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Abstract—This investigation introduces a groundbreaking 

approach to unravel the complexities of Chronic Venous 

Insufficiency (CVI) by leveraging machine learning, notably the 

Support Vector Classification (SVC), alongside optimization 

systems like Dwarf Mon-goose Optimization (DMO) and Smell 

Agent Optimization (SAO). This pioneering strategy not only 

aims to bolster predictive Precision but also seeks to optimize 

personalized treatment paradigms for CVI, presenting a 

compelling avenue for the advancement of healthcare solutions. 

The study aims to predict the impact of yoga on CVI using a 

comprehensive dataset, incorporating demographic information, 

baseline severity indicators, and yoga practice details. Through 

meticulous feature engineering, machine learning algorithms 

forecast outcomes such as changes in symptom severity and 

overall well-being improvements. This predictive model has the 

potential to transform personalized CVI treatment plans by 

offering tailored recommendations for specific yoga practices, 

optimizing therapeutic approaches, and guiding efficient 

healthcare resource allocation. Ethical considerations, patient 

preferences, and safety are highlighted for responsible 

translation into clinical settings. The integration of SVC with 

optimization systems presents a novel and promising approach, 

contributing meaningfully to personalized CVI management and 

providing valuable insights for current and future practices. The 

results obtained for VCSS-PRE and VCSS-1 unequivocally 

highlight the outstanding performance of the SVDM model in 

both prediction and categorization. The model achieved 

remarkable Accuracy and Precision values, attaining 92.9% and 

93.1% for VCSS-PRE and 94.3% and 94.9% for VCSS-1. 

Keywords—Chronic Venous Insufficiency; yoga; classification; 

machine learning; Support Vector Classification; smell agent 
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I. INTRODUCTION 

Chronic diseases, defined by the U.S. National Center for 
Health Statistics as persisting for three months or more, 
encompass conditions like cardiovascular disease, cancer, 
arthritis, diabetes, epilepsy, chronic venous disease (CVD), and 
obesity. These ailments, characterized by their prolonged 
nature, are not curable through medication. Major contributors 
to chronic diseases include the use of tobacco, insufficient 
physical activity, and unhealthy living and eating habits. As 
examples of Chronic diseases, cardiovascular diseases [1] 
result from factors such as poor nutrition, lack of physical 
activity, and tobacco use. Cancer [2], a group of diseases 
involving abnormal cell growth, has the potential to spread to 
different body parts. Diabetes [3], characterized by high blood 
sugar levels, manifests in various types, including Type 1, 
Type 2, Prediabetes, and Gestational diabetes, each presenting 
distinct signs and symptoms. As another instance, CVD is a 

prevalent condition characterized by a spectrum of clinical 
manifestations, including spider veins, varicose veins, and 
active venous ulceration. The condition's etiology involves 
dysfunction in both superficial and deep venous systems [4]. 

The escalating risk factors associated with CVD present a 
growing socio-economic and public health challenge. The 
rising prevalence of obesity and the aging population are 
anticipated to contribute to an increased burden of CVD over 
the coming decade, straining available resources for its 
management. Focusing on the epidemiological, quality of life, 
and financial aspects of superficial and deep venous disease, 
with considerations for future projections, the reported 
prevalence rates for superficial venous disease exhibit 
significant heterogeneity, with spider veins affecting up to 80% 
of the population and varicose veins estimated at 30% [5], [6], 
[7]. Epidemiological studies encounter variability influenced 
by study population characteristics and modalities, raising 
concerns about the realistic estimation of disease prevalence. 
For instance, venous ulcers, impacting 1–2% of the UK 
population, particularly in older people, pose challenges due to 
their difficult treatment and recurrent nature [5]. Evidence 
suggests that CVD is a progressive condition, emphasizing the 
importance of early prevention. 

Moreover, quality of life is substantially impacted by CVD, 
as indicated by various assessment tools, with depression rates 
doubling in CVD patients [8], [9]. The financial burden is 
notable, too, with venous ulcers alone accounting for a 
significant percentage of the budget expenditure of countries 
[10]. All these issues necessitate the importance of substantial 
care within community settings. 

The optimal treatment for the human body is not always 
found in pharmaceutical interventions. Many individuals have 
experienced adverse effects associated with medication usage, 
such as antibiotics influencing genetic variability [11]. These 
side effects encompass hematologic issues, decreased platelet 
count, drug-induced fevers, rashes, serum sickness, 
encephalopathy, seizures, blindness, and pulmonary 
complications, among others [12]. Considering the myriad 
negative consequences of pharmaceuticals, there has been a 
significant shift toward emphasizing yoga in medical research. 
Numerous surveys indicate a rapid increase in the adoption of 
yoga. Demographic trends reveal that younger individuals, 
non-Hispanic whites, those with higher incomes, females, 
college graduates, and individuals with better health status are 
more inclined to integrate yoga into their lifelong practices 
[13]. 
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In the past decade, there has been a growing recognition of 
the significance of Yoga within the medical research 
community, with a substantial body of literature exploring its 
applications in various medical contexts, interventions for 
positive body image [14], [15], including cardiac rehabilitation 
[16], and the management of mental illnesses [17]. Notably, 
Yoga is advocated as a therapeutic approach capable of 
effectively treating numerous diseases without the reliance on 
pharmaceutical interventions [18]. The practice of Yoga 
encompasses a range of exercises that not only enhance 
physical health but also contribute to the purification of the 
body, mind, and soul [19]. This involves the performance of 
various asanas, each representing static physical postures [20]. 
Systems for learning and self-instruction in Yoga have the 
potential to promote its widespread adoption while ensuring 
correct practice [21]. 

Recent technological advancements in machine learning 
(ML) and Data mining have led to the development of 
sophisticated methods for processing medical data. A 
comprehensive review [22] discussed the specifics, challenges, 
and potential risks associated with ML models in medicine, 
and several studies have explored diverse applications of 
machine learning in healthcare [23], [24], [25], [26]. 

