of variables provided valuable insights into the factors 
influencing power consumption forecasts, contributing to 
improved prediction accuracy. Moradzadeh et al. [19] focused 
on applying SVR and MLP models to estimate cooling and 
heating demands. The MLP model produced remarkable results 
for their investigation with an amazing R2-value of 0.9993 for 
heating load prediction, while the SVR model performed very 
well with an R-value of 0.9878 for cooling load prediction. 
These results show the degree of accuracy that a machine 
learning system is capable of achieving. In study [20], using a 
genetic algorithm in conjunction with a dynamic simulation 
tool, a multi-objective optimization was carried out to improve 
energy efficiency in existing buildings via renovations and 
HVAC systems. A different research suggested using statistical 
analysis in energy forecasting to cool an office building. The 
study in [21] proposed four hybrid methods for predicting the 
cooling load efficiency of buildings, based on artificial neural 
networks (ANN) and meta-heuristic algorithms such as 
artificial bee colony (ABC), particle swarm optimization 
(PSO), imperialist competitive algorithm (ICA), and genetic 
algorithm (GA). Cooling load forecasting was executed in 
study [22] using a probabilistic entropy-based neural 
(𝑃𝐸𝑁𝑁) method. Short-term cooling load prediction, aiming 
to optimize 𝐻𝑉𝐴𝐶 systems and energy efficiency in buildings, 
was performed in [23] using multiple nonlinear regression 
(𝑀𝑁𝑅) , auto-regressive (𝐴𝑅) , and autoregressive with 
exogenous (𝐴𝑅𝑋) models. In study [24], a feedforward neural 
network (𝐹𝐹𝑁𝑁)  reduced building energy consumption for 
thermal comfort by 36.5%. For energy demand forecasting and 
energy efficiency measures in a residential building, [25] 
suggested a decision tree method. A comparative study of 
cooling load forecasting methods was conducted in study [26], 
contrasting machine learning methods such as minimax 
probability machine regression (MPMR), gradient boosted 
machine (GBM), deep neural network (DNN), and Gaussian 
process regression (GPR). In research [27], ANN, 
categorization and regression tree (CART), general linear 
regression (GLR), and chi-squared automatic interaction 
detector (CHAID) were used to forecast the cooling loads of 
the building. The networks' inputs for the prediction were the 
technical parameters of the building [28]. 

Conversely, in the context of CL prediction, the SVR 
model outperformed, achieving the highest 𝑅 − value of 
0.9878 . In a separate study, Roy et al. [3] presented a 
customized Deep Neural Network (DNN) model designed to 
accurately anticipate heating and cooling needs in residential 
buildings. The results demonstrated that when it came to 
heating and cooling load prediction, the 𝐷𝑁𝑁 and 𝐺𝑃𝑅 models 
achieved the maximum Variance Accounted For (𝑉𝐴𝐹). In the 
next stage of the study, the 𝐷𝑁𝑁  model's performance was 
contrasted with that of the gradient-boosted machine 
(𝐺𝐵𝑀), Gaussian process regression (𝐺𝑃𝑅), and Minimax 
Probability Machine Regression (𝑀𝑃𝑀𝑅) models. 

This study makes a significant contribution to the field of 
building energy efficiency by delving into the innovative 

integration of Artificial Intelligence (AI) and advanced 
optimization techniques for the prediction and optimization of 
cooling loads in residential buildings. The core innovation lies 
in the utilization of the K-Nearest Neighbors (KNN) base 
model, chosen for its efficiency and reliability in predicting 
building cooling loads. To further enhance the performance of 
the KNN model, the study introduces a novel hybridization 
technique that integrates two cutting-edge optimizers: Dynamic 
Arithmetic Optimization (DAO) and the Wild Geese 
Algorithm (WGA). This hybrid approach aims to harness the 
strengths of both optimizers, maximizing predictive accuracy 
and optimizing cooling load outcomes. The study's distinctive 
contribution lies in its comprehensive examination of various 
models, including individual configurations of KNN, DAO, 
and WGA, as well as their hybrid combinations. This 
meticulous evaluation ensures an unbiased assessment of each 
model's capabilities, providing valuable insights into their 
standalone and synergistic performances. Crucially, the study 
emphasizes the use of established metrics such as R2 
(coefficient of determination) and RMSE (root mean square 
error) in evaluating model performance. By incorporating these 
metrics, the research ensures a robust and credible assessment 
of the predictive capabilities of the models. This study not only 
explores the potential of AI and optimization techniques in 
enhancing energy efficiency but also establishes a 
methodological framework for evaluating and implementing 
these technologies in the context of residential building cooling 
load prediction. 