According to Nafee et al. [27], the purpose of the research 
was to evaluate how well machine learning models identified 
acutely sick individuals who were at high risk of venous 
thromboembolism (VTE) when compared to the IMPROVE 
score. Data from the APEX study, in which 7513 individuals 
were randomly assigned to receive betrixaban or enoxaparin, 
were examined by researchers. They used a variety of 
candidate models and variables to build a reduced model 
(𝑟𝑀𝐿) and a super ML. Every patient's IMPROVE score was 
determined. The c-statistic values for the ML and 𝑟𝑀𝐿 
algorithms were higher (0.69 for ML, 0.68 for 𝑟𝑀𝐿, and 0.59 
for IMPROVE score), indicating that they outperformed the 
IMPROVE score in predicting VTE. The machine learning 
models were also preferred by calibration analysis. Compared 
to patients in the lowest tertile, those in the highest tertile of 
estimated VTE risk had considerably higher chances of 
developing VTE. The study's result was that, when it came to 
predicting VTE in critically sick patients, machine learning 
algorithms outperformed the IMPROVE score in terms of 
discrimination and calibration. Ryan et al. [28] focused on the 
challenges of effectively predicting deep venous thrombosis 
(DVT) in hospitalized patients, given the limitations of 
standard scoring systems. The research made use of data from 
a large university hospital that included 99,237 patients in 
ICUs or general wards, 2,378 of whom had DVT while they 
were hospitalized. Gradient-boosted models is a kind of 
machine learning method, was used to forecast the probability 
of DVT at 12- and 24-hour intervals prior to initialization. The 
in-hospital diagnosis of DVT was the main outcome of interest. 
With AUROCs of 0.83 and 0.85 for DVT risk prediction at 12- 
and 24-hour periods, respectively, the ML models showed 
strong performance. A history of malignancy, viral 
thromboencephalopathy (VTE), and the internal normalized 
ratio (INR) at 12 and 24 hours before to the beginning of DVT 
were shown to be significant predictors of DVT risk. The 
research emphasized the potential therapeutic advantages of 

enhanced risk stratification, indicating that it would allow for 
more focused administration of preventive anticoagulants and 
lessen the necessity for intrusive testing in difficult patients. 
This might thus result in an earlier diagnosis and course of 
therapy, hence reducing the likelihood of problems like 
pulmonary emboli and other DVT-related sequelae developing. 
Kumar et al. [29], this study addressed cardiovascular disease 
(CVD), which includes disorders marked by constricted or 
clogged veins that may result in strokes, angina, or heart 
attacks. The purpose of the research was to assess how well 
machine learning tree classifiers performed in predicting CVD 
from patient symptoms. The accuracy and AUC ROC scores of 
a number of machine learning tree classifiers, such as Random 
Forest, Decision Tree, Logistic Regression, Support Vector 
Machine (SVM), and K-nearest neighbors (KNN), were 
investigated. The Random Forest classifier proved to be very 
successful in the study of Cardiovascular Disease prediction, 
with a performance time of 1.09 seconds, a ROC AUC score of 
0.8675, and a high accuracy rate of 85%. This shows that, in 
the context of this investigation, the Random Forest classifier 
had strong predictive skills in diagnosing CVD based on 
symptomatology. 

The articles mentioned above, as is generally accepted, 
were noticeably devoid of any optimization techniques that 
could have been utilized to improve precision and reduce 
complexity in their predictive models. The lack of optimization 
strategies incorporated in these studies signifies a substantial 
deficiency in the predictive analytics methodology utilized. 
Optimization methodologies are crucial in the process of fine-
tuning and refining a predictive model, which ultimately 
increases their accuracy and decreases their computational 
complexity. Through the process of algorithm optimization, 
scholars have the ability to methodically improve the overall 
efficacy of predictive models, thereby guaranteeing a more 
precise and streamlined depiction of the latent patterns within 
the data. By enhancing prediction outcomes and contributing to 
the enhancement of computational efficiency, optimization 
techniques enable the development of models that are not only 
more scalable but also more adaptable to diverse datasets. 
Fundamentally, the incorporation of optimization 
methodologies is a critical component in enhancing the 
predictive modeling procedure, thereby promoting more 
reliable and efficient results in analyses driven by data. 
Inspired by all existing literature and considering the gap 
related to the investigation of ML application in effect 
detection between Yoga and CVD. 

This study aims to construct robust machine-learning 
models for forecasting the impact of Yoga on CVD, harnessing 
data from credible sources. The chosen methodology involved 
the application of the Support Vector Classification (SVC) 
technique. An inventive strategy was implemented by 
seamlessly incorporating two optimization algorithms, namely 
Dwarf Mongoose Optimization (DMO) and Smell Agent 
Optimization (SAO), infusing the predictive modeling process 
with a nuanced and sophisticated dimension. SVC was selected 
as the predictive model for assessing the effects of yoga on 
CVD due to its proficiency in handling complex datasets and 
non-linear relationships. It excels in classification tasks, 
making it well-suited for discerning patterns and predicting 
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outcomes. The model's robustness, coupled with its ability to 
capture intricate relationships, makes it an effective choice for 
predicting the impact of yoga on CVD. A comprehensive 
analysis of the pertinent data, the model, and the optimizers 
implemented in Section II will be presented in the subsequent 
sections. A comprehensive analysis of the metrics-driven 
models and an in-depth explication of the data will be 
presented. The outcomes obtained from the training and testing 
stages will be thoroughly examined in Section III. Discussion 
is given in Section IV and finally, Section V concludes the 
paper.  

II. MATERIALS AND METHODOLOGY 

A. Support Vector Classification (SVC) 

Support Vector Classification is an algorithm based on the 
foundational concept of minimizing risk within the context of 
support vector machines [30]. It involves applying non-linear 
transformations to the independent variables and projecting 
them into a high-dimensional space. Within this space, an 
optimal hyperplane is created to separate the two classes 
effectively. The main objective of this hyperplane is to 
minimize classification errors while maximizing margins, 
representing the overall distance from the hyperplane to the 
nearest training samples of each class [31]. 

The main model is subsequently presented in Eq. (1) to Eq. 
(3) [32]. 

𝑚𝑖𝑛𝑤,𝑏,∈

‖𝑊‖2

2
+ 𝐶𝑠𝑣𝑐 ∑ ∈𝑖

𝑁

𝑖=1

 (1) 

𝑦𝑖(𝑤
𝑇 . ∅(𝑥𝑖) + 𝑏) ≥ 1 −∈𝑖        𝑖 = 1, . . . , 𝑁 (2) 

∈𝑖≥ 0                     𝑖 = 1, . . . , 𝑁 (3) 

The function ∅(𝑥𝑖) denotes a non-linear transformation that 
takes each observation, characterized by its explanatory 
variables 𝑥𝑖, and maps it into a higher-dimensional space. 𝐶𝑠𝑣𝑐 
represents a regularization parameter, 𝑤 symbolizes the weight 
vector associated with the explanatory variables in the newly 
defined space commonly referred to as the "feature space." 𝑏 
signifies a bias term, and ∈𝑖 are slack variables indicating the 
gap or distance between individual observations (𝑖) and the 
margin boundary associated with their respective classes. 

Identifying the optimal hyperplane, as outlined in Eq. (4), 
involves maximizing the margin within the high-dimensional 
space. This process essentially revolves around minimizing the 
norm of the weight vector while also reducing the number of 
misclassified instances. In the end, the labels or output 
variables signify the class to which each sample belongs. 

𝐷(𝑥𝑖) = 𝑊𝑇𝜑(𝑥𝑖) + 𝑏 (4) 

The dimensionality of the problem influences the 
magnitude of the primal model, whereas the number of 
samples influences the dual form. Consequently, when the 
dimensionality is high enough, it becomes more beneficial to 
deal with the dual model, as indicated in Eq. (5) to Eq. (7). 

𝑚𝑎𝑥𝑎 ∑𝑎𝑖

𝑁

𝑖=1

−
1

2
∑𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑖=1

 (5) 

∑𝑎𝑖𝑦𝑖

𝑁

𝑖=1

= 0 (6) 

0 ≤ 𝑎𝑖 ≤ 𝐶𝑠𝑣𝑐               𝑖 = 1, . . . , 𝑁 (7) 

A Kernel function, represented as 𝐾(𝑥𝑖 , 𝑥𝑗), maps each pair 

of data points to a corresponding location in the feature space. 
There are various Kernel functions available, such as linear, 
polynomial, radial basis, sigmoidal, and others. A crucial 
requirement for these functions is that they must be symmetric, 
positive, and semi-definite. Previous research in this field has 
demonstrated that the radial basis Kernel function, defined in 
Eq. (8), is particularly well-suited for classification tasks [33]. 
Consequently, a radial basis Kernel function is utilized in the 
present approach, with 'γ' serving as a hyperparameter 
indicating the inverse of the range of influence of the data 
points identified as support vectors [34]. 

𝐾(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)
𝑅∅(𝑥𝑗) = 𝑒𝑥𝑝(−𝛾‖𝑥𝑗 − 𝑥𝑖‖) (8) 

After solving the model to estimate the weights and the bias 
term, predictions for new samples can be generated using Eq. 
(9). 

𝑆𝑉𝐶     𝑦𝑖 = {
−1 𝑖𝑓 𝑤𝑇∅(𝑥𝑖) + 𝑏 ≤ 0

1 𝑖𝑓 𝑤𝑇∅(𝑥𝑖) + 𝑏 > 0
 (9) 

B. Smell Agent Optimization (SAO) 

The significance of the sense of smell in sustaining life on 
Earth has been profound since the planet's inception. Many 
living organisms detect harmful substances in their 
environment through their olfactory receptors [35], [36], [37]. 
A common practice in the development of Search and Rescue 
Agents (SAO) involves integrating the human sense of smell 
[37], [38], [39]. The SAO's structure is based on three modes 
derived from the olfactory sense. The initial mode entails 
detecting and evaluating olfactive molecules to decide whether 
to pursue or ignore the scent. The second mode builds upon the 
first to track scent particles and locate their source. The third 
mode prevents the agent from getting trapped and ensures it 
can maintain its trail. 

1) Sniffing mode: Initiating the process involves randomly 

selecting a location for the diffusion of odor molecules toward 

the agent, taking into account that olfactory molecules 

typically propagate in the direction of their target. The 

mathematical formula, represented by Eq. (10), can be utilized 

to initialize the scent molecules. 

𝑥𝑖
(𝑡) = [

𝑥(1,1) 𝑥(1,2) 𝑥(1,𝐷)

. . .
𝑥(𝑁,1) 𝑥(𝑁,2) 𝑥(𝑁.𝐷)

] (10) 

Here, D signifies the total count of decision variables, while 
N represents the overall number of scent molecules present. 
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Eq. (10) utilizes a location vector that allows the agent to 
identify its optimal position within the search space. This 
optimal location can be determined using Eq. (11): 

𝑥𝑖
(𝑡) = 𝑙𝑏𝑖 + 𝑟0 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖) (11) 

𝑟0 is a randomly generated number ranging from 0 to 1. In 
relation to the decision variables, 𝑢𝑏 and 𝑙𝑏 represent the upper 
and lower bounds, respectively. 

Eq. (12) is employed to assign a primary velocity for 
diffusion to each scent molecule originating from the odor 
source. 