In the following sections, a detailed examination of the 
relevant data, the model, and the optimizers utilized in Section 
II will be undertaken. An elaborate explanation of the data and 
an assessment of the models based on metrics will be provided. 
In Section III, the results derived from the training and testing 
phases will be scrutinized, and subsequently, the performance 
of the models based on classification will be reported. Finally, 
in Section IV, conclusions regarding the study in question and 
the overall performance of the models will be presented. 

II. MATERIALS AND METHODOLOGY 

A. Data Gathering 

This article delves into the crucial parameters and variables 
pertinent to studying building energy consumption, particularly 
in predicting cooling loads. The dataset is meticulously divided 
into three segments: Training (70%), Validation (15%), and 
Testing (15%). Each segment plays a pivotal role in different 
phases of model development and assessment. The Training 
Set forms the foundation for training the predictive model, 
enabling it to learn from historical data. The Validation Set 
fine-tunes the model's parameters, guarding against overfitting 
and ensuring robustness. Finally, the Testing Set rigorously 
evaluates the model's efficacy with unseen data, providing the 
ultimate assessment. These parameters are essential for 
comprehending and modeling energy dynamics in residential 
buildings. Table I presents the statistical characteristics of the 
input variables [29]. The following is a detailed breakdown of 
each parameter: 

1) Relative compactness: Relative compactness is a 

fundamental parameter that describes how tightly or 
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efficiently a building is designed. It is a dimensionless value 

that quantifies the compactness of the building's shape, 

affecting the thermal performance and energy consumption. 

2) Surface area: Surface area is critical as it directly 

influences the heat exchange between the building's interior 

and the external environment. It encompasses the total 

external surface area of the building, which includes walls, 

roof, and possibly other exposed surfaces. 

3) Wall area: The Wall represents the total surface area of 

the building's walls. Walls are significant in heat transfer and 

insulation, making this parameter crucial for energy modeling. 

4) Roof area: The roof area is the total surface area of the 

building's roof. Roof design and insulation are key factors 

affecting cooling load, as heat gain through the roof can be 

substantial. 

5) Overall height: The height of the building impacts its 

internal volume and air circulation, influencing the 

distribution of cooling loads within the structure. 

6) Orientation: Building orientation refers to the direction 

in which the building faces. It can affect the solar radiation the 

building receives, impacting the cooling load. 

7) Glazing area: The glazing area represents the 

proportion of the building's external envelope covered by 

windows or glass. It significantly influences heat gain and 

loss, making it an essential factor in cooling load calculations. 

8) Glazing area distribution: The distribution of glazing 

within the building's envelope can vary, affecting how heat is 

distributed and the spatial variations in cooling load. 

9) Cooling: Cooling load in kilowatts (KW) represents the 

cooling energy required to maintain a comfortable indoor 

temperature. It is a crucial output variable in energy modeling. 

These parameters collectively serve as the cornerstone for 
predicting cooling loads in residential buildings. Fig. 1 
illustrates the correlation matrix depicting relationships among 
the input and output variables. The article delves into 
examining the influence of these parameters on energy 
consumption and explores how advanced machine learning 
models, like KNN integrated with innovative hybridization 
techniques, can enhance the precision of cooling load 
predictions. Understanding these material factors is essential 
for optimizing energy-efficient building design and cooling 
system operation [30]. 

 

Fig. 1. Correlation matrix for the input and output variables. 

TABLE I. THE STATISTIC PROPERTIES OF THE INPUT VARIABLE OF KNN 

Variables 
Indicators 

𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒚 𝑴𝒊𝒏 𝑴𝒂𝒙 𝑨𝒗𝒈 𝑺𝒕.𝑫𝒆𝒗. 

Relative compactness 𝐼𝑛𝑝𝑢𝑡 0.62 0.98 0.764 0.106 

Surface area (m2) 𝐼𝑛𝑝𝑢𝑡 514.5 808.5 671.7 88.09 

Wall area (m2) 𝐼𝑛𝑝𝑢𝑡 245 416.5 318.5 43.63 

Roof area (m2) 𝐼𝑛𝑝𝑢𝑡 110.3 220.5 176.6 45.17 

Overall height (m) 𝐼𝑛𝑝𝑢𝑡 3.5 7 5.25 1.751 

Orientation 𝐼𝑛𝑝𝑢𝑡 2 5 3.5 1.119 

Glazing area (%) 𝐼𝑛𝑝𝑢𝑡 0 0.4 0.234 0.133 

Glazing area distribution 𝐼𝑛𝑝𝑢𝑡 0 5 2.813 1.551 

Cooling (KW) 𝑂𝑢𝑡𝑝𝑢𝑡 6.01 43.1 22.31 10.09 

B. KNN-based 

The K-Nearest Neighbors (KNN) algorithm predicts 
outcomes by considering most feedback from 𝐾  data points 
closest to the test point [31]. To prepare for the application of 
this algorithm, it is crucial to standardize these parameters 
using Eq. (1). 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑥−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
                        (1) 

Next, the Euclidean distance between the test and data 
points is determined using Eq. (2). 

𝐻(𝑥𝑖 , 𝑥𝑗) = (∑ |𝑥𝑖
(ℎ)
− 𝑥𝑗

(ℎ)
|
2

𝑚
ℎ=1 )

1

2
             (2) 

Eq. (2) calculates the Euclidean distance H, where m is the 
number of argument points, between the test point (𝑥𝑗) and the 

original data points (𝑥𝑖). But since different parameters affect 
thermal comfort in different ways even when their values 
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change by the same amount (e.g., a 1°𝐶  change in air 
temperature affects thermal comfort more than a 1% change in 
air humidity), it is necessary to modify the Euclidean distance 
for each parameter. To correct for the uneven effects of indoor 
thermal factors on thermal comfort, this adjustment is made 
using Eq. (3) [32]. 

𝐻(𝑥𝑖 , 𝑥𝑗) = (∑ (𝑤ℎ ∗ |𝑥𝑖
(ℎ)
− 𝑥𝑗

(ℎ)
|
2
)𝑚

ℎ=1 )

1

2
              (3) 

The weight (w_h) allotted to each indoor thermal parameter 
influencing thermal comfort is calculated using the equation. 
To find the K data points that show the closest closeness to the 
test location, distances are calculated. The feedback that was 
obtained from the individuals at the present test point is then 
identified as the feedback that occurs the most often out of 
these 𝐾 data points. The ideal value for 𝐾, which determines 
the necessary number of data points, may be found with the use 
of cross-validation. It is crucial to choose a 𝐾 value that falls in 
the middle of the two extremes for best results. A low value of 
𝐾  may cause the model to become too sensitive to sample 
points that are near to the test point, which might lead to an 
excessive impact from noise points. On the other hand, if 𝐾 is 
set very high, the accuracy of the model can suffer [33]. Fig. 2 
presents the flowchart illustrating the 𝐾𝑁𝑁 process. 

 
Fig. 2. The flowchart of the KNN model. 

C. Dynamic Arithmetic Optimization (DAO) 

The core arithmetic optimization algorithm has been 
improved by introducing a novel accelerator function 
integrating two dynamic elements to boost performance [34]. 
In the optimization procedure, the dynamic version adjusts the 
search phase and candidate solutions by modifying their 
exploration and exploitation behavior. A standout feature of 
DAOA is its unique quality of not necessitating any initial 
parameter fine-tuning, unlike the latest metaheuristic methods 
[35]. 

1) A dynamic accelerated function for DAOA: In a 

dynamic environment, the search phase of the arithmetic 

optimization algorithm is significantly affected by the DAF. 

To tailor the AOA for this dynamic context, alterations are 

required for the accelerated function's initial Min and Max 

values. However, an ideal scenario would entail an algorithm 

that isn't reliant on internally adjustable parameters, as an 

alternative descending function can substitute the DAF [36]. 

The modification factor within the optimization algorithm is 

delineated as follows in Eq. (4): 

𝐷𝐴𝐹 = (
𝐼𝑡𝑀𝑎𝑥

𝐼𝑡
)𝑎   (4) 

It represents the current iteration count, 𝐼𝑡𝑀𝑎𝑥 signifies the 
maximum allowable number of iterations, and 𝑎 stands for a 
constant value. This function diminishes with each successive 
iteration of the algorithm [37]. 