𝜐𝑖
(𝑡) = [

𝜐(1,1) 𝜐(1,2) 𝜐(1,𝐷)

. . .
𝜐(𝑁,1) 𝜐(𝑁,2) 𝜐(𝑁.𝐷)

] (12) 

Every single molecule's scent can potentially signify a 
feasible solution. The position vector determines the potential 

solutions, 𝑥𝑖
(𝑡) ∈  𝑅𝑁, as illustrated in Eq. (12), along with the 

molecular velocity, 𝜐𝑖
(𝑡) ∈  𝑅𝑁 , as specified in the same 

equation. The increase in molecular velocity is achieved 
through Eq. (13): 

𝑥𝑖
𝑡+1 = 𝑥𝑖

(𝑡) + 𝜐𝑖
𝑡+1 × ∆𝑡 (13) 

The optimization process is progressed by the agent 
simultaneously when the time interval ∆𝑡 is set to 1. Eq. (14) is 
used to determine the fragrance molecules' spatial coordinates: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

(𝑡) + 𝜐𝑖
𝑡+1 (14) 

Every scent molecule possesses unique diffusion velocities 
that facilitate its positional updates and evaporation during 
scent analysis. Eq. (15) is employed to calculate the adjusted 
velocity of the scent molecules. 

𝜐𝑖
𝑡+1 = 𝜐𝑖

(𝑡) + 𝜐 (15) 

The variable governing the velocity update, denoted as 𝜐, is 
determined by utilizing Eq. (16): 

𝜐 = 𝑟1 × √
3𝐾𝑇

𝑚
 (16) 

The smell fixation factor, denoted by the letter "k," serves 
to normalize the impact of temperature and mass on the kinetic 
energy of fragrance molecules. The letters "m" and "T" in this 
instance denote the smell molecules' mass and temperature, 
respectively. 

The evaluation of the fitness of the scent molecule at the 
adjusted locations is conducted using Eq. (13). Consequently, 
the sniffing process is completed, allowing for the 
determination of the exact location of the agent, denoted as 
𝑥𝑎𝑔𝑒𝑛𝑡

𝑡 . 

2) Trailing mode: The second operational mode entails 

simulating the agent's behavior to locate the source of a 

particular scent. During the search for the scent source, the 

agent can identify a new location with a higher concentration 

of scent molecules through olfactory perception. To explore 

this newly detected location, the agent utilizes Eq. (17): 

𝑥𝑖
𝑡+1 = 𝑥𝑖

(𝑡) + 𝑟2 × 𝑜𝑙𝑓 × (𝑥𝑎𝑔𝑒𝑛𝑡
𝑡 − 𝑥𝑖

(𝑡)) − 𝑟3 × 𝑜𝑙𝑓

× (𝑥𝑤𝑜𝑟𝑠𝑡
𝑡 − 𝑥𝑖

(𝑡)) 
(17) 

The term 𝑟2  penalizes the impact of olfaction on 𝑥𝑎𝑔𝑒𝑛𝑡
𝑡 , 

while 𝑟3 penalizes the effect of olfaction on 𝑥𝑤𝑜𝑟𝑠𝑡
𝑡 . Both 𝑟2 and 

𝑟3  are numerical values ranging from 0 to 1. In the sniffing 

mode, the agent records 𝑥𝑎𝑔𝑒𝑛𝑡
𝑡  and the 𝑥𝑤𝑜𝑟𝑠𝑡

𝑡 . This data is 

vital for the algorithm to maintain a balance between 
exploration and exploitation, as depicted in Eq. (17). 

3) Random mode: In scenarios where the distance between 

scent molecules is notably fragmented, their intensity may 

vary over time. This variation can confuse the agent, leading 

to the dissipation of the scent and complicating tracking. The 

agent's difficulty in retaining trail information may result in 

being trapped in local minima. In such situations, the agent 

transitions to the random mode, as represented by Eq. (18): 

𝑥𝑖
𝑡+1 = 𝑥𝑖

(𝑡) + 𝑟4 × 𝑆𝐿 (18) 

The term 𝑟4 penalizes the quantity of step length SL, where 
SL represents the step length. 

Algorithm 1. presents the pseudo-code depicting the SAO 
method: 

Algorithm 1 Smell Agent Optimization 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑚𝑒𝑙𝑙 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠′ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
𝐴𝑠𝑠𝑒𝑠𝑠 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
𝑃𝑟𝑒𝑝𝑎𝑟𝑒 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑤𝑜𝑟𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 
𝑊ℎ𝑖𝑙𝑒 (𝐼𝑡𝑟 <  𝐼𝑡𝑟𝑚𝑎𝑥 ) 𝑑𝑜: 
𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠) 𝑑𝑜: 
𝑓𝑜𝑟 (𝑗 = 1 𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 𝑑𝑜: 
𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠′ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑠𝑛𝑖𝑓𝑓𝑖𝑛𝑔) 
𝑒𝑛𝑑 𝑓𝑜𝑟 
𝐴𝑠𝑠𝑒𝑠𝑠 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
𝑖𝑓 (𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟) 𝑡ℎ𝑒𝑛: 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑎𝑔𝑒𝑛𝑡 𝑎𝑛𝑑 𝑤𝑜𝑟𝑠𝑡 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 
𝑒𝑛𝑑 𝑖𝑓 
𝑒𝑛𝑑 𝑓𝑜𝑟 
𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠) 𝑑𝑜: 
𝑓𝑜𝑟 (𝑗 = 1 𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 𝑑𝑜: 
𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔) 
𝑒𝑛𝑑 𝑓𝑜𝑟 
𝐴𝑠𝑠𝑒𝑠𝑠 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
𝑒𝑛𝑑 𝑓𝑜𝑟 
𝑖𝑓 (𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟) 𝑡ℎ𝑒𝑛: 
𝑔𝑟𝑎𝑛𝑡 𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
𝑒𝑙𝑠𝑒 
𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠) 𝑑𝑜: 
𝑓𝑜𝑟 (𝑗 = 1 𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 𝑑𝑜: 
𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑚𝑜𝑑𝑒 
𝑒𝑛𝑑 𝑓𝑜𝑟 
𝑒𝑛𝑑 𝑓𝑜𝑟 
𝑒𝑛𝑑 𝑖𝑓 
𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 
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C. Dwarf Mongoose Optimization (DMO) 

The DMO (Dwarf Mongoose Optimization) algorithm is a 
stochastic metaheuristic method that operates on a population 
basis. It derives inspiration from the social and foraging 
behaviors exhibited by the dwarf mongoose, as documented by 
Helotage [40]. 