2) A dynamic candidate solution for DAOA: The dynamic 

characteristics of candidate solutions in DAOA are presented 

in this section. In the case of metaheuristic algorithms, the 

importance of the exploitation and exploration phases cannot 

be overstated, and ensuring a proper balance between them is 

deemed vital for the success of the algorithm. The dynamic 

iteration of the algorithm seeks to improve both the 

exploitation and exploration phases by continuously adjusting 

the position of each solution according to the best solution 

obtained thus far in the optimization process. In the improved 

iteration, the Dynamic Candidate Solution (DCS) function is 

alternatively incorporated into Eq. (5) and Eq. (6) [38]. 

𝑥𝑖,𝑗 = (𝐶𝑖𝑡+1) = 

{
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝐷𝐶𝑆+∈) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗)), 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝐷𝐶𝑆 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗)), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

(5) 

𝑥𝑖,𝑗 = (𝐶𝑖𝑡+1) = 

{
𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝐷𝐶𝑆 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗)), 𝑟3 < 0.5       

𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝐷𝐶𝑆 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗)), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 

(6) 

The influence of the decreasing percentage in the candidate 
solution is considered by introducing the DCS function. Its 
value is diminished with each iteration of the algorithm, as 
depicted below in Eq. (7) and Eq. (8): 

𝐷𝐶𝑆(0) = 1 − √
𝐼𝑡

𝐼𝑡𝑀𝑎𝑥
  (10) 
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𝐷𝐶𝑆(𝑡 + 1) = 𝐷𝐶𝑆(𝑡) × 0.99  (11) 

The empirical observations gathered from multiple search 
agents and iterations provide substantial evidence that the 
integration of candidate solutions in DAOA effectively 
expedites the convergence rate of AOA [39]. These 
enhancements result in improved solution quality. 
Metaheuristic algorithms operating without extensive 
parameter tuning are typically considered advantageous. This 
algorithm benefits from adaptive parameters, reducing the 
parameter tuning requirements to just two variables - 
maximum iteration and population size. This contrasts 
competing algorithms, which often necessitate adjustments 
across various parameters for different problem instances. 
However, one drawback of this algorithm (see Eq. (9)) lies in 
its adaptive mechanism, which is based on the iteration count 
rather than fitness improvement. 

𝑘𝑖,𝑑
𝑣 = 𝑝𝑖,𝑑

𝑖𝑡 + 𝑟7,𝑑 × 𝑟8,𝑑 × ((𝑔𝑑
𝑖𝑡 + 𝑝𝑖+1,𝑑

𝑖𝑡 − 2 × 𝑝𝑖,𝑑
𝑖𝑡 ) + 𝑠𝑖,𝑑

𝑖𝑡+1)

  (9) 

D. Wild Geese Algorithm (WGA) 

Inspired by the coordinated migratory behavior of wild 
geese and their patterns of reproduction and death, the Wild 
Geese Algorithm (WGA) is a metaheuristic algorithm that uses 
swarm intelligence [40]. The suggested WGA is mainly 
intended for high-dimensional problem optimization, and it is 
distinguished by its simplicity and efficacy. The proposed 
phases of the WGA, to put it broadly, include the following: 
The wild geese's life cycle, migration, and subsequent 
evolution are covered in the following sections: a) Velocity 
displacement and migration stage; b) roaming and searching 
for food within their native environment; and c) the species' 

propagation and evolutionary phase [41]. 

𝑘𝑖,𝑑
𝑤 = 𝑝𝑖,𝑑

𝑖𝑡 + 𝑟9,𝑑 × 𝑟10,𝑑 × (𝑝𝑖+1,𝑑
𝑖𝑡 − 𝑝𝑖,𝑑

𝑖𝑡 )      (10) 

First, a population of wild geese is established, and 𝑘𝑖 is 
used to represent the positional vector of each wild goose. 
Next, for every person, the best local location, or personal best 
solution 𝑝𝑖, and the migration velocity 𝑆𝑖 are ascertained. The 
target function is then used to rate every wild goose population 
from best to worst, ranking them in decreasing order [41]. 

a) Phase of velocity displacement and migration: The 

wild geese migration is a meticulously organized collective 

movement characterized by coordination and control. It hinges 

on the leadership of specific individuals within the sorted 

population and their neighboring companions to steer the 

migration. Eq. (10) and Eq. (11) furnish the formulas for 

velocity and displacement concerning the coordinated velocity 

of the geese [42]. 