The DMO's problem-solving approach commences by 
choosing an initial set of potential solutions within the 
mongoose colony. This involves generating an initial 
population of candidate solutions and randomly creating them 
within the predetermined minimum and maximum limits 
specified for the particular problem at hand. The stochastic 
generation of solutions ensures adherence to the defined upper 
and lower bounds of the problem. 

𝑘 = [

𝑥1,1 
𝑥2,1

⋮
𝑥𝑛,1

𝑥1,2

𝑥2,2

⋮
𝑥𝑛,2

… 𝑥1,𝑑−1

… 𝑥2,𝑑−1

𝑥1,1 ⋮
… 𝑥𝑛,𝑑−1

𝑥1,𝑑

𝑥2,𝑑

⋮
𝑥𝑛,𝑑

]   

(19) 

The symbol d denotes the dimensionality of the underlying 
problem, while n represents the cardinality of the population. 
The positional attribute of individual elements in a population 
is denoted as 𝑥𝑖,𝑗  and determined by applying Eq. (20) 

𝑥𝑖,𝑗 = 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝑉𝑎𝑟𝑀𝑖𝑛 , 𝑉𝑎𝑟𝑀𝑎𝑥 , 𝑉𝑎𝑟𝑆𝑖𝑧𝑒)   (20) 

The term 𝑉𝑎𝑟𝑆𝑖𝑧𝑒  is associated with the dimensions and 
ranges of the problem under consideration. The 𝑢𝑛𝑖𝑓𝑟𝑛𝑑 
function serves as a random number generator, producing 
numbers with a uniform distribution. 𝑉𝑎𝑟𝑀𝑖𝑛  and 𝑉𝑎𝑟𝑀𝑎𝑥  
represent the lower and upper bounds, respectively. 

With two different phases—exploration and exploitation—
the DMO algorithm adheres to the usual metaheuristic 
methodology. Known as intensification, every mongoose does 
a comprehensive search within the defined region during the 
exploitation phase. On the other hand, the phrase "exploration 
phase" refers to a more haphazard quest for novel resources, 
such as food supplies or sleeping mounds. Three crucial social 
structures—the alpha group, scout group, and babysitters—
allow the DMO algorithm to function during these two stages. 
The coordination of the solution population's actions, which 
guarantees efficient search space exploration and exploitation, 
is greatly aided by these structures. This is a list of all the 
things that need to be done. 

1) Alpha group: To designate the alpha female (α) for 

leading the family unit, Eq. (21) is employed as a selection 

method. 

𝛼 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1

 (21) 

𝑛 represents the current number of mongooses that 
comprise the alpha group, 𝑝𝑒𝑒𝑝  refers to an auditory signal 
that is produced by a dominant or alpha female mongoose. In 
addition, 𝑏𝑠 is utilized to represent the number of individuals 
within the mongoose group who are tasked with the 
responsibility of caring for and supervising young offspring. 

The sleeping mound demonstrates a positive correlation 
with a plentiful supply of nutritional ingredients, as calculated 
by Eq. (22): 

𝑋𝑖+1 = 𝑋𝑖 + 𝜑 ∗ 𝑝𝑒𝑒𝑝 (22) 

𝜑  is a numerical value uniformly distributed within the 
range of [-1, 1]. 

During each iteration, of the algorithm, the size and quality 
of the sleeping mound are assessed, as indicated by 
mathematical Eq. (23): 

𝑠𝑚𝑖 =
𝑓𝑖𝑡𝑖+1 − 𝑓𝑖𝑡𝑖

𝑚𝑎𝑥{|𝑓𝑖𝑡𝑖+1, 𝑓𝑖𝑡𝑖|}
 (23) 

Upon detecting a previously inactive accumulation, a 
statistical measure is computed using mathematical Eq. (24): 

𝜌 =
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
 (24) 

2) Scout group: After fulfilling the requirements for 

participation in a babysitter exchange program, the subsequent 

step involves a scouting stage. In this stage, an assessment is 

conducted to identify a suitable sleeping location, contingent 

on the availability of a specific sustenance source. 

Acknowledging the tendency of mongooses to avoid reusing 

previously employed sleeping locations, the scouting group is 

assigned the task of locating a new sleeping mound to 

facilitate the ongoing advancement of their exploratory 

endeavors. Within the context of the DMO algorithm, the 

mongoose demonstrates a distinctive activity pattern marked 

by foraging and scouting behaviors. This behavior operates on 

the premise that increasing the distance covered during 

foraging activities enhances the likelihood of discovering a 

new sleeping location. Mathematically, this process is 

represented by the utilization of Eq. (25) to Eq. (27): 

𝑋𝑖+1

= {
𝑋𝑖 − 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑀⃗⃗ ] 𝑖𝑓 𝜌𝑖+1 > 𝜌𝑖  

𝑋𝑖 + 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑀⃗⃗ ]                𝑒𝑙𝑠𝑒
 

(25) 

𝐶𝐹 = (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟

)
(2

𝑖𝑡𝑒𝑟
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

)

 (26) 

𝑀⃗⃗ = ∑
𝑋𝑖 × 𝑠𝑚𝑖

𝑋𝑖

𝑛

𝑖=1

 (27) 

𝑀⃗⃗  denotes the force propelling the movement of the 
mongoose toward a recently formed sleeping mound, and 
𝑟𝑎𝑛𝑑 signifies a random number that is uniformly distributed 
within the range of [-1, 1]. 