𝑠𝑖,𝑑
𝐼𝑡+1  = (𝑟𝐼,𝑑 × 𝑠𝑖,𝑑

𝐼𝑡 + 𝑟2,𝑑 × (𝑠𝑖+1,𝑑
𝐼𝑡 − 𝑠𝑖−1,𝑑

𝐼𝑡 )) + 𝑟3,𝑑

× (𝑃𝑖,𝑑
𝐼𝑡 − 𝑘𝑖−1,𝑑

𝐼𝑡 ) 

+ 𝑟4,𝑑 × (𝑃𝑖+1,𝑑
𝐼𝑡 − 𝑘𝑖,𝑑

𝐼𝑡 ) + 𝑟5,𝑑 × (𝑃𝑖+2,𝑑
𝐼𝑡 − 𝑘𝑖+1,𝑑

𝐼𝑡 ) − 𝑟6,𝑑  ×

(𝑃𝑖−1,𝑑
𝐼𝑡 − 𝑘𝑖+2

𝐼𝑡 )   (11) 

Regarding the 𝑖 − 𝑡ℎ  wild goose, the variables 
𝑘𝑖, 𝑑, 𝑝𝑖, 𝑑, 𝑎𝑛𝑑 𝑠𝑖, 𝑑  correspond to the 𝑑 − 𝑡ℎ  dimension of 
the current velocity, current position, and best position, 

respectively. As demonstrated in Eq. (11), the velocities of its 
nearby members affect the changes in location and velocity of 
a particular wild goose, such as the 𝑖 − 𝑡ℎ wild goose, denoted 

as (𝑠𝑖+1
𝐼𝑡 − 𝑠𝑖−1

𝐼𝑡 ) , along with the positions of neighboring 
members. The wild geese depend on their neighboring 
individuals within the sorted population to acquire movement 
patterns and guidance to minimize the distances between them 
and these adjacent members. 

 𝑘𝑖−1 
𝑖𝑡 → 𝑝𝑖

𝑖𝑡 , 𝑥𝑖
𝑖𝑡 → 𝑝𝑖+1

𝑖𝑡 , 𝑘𝑖+1
𝑖𝑡 → 𝑝𝑖+2

𝑖𝑡 , 𝑘𝑖+2
𝑖𝑡 → −𝑝𝑖−1

𝑖𝑡   

Moreover, the collective movement of the entire flock is 
directed by the global best member [43]. Eq. (9) depicts this 
coordinated and sequential positional adjustment, executed in 
tandem with the leading members, to mimic the motion of all 
members systematically. 

Within Eq. (9), 𝑔𝑑  signifies the best position among all 
members of the group. 

b) Roaming about in their native environment and 

gathering food: The purpose of this step is to incentivize the 

𝑖 − 𝑡ℎ wild goose to move in the direction of its antecedent, 

thereby indicating that the 𝑖 − 𝑡ℎ wild goose is attempting to 

approach the (𝑖 + 1) − 𝑡ℎ goose (𝑝𝑖+1
𝑖𝑡 − 𝑝𝑖

𝑖𝑡) . The formula 

governing the movement and foraging behavior of the wild 

goose, denoted as 𝑘𝑖
𝑤, is provided as follows: 

c) The process by which wild geese reproduce and 

evolve: Reproduction and evolution constitute another crucial 

stage in the life cycle of wild geese. The modeling of 

reproduction and evolution entails employing a blend of the 

migration equation (𝑘𝑖
𝑣) and the movement while searching for 

food equations (𝑘𝑖
𝑤𝑎), as calculated in Eq. (12). The overall 

simulations for the proposed 𝑊𝐺𝐴  algorithm utilize a 𝐶𝑟 
value of 0.5. 

𝑘𝑖,𝑑
𝑖𝑡+1 = {

𝑘𝑖,𝑑
𝑣  

𝑖𝑓
→ 𝑟𝑖,𝑑

𝑘𝑖,𝑑   
𝑤𝑎

 ≤ 𝑐𝑟        (12) 

d) The decline, movement, and progressive development 

of wild geese: Previous studies that have been published in the 

literature show that different optimization methods have 

different effects on addressing different issues depending on 

the size of the population and the number of iterations. In 

some cases, such as those involving the 𝐹2 and 𝐹3 functions, 

the population size of the algorithm is more important and has 

a greater influence than the number of iterations. However, for 

some functions, like F7 and F8, the number of iterations in the 

WGA algorithm is more important and has a greater impact 

than the population size. In order to arrive at a consensual 

solution, this is necessary. In order to overcome this difficulty 

and guarantee a balanced algorithm performance across all test 

functions, the death phase is created. The procedure starts with 

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , the initial maximum population size. The less 

resilient individuals will be progressively eliminated from the 

population as the algorithm iterations continue on, according 

to the standards given in Eq. (13). At the end of the last 

iteration, the population size will finally reach the final 

number, 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , after decreasing linearly over time. 
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𝑁 = 𝑟𝑜𝑢𝑛𝑑 (
𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙

−((𝑁𝐼𝑛−𝑁𝑓)∗(
𝐹𝑉

𝐹𝑉 𝑚𝑎𝑥
))
)  (13) 

The FV represents the count of function evaluations in Eq. 
(13). 

E. Performance Evaluators 

Table II outlines the formulations of various performance 
metrics used to evaluate the model's accuracy and effectiveness 
in predicting outcomes. These metrics provide valuable 
insights into the model's performance: 

 Predicted values are represented as 𝑏𝑖. 

 Measured values are indicated as 𝑚𝑖. 

 The symbol n signifies the sample size. 

 The mean of the predictor variable within the dataset is 
denoted as x̄. 

 The mean of the measured values is represented as m̅, 
and the mean of the predicted values is denoted as b̅. 

F. Hyperparameter 

Table III lists key hyperparameters for KNWG and KNDA 
models. In the KNWG model, setting n_neighbors to 01 means 

just the nearest neighbor is evaluated for predictions. This can 
provide a more localized prediction strategy. We set leaf_size 
to 3. This option describes the number of sites where the 
algorithm transitions from tree-based to brute-force search. 
Smaller leaf_sizes can improve memory efficiency. To specify 
the power parameter for the Minkowski distance metric, set the 
p parameter to 3. A value of 3 represents the Euclidean 
distance, frequently utilized for its balanced treatment of 
dimensions. In contrast, the KNDA model uses only the closest 
neighbor by setting the n_neighbors hyperparameter to 1. 
While this setting may increase model variance, it may be 
advantageous in certain situations. Configuring leaf_size to 
999 indicates a higher leaf size than KNWG. Selecting this 
option can improve memory consumption and computational 
performance, especially for bigger datasets. Setting p to 999 
indicates a high power parameter for the Minkowski distance 
measure. A high number can dramatically impact distance 
calculation, potentially affecting model behavior in 
sophisticated ways. Hyperparameter selection should be based 
on dataset properties and desired objectives, as they greatly 
affect model behavior and performance. Fine-tuning 
parameters through testing and validation can improve model 
performance and generalization across varied datasets and 
applications. 

TABLE II. THE FORMULATIONS OF THE PERFORMANCE METRICS 

Coefficient Correlation (R2) 𝑅2 =

(

 
∑ (𝑏𝑖 − �̅�)(𝑚𝑖 − �̅�)
𝑛
𝑖=1

√[∑ (𝑏𝑖 − �̅�)
2𝑛

𝑖=1 ] [∑ (𝑚𝑖 − �̅�)
2𝑛

𝑖=1 ]
)

 

2

 (14) 

Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑚𝑖 − 𝑏𝑖)

2

𝑛

𝑖=1

 (15) 

Mean Square Error (MSE) MSE = 
1

𝑛
∑ (𝑚𝑖 − 𝑏𝑖)

2𝑛
𝑗=1  (16) 

Prediction Interval (PI) 𝑃𝐼 = ± 𝑡 × 𝑆𝐸 ×√(1 +
1

𝑛
 + 

(𝑥∗ − �̄�)2

𝛴(𝑥𝑖 − �̄�)
2
) (17) 

Mean Absolute Percentage Error (MAPE) 𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑏𝑖|

|𝑚𝑖|

𝑛

𝑖

 (18) 

TABLE III. THE HYPERPARAMETER FOR MODELS 

Models 
Hyperparameter 

n_neighbors leaf_size p 

KNWG 01 3 3 

KNDA 1 999 999 
 

III. RESULT AND DISCUSSION 

Table IV presents the performance metrics for the 
developed models in the context of KNN. These models were 
evaluated across different phases: Training, Validation, Test, 
and All (combining all data). The performance metrics include 
RMSE, R2, MSE, PI, and MAPE. 