3) Babysitters group: While the scouting and foraging 

team searches for a suitable location for rest and food, the 

group dedicated to the well-being of the young offspring 

remains vigilant in monitoring and caring for them. The pool 

of available candidates for the babysitter exchange diminishes 

as certain group members opt to postpone their foraging or 
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scouting activities until they fulfil the requirements for 

participating in the exchange program. Algorithm 2 provides 

the pseudo-code for the DMO algorithm. 

Algorithm 2 Pseudo-Code of DMO Algorithm 

𝑆𝑒𝑡 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚: 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 
𝑓𝑜𝑟 𝑖𝑡𝑒𝑟 = 1: 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑛𝑔𝑜𝑜𝑠𝑒 
𝑆𝑒𝑡 𝑡𝑖𝑚𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝐶 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎 𝛼 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1

 

𝑂𝑏𝑡𝑎𝑖𝑛 𝑎 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑓𝑜𝑟 𝑎 𝑓𝑜𝑜𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
𝑋𝑖+1 = 𝑋𝑖 + 𝜑 ∗ 𝑝𝑒𝑒𝑝 
𝐺𝑢𝑒𝑠𝑠 𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑋𝑖+1 
𝐺𝑢𝑒𝑠𝑠 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 𝑚𝑜𝑢𝑛𝑑  

𝑠𝑚𝑖 =
𝑓𝑖𝑡𝑖+1 − 𝑓𝑖𝑡𝑖

𝑚𝑎𝑥{|𝑓𝑖𝑡𝑖+1, 𝑓𝑖𝑡𝑖|}
 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 𝑚𝑜𝑢𝑛𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝜌 =
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑀⃗⃗ = ∑
𝑋𝑖 × 𝑠𝑚𝑖

𝑋𝑖

𝑛

𝑖=1

 

𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑏𝑎𝑏𝑦𝑠𝑖𝑡𝑡𝑒𝑟𝑠 𝑖𝑓 𝐶 ≥  𝐿 
𝑆𝑒𝑡 𝑏𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  
𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑖𝑡𝑖 ≤ 𝛼 
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑐𝑜𝑢𝑡 𝑚𝑜𝑛𝑔𝑜𝑜𝑠𝑒′𝑠 𝑛𝑒𝑥𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 

𝑋𝑖+1 = {
𝑋𝑖 − 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑀⃗⃗ ] 𝑖𝑓 𝜌𝑖+1 > 𝜌𝑖 

𝑋𝑖 + 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑀⃗⃗ ]                𝑒𝑙𝑠𝑒
 

𝑀𝑜𝑑𝑒𝑟𝑛𝑖𝑧𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑜 𝑓𝑎𝑟. 
𝑒𝑛𝑑 𝐹𝑜𝑟 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
𝑒𝑛𝑑 

D. Data Processing 

Involving the extraction of valuable information from vast 
datasets, data mining, also known as database knowledge 
discovery, utilizes various techniques. The analysis of 
extensive data collection is a key aspect of this process, 
revealing hidden patterns and relationships that can 
significantly impact decision-making. Data mining approaches 
often incorporate the use of questionnaires or structured 
datasets presented in the form of reports. This study 
systematically extracted data from extant literature, comprising 
a cohort of 100 male subjects, with meticulous attention to both 
input and output variables. The input variables, influential in 
determining Chronic Venous Insufficiency (CVI) levels, 
encompassed diverse facets, including physical attributes (Age, 
Height, Weight, Body Mass Index (BMI)), Ankle-Brachial 
Pressure Index (ABPI), Diabetes Blood pressure type A and B 
(DBPA and DBPB), Pulse Rate (PR), cardiometabolic and 
vascular health indices (Systolic Blood Pressure type A and B 
(SBPA and SBPB), Left and Right Calf Circumstances (LE 
CA-CIR and RI CA-CIR),  Mental Chronic Fatigue Syndrome 
(CFS MEN), Physical Chronic Fatigue Syndrome (CFS PHY), 
Hyper-homocysteine Mia (HCY), Left and Right Ankle 
Circumstances (LE AN-CIR and RI AN-CIR), and the Chronic 
Venous Insufficiency Questionnaire (CVIQ_total)) [41]. 

Additionally, factors about living conditions and habits 
were considered, encompassing parameters such as Sleep 
quality, smoking status, Alcohol intake, Dietary habits, and the 
duration of sitting and standing hours per workday. The suffix 

"(pre)" denotes the temporal aspect, indicating data collected to 
implement yoga practices. The principal output variable, the 
Venous Clinical Severity Score, was assessed before the yoga 
intervention (VCSS-PRE) and one month after its initiation 
(VCSS-1). To ensure methodological rigor, the amassed 
datasets underwent a randomized allocation into training and 
testing subsets, maintaining proportions of 70% and 30%, 
respectively. 

The interplay between input and output variables is 
graphically depicted through a correlation matrix, as illustrated 
in Fig. 1. Examining the Pearson correlation coefficients 
reveals discernible patterns. Notably, certain cardiometabolic 
and vascular health indicators, such as Diabetes Blood pressure 
(DBP) and Systolic Blood Pressure (SBP), exhibit a strong 
positive correlation, while the individual's height demonstrates 
a negative influence on Body Mass Index (BMI). Further 
scrutiny of the figure highlights that variable RI CA-CIR-PRE-
pre and CVIQ_total_pre exert the most pronounced impact on 
both Venous Clinical Severity Score (VCSS) values. 
Additionally, it is evident from the analysis that Physical 
Chronic Fatigue Syndrome (CFS) exerts a more substantial 
effect than its mental counterpart, particularly concerning 
VCSS-1. These findings underscore the intricate relationships 
and varying degrees of influence among the considered 
variables, providing valuable insights into the dynamics of the 
observed phenomena. 

 
Fig. 1. Correlation matrix to analyze the relationships between input and 

output variables. 

III. RESULTS 

A. Evaluation of Models' Applicability 

Accuracy is a commonly used statistic in classification 
issues to assess the overall performance of a model. False 
Positives (FP) for inaccurate positive forecasts, False Negatives 
(FN) for wrong negative predictions, and True Positives (TP) 
for right positive predictions are the four essential components 
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that it depends on. Accuracy's tendency to favor the majority 
class, however, may restrict its use in cases with unbalanced 
data. To alleviate this constraint, three additional assessment 
measures are often used: F1-Score, Precision, and Recall. In 
cases when class distributions are unbalanced, these measures 
provide a more sophisticated evaluation of a model's 
performance. These metrics are defined through Eq. (28) to Eq. 
(31). Moreover, it collectively provides a more comprehensive 
evaluation of a classification model's effectiveness. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (28) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (29) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (30) 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (31) 

B. Convergence Results 

This study employed DMO and SAO optimization 
algorithms to enhance the Support Vector Classification (SVC) 
model, creating SVDM and SVSA hybrid models. The 
evaluation of these models utilized a convergence curve based 
on Accuracy measurements over 150 iterations, revealing a 
significant improvement in predictive Accuracy (see Fig. 2). In 
predicting Venous Clinical Severity Score before yoga 
intervention (VCSS-PRE), both SVDM and SVSA exhibited a 
substantial increase in Accuracy, reaching peak levels of 0.88 
and 0.87 around the 90th iteration. For VCSS-1 prediction, the 
Accuracy improvement rate was higher, with SVDM and 
SVSA achieving levels of 0.92 and 0.91, respectively. Notably, 
SVDM consistently outperformed SVSA in both predictive 
scenarios, emphasizing its superior ultimate Accuracy. These 
findings underscore the effectiveness of the optimization 
algorithms in refining model performance and highlight the 
comparative advantages of the SVDM hybrid model. 

 

 
Fig. 2. Convergence curve of hybrid models. 
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C. Comparing Results of Predictive Models 

The primary aim of this study was to introduce three 
predictive models utilizing a classification approach for 
anticipating Venous Clinical Severity Score before (VCSS-
PRE) and one month after (VCSS-1) yoga practices. Among 
these models, one employed a Support Vector Classifier 
(SVC), while the others were developed by optimizing the 
SVC using Dwarf Mongoose Optimization (DMO) and Smell 
Agent Optimization (SAO). The performance metrics, 
including Accuracy, Precision, Recall, and F1-score, for the 
training and testing phases of these machine learning 
algorithms are presented in Table I. Notably, for both VCSS-

PRE and VCSS-1 prediction, the metrics during the training 
phase exceeded those in the testing phase, as visually evident 
in Fig. 3 (shown as 3D bar plots for all metrics and phases), 
indicating the models' ineffective training capability. In the 
case of VCSS-PRE prediction values, the SVDM model 
demonstrated superior performance, achieving 0.88 for 
Accuracy and Recall, 0.898 for Precision, and 0.885 for 
F1_Score. In VCSS-1 estimation, the SVDM model 
consistently outperformed, recording the highest values across 
all metrics (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.943, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.949,  
𝑅𝑒𝑐𝑎𝑙𝑙 = 0.943, 𝑎𝑛𝑑 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 0.944).

TABLE I.  RESULT OF PRESENTED MODELS 

 Model Part 
Metric value 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 _𝑆𝑐𝑜𝑟𝑒 

VCSS-PRE 

SVC 

𝑇𝑟𝑎𝑖𝑛 0.943 0.948 0.943 0.943 

𝑇𝑒𝑠𝑡 0.667 0.694 0.667 0.677 

𝐴𝑙𝑙 0.860 0.871 0.860 0.863 

SVDM 

𝑇𝑟𝑎𝑖𝑛 0.929 0.931 0.9286 0.9287 

𝑇𝑒𝑠𝑡 0.700 0.7667 0.700 0.7163 

𝐴𝑙𝑙 0.880 0.898 0.880 0.885 

SVSA 

𝑇𝑟𝑎𝑖𝑛 0.900 0.918 0.900 0.903 

𝑇𝑒𝑠𝑡 0.800 0.834 0.800 0.808 

𝐴𝑙𝑙 0.870 0.892 0.870 0.875 

VCSS-1 

SVC 

𝑇𝑟𝑎𝑖𝑛 0.943 0.946 0.943 0.943 

𝑇𝑒𝑠𝑡 0.800 0.795 0.800 0.793 

𝐴𝑙𝑙 0.900 0.901 0.900 0.900 

SVDM 

𝑇𝑟𝑎𝑖𝑛 0.943 0.949 0.943 0.944 

𝑇𝑒𝑠𝑡 0.867 0.869 0.867 0.866 

𝐴𝑙𝑙 0.920 0.925 0.920 0.921 

SVSA 

𝑇𝑟𝑎𝑖𝑛 0.943 0.953 0.943 0.945 

𝑇𝑒𝑠𝑡 0.833 0.850 0.833 0.835 

𝐴𝑙𝑙 0.910 0.923 0.910 0.913 
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Fig. 3. 3D bar plot to visually assess the performance of the developed models. 

The Venous Clinical Severity Score (VCSS) test findings 
of the 100 samples were used to divide them into four groups 
after the completion of data processing and a thorough 
assessment of the models' classification performance in both 
the training and testing stages. These were divided into four 
categories: Moderate (11–20), Severe (21–30), Mild (6–10), 
and Absent (0–5). Tables II and III were created in order to 
provide a thorough evaluation of the models' categorization 
effectiveness within each group. These tables provide the 
Precision, Recall, and F1-score index values—values that are 
critical for assessing the precision, completeness, and overall 
accuracy of the models that were generated during the course 
of the VCSS categories. This granular analysis facilitates a 
nuanced understanding of the models' performance in 
distinguishing varying degrees of severity within the studied 
population, contributing valuable insights to the overall 
assessment of their predictive capabilities. 