1) KNN model: The KNN model demonstrates strong 

predictive capabilities. In the training phase, it achieves an 

RMSE of 1.525 and an R2 of 0.975, indicating a high level of 

accuracy. Similar results are observed in the validation and 

test phases, with slight increases in RMSE and a decrease in 

R2, which is expected as the model generalizes to new data. 

When considering all data, the KNN model maintains a solid 

performance. 

2) KNWG model: The KNWG model outperforms the 

KNN model across all phases. It exhibits significantly lower 

RMSE values, indicating improved accuracy. In the training 

phase, it achieves an impressive RMSE of 0.680 and a high R2 

of 0.995, highlighting its superior performance. This trend 

continues in the validation and test phases. When considering 
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all data, the KNWG model consistently maintains lower 

RMSE and higher R2 values compared to the KNN model. 

3) KNDA model: The KNDA model, while not as accurate 

as the KNWG model, still demonstrates respectable 

performance. It achieves RMSE values higher than KNWG 

but lower than the KNN model across all phases. In the 

training phase, it records an RMSE of 1.078 and an R2 of 

0.987. Similar trends are observed in the validation and test 

phases. When considering all data, the KNDA model offers a 

balanced performance. 

Overall, the results indicate that the KNWG model is the 
most accurate among the three, followed by KNDA, with KNN 
being the least accurate. The choice of the best model depends 
on the specific application's requirements. Additionally, these 
models exhibit low MAPE values across all phases, confirming 
their reliability. These findings provide valuable insights into 
selecting an appropriate model for CL prediction and its 
potential applications in various domains. 

Table V compares the performance metrics of the presented 
study with those of published articles. In terms of RMSE, 
Moradzadeh et al. achieved 0.4832, while Roy et al. achieved 
the lowest RMSE of 0.059. Gong et al. and Afzal et al. 
obtained RMSE values of 0.1929 and 1.4122, respectively. 
Regarding the R2 values, Moradzadeh et al. recorded the 
highest at 0.9993, followed closely by the present study at 
0.996. Roy et al. achieved an R2 of 0.99, while Gong et al. and 
Afzal et al. attained R2 values of 0.9882 and 0.9806, 

respectively. These comparisons provide insights into the 
relative performance of the presented study in relation to 
existing research in the field. 

Fig. 3 provides a visual representation highlighting the 
differences among R2, RMSE, and MSE for the proposed 
models. It is evident from the graph that the KNWG model 
stands out as the top performer, showcasing the lowest RMSE 
and MSE values, signifying its outstanding predictive accuracy 
in estimating CL. Furthermore, it attains the highest R2 values 
among the models, underscoring its robust performance. 
Moreover, the Fig. 3 diagram emphasizes the intermediate 
performance of the KNAO model. It displays a well-balanced 
performance, occupying a middle position between the 
precision achieved by the KNWG model and the outcomes of 
the KNN model. Conversely, the KNN model, functioning as 
an independent model, displayed the least accurate results in 
comparison to the other models. 

Fig. 4 displays a scatter plot that illustrates the performance 
of the models concerning their R2 and RMSE values. The plot 
distinguishes each model's three phases—train, validation, and 
test—using unique circular markers in different colors. These 
markers cluster around a central line, symbolizing the ideal R2 
value 1, signifying a perfect match between predicted and 
actual values. A more in-depth examination of the data points 
linked to the KNWG model within the plot uncovers a tight 
cluster near the central line. This clustering stands as evidence 
of the model's precision in predicting values, as it consistently 
maintains proximity to the ideal R2 value. 

TABLE IV. THE RESULT OF DEVELOPED MODELS FOR KNN 

Model phase 
Index values 

RMSE R2 MSE PI MAPE 

KNN 

Train 1.525 0.975 2.326 0.031 3.878 

Validation 1.871 0.968 3.500 0.039 4.363 

Test 1.944 0.963 3.777 0.040 5.176 

All 1.649 0.971 2.719 0.034 4.145 

KNWG 

Train 0.680 0.995 0.463 0.014 2.703 

Validation 1.020 0.990 1.040 0.021 3.135 

Test 1.388 0.980 1.927 0.028 3.829 

All 0.877 0.991 0.769 0.018 2.936 

KNDA 

Train 1.078 0.987 1.163 0.022 4.386 

Validation 1.666 0.978 2.775 0.034 3.600 

Test 1.824 0.972 3.326 0.037 3.637 

All 1.315 0.981 1.728 0.027 4.156 

TABLE V. COMPARISON BETWEEN THE PRESENTED AND PUBLISHED ARTICLES 

Articles 
Index values 

RMSE R2 

Moradzadeh et al. [44] 0.4832 0.9993 

Roy et al. [45] 0.059 0.99 

Gong et al. [46] 0.1929 0.9882 

Afzal et al. [47] 1.4122 0.9806 

Present Study 0.698 0.996 
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Fig. 3. The comparison of parameters. 

In contrast, both the KNDA and KNN models exhibit 
scattered data points, indicating a wider range of values. This 
scattering suggests that these models display variations in their 
predictions and may not consistently achieve high R2 values. 
The scatter plot in Fig. 4 underscores the superior predictive 
accuracy of the KNWG model while highlighting the broader 
variability in the predictions made by the KNDA and KNN 
models. 

Fig. 5 provides a symbolic representation that visually 
conveys the error percentages associated with each model. 
Analyzing model errors is a vital method to evaluate their 
precision. This plot assists in evaluating the models' 
performance across the training, testing, and validation phases. 
It's worth highlighting that the KNN model displays a higher 
error rate compared to the other models, with the maximum 
recorded error percentage reaching 20%. In contrast, KNWG 
has demonstrated the utmost accuracy among all the models. 
In the testing phase, the highest observed error for KNWG is 

10%, and a substantial portion of its data points cluster closely 
around a minimal 0% error. Meanwhile, the KNDA model 
exhibits moderate performance, with the highest error 
percentage reaching 15% in the testing phase. It consistently 
maintains moderate error values when compared to the other 
models. 

Fig. 6 portrays the distribution patterns of the proposed 
models using a violin plot, which represents the 3 stages of 
train, validation, and test. It's noticeable that the data points for 
the KNN model display a broad dispersion, covering error 
percentages spanning from 20 to -20, which is particularly 
pronounced during the training phase. To efficiently detect 
outlier data points for model comparison, a range equal to 1.5 
times the Interquartile Range (IQR) is utilized. In contrast, 
KNWG's data points are closely grouped within the error 
percentage range of 10 to -10, while KNDA data points fall 
within the range of 15 to -15 percent error. 
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Fig. 4. The scatter plot for developed models. 
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Fig. 5. The error percentage for the models is based on the symbol plot. 

 

Fig. 6. The box of errors among the developed models. 
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IV. CONCLUSION 

This article delves into developing and evaluating 
predictive models, specifically focusing on K-nearest 
neighbors (KNN) for estimating Cooling Load (CL) in 
buildings. Three distinct models were examined: KNN, 
KNWG, and KNDA. The study encompassed various phases, 
including training, validation, and testing, providing a 
comprehensive analysis of their performance. The results and 
discussions highlight the superiority of the KNWG model, 
which consistently demonstrated exceptional predictive 
accuracy with the lowest Root Mean Square Error (RMSE) and 
Mean Square Error (MSE) values. Its high Coefficient 
Correlation (R2) values emphasize its robust overall 
performance. 

On the other hand, while functional, the KNN model 
exhibited less accuracy and higher error rates than the other 
models. The error analysis further solidifies the KNWG 
model's precision, with most data points clustering closely 
around minimal error percentages. KNDA, while not as 
accurate as KNWG, maintained moderate error values 
consistently across phases. The distribution patterns and outlier 
detection methods provided additional insights into the models' 
performance. KNWG and KNDA exhibited narrower error 
ranges, indicating their stability and reliability. The KNWG 
model is the most accurate and reliable option for predicting 
building CL. Its consistently superior performance in multiple 
phases and various evaluation metrics makes it a valuable tool 
for building energy efficiency applications. This research 
contributes to the advancement of predictive modeling 
techniques and their potential for real-world applications in 
improving energy efficiency in residential buildings. 

Despite its advancements, this study has limitations worth 
noting. Firstly, the proposed approach heavily relies on 
historical data, potentially limiting its applicability to new or 
unique building designs or environments. Secondly, while 
KNN, DAO, and WGA are powerful techniques, their 
performance may vary depending on specific datasets and 
configurations, necessitating careful tuning. Additionally, the 
study's focus on residential buildings may not fully capture the 
complexities of larger commercial or industrial structures. 
Moreover, the integration of KNN with DAO and WGA 
introduces additional computational complexities, potentially 
hindering real-time application in some scenarios. Lastly, 
external factors such as climate change could impact the 
model's long-term accuracy. 
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