1) Precision 

a) VCSS-PRE: The SVSA model demonstrated the 

greatest accuracy values in the Mild and Severe categories, 

with scores of 0.881 and 1.000, respectively. On the other 

hand, in the Absent group, the SVDM model reached its 

maximum accuracy value of 0.643. Notably, the SVC model 

outperformed the other models for the Moderate category, 

earning an accuracy score of 1.000. 

b) VCSS-1: The SVSA model showcased superior 

Precision across the Mild, Moderate, and Severe categories, 

securing impressive scores of 0.939, 0.978, and 1.000, 

respectively. In contrast, the Absent group saw the SVC 

model achieving its maximum precision value of 0.867. 

2) Recall 

a) VCSS-PRE: The SVDM model excelled with the 

highest scores in the Mild (0.905), Moderate (0.864), and 

Severe (1.000) groups. Contrastingly, the SVSA model 

delivered an outstanding performance for the Absent group, 

attaining the top recall score of 0.917. 

b) VCSS-1: Attaining Recall values of 1.000 and 0.892, 

respectively, the SVDM model demonstrated exceptional 

performance in the Absent and mild categories. For the 

Moderate and Severe groups, the SVSA model also produced 

maximum recall values of 0.957 and 1.000. 

3) F1-score 

a) VCSS-PRE: A high F1 score indicates that the model 

is able to discriminate between accurately detecting positive 

instances (Precision) and include all true positive cases 

(Recall). The SVDM model performed better than all other 
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models in every category, with the greatest F1-scores in the 

Mild (0.884), Moderate (0.927), and Severe (1.000) groups. 

Additionally, for the Absent group, the SVSA model reached 

its maximum F1-Score value of 0.733. 

b) VCSS-1: The SVDM model performed better in the 

Absent and Mild categories, with F1-Score values of 0.903 

and 0.892, respectively. Furthermore, the SVSA model 

achieved remarkable ratings of 0.968 and 1.000 in the 

Moderate and Severe categories, outperforming other models. 

The actual count of samples categorized as Absent, Mild, 
Moderate, and Severe was 12, 42, 44, and 2, respectively, for 
VCSS-PRE and 14, 37, 47, and 2 for VCSS-1 values. Fig. 4 
visually presents these categories, offering a 3D walls-based 

comparison for measurements and classification model 
outcomes. In the context of VCSS-PRE, the SVDM model 
demonstrated superior accuracy, correctly classifying 
individuals into the Mild, Moderate, and Severe groups, 
identifying 38, 38, and 2 individuals accurately, respectively. 
The SVSA model outperformed other models in the Absent 
category, accurately classifying 11 individuals. Turning to 
VCSS-1 values, the SVDM model maintained its Accuracy, 
correctly classifying individuals in the Absent, Mild, and 
Severe groups, identifying 14, 33, and 2 individuals accurately, 
respectively. Notably, in the Moderate category, the SVSA 
model outperformed other models by accurately classifying 45 
individuals. 

TABLE II.  EVALUATION INDEXES OF THE DEVELOPED MODELS' PERFORMANCE BASED ON GRADES VCSS-PRE 

Model Grade 
Metric value 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

SVC 

Absent 0.643 0.750 0.692 

Mild 0.822 0.881 0.851 

Moderate 0.974 0.864 0.916 

Severe 1.000 1.000 1.000 

SVDM 

Absent 0.625 0.833 0.714 

Mild 0.864 0.905 0.884 

Moderate 1.000 0.864 0.927 

Severe 1.000 1.000 1.000 

SVSA 

Absent 0.611 0.917 0.733 

Mild 0.881 0.881 0.881 

Moderate 0.974 0.841 0.902 

Severe 1.000 1.000 1.000 

TABLE III.  EVALUATION INDEXES OF THE DEVELOPED MODELS' PERFORMANCE BASED ON GRADES VCSS-1 

Model Grade 
Metric value 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

SVC 

Absent 0.867 0.929 0.897 

Mild 0.865 0.865 0.865 

Moderate 0.935 0.915 0.925 

Severe 1.000 1.000 1.000 

SVDM 

Absent 0.824 1.000 0.903 

Mild 0.892 0.892 0.892 

Moderate 0.977 0.915 0.945 

Severe 1.000 1.000 1.000 

SVSA 

Absent 0.684 0.929 0.788 

Mild 0.939 0.838 0.886 

Moderate 0.978 0.957 0.968 

Severe 1.000 1.000 1.000 
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Fig. 4. 3D walls for the difference between measured and predicted values. 
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Understanding the confusion matrix in Fig. 5 may help with 
correctly classifying people into the appropriate groups and 
identifying those who are misclassified into other groups. In 
reference to VCSS-PRE data, the SVDM model accurately 
classified 2, 38, 38, and 10 individuals into the Severe, 
Moderate, Mild, and Absent classifications, respectively; only 
14 pupils were misclassified. But, the SVC and SVSA models 
incorrectly categorized 16 and 15, respectively, of the 
individuals. The two optimized models showed that 
misclassifications mostly occurred across adjacent categories. 

For example, four individuals from SVSA and SVC were 
incorrectly classified as belonging to the Mild group instead of 
the Absent category. Twelve people were misclassified by the 
SVC model, which accurately classified 2, 43, 32, and 13 
people into the Severe, Moderate, Mild, and Absent categories, 
respectively, based on VCSS-1 scores. The SVSA and SVDM 
models, on the other hand, incorrectly categorized 11 and 10 
people, respectively. According to the SVSA model, five kids 
were mistakenly assigned to the Mild category rather than the 
Absent group. 

  

  

  
Fig. 5. Confusion matrix for the accuracy of each model. 
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Fig. 6. The ROC curve for comparison of the SVDM model between various categories. 

By employing the Receiver Operating Characteristic 
(𝑅𝑂𝐶) curve, the evaluation seeks to discern the equilibrium 
between the True Positive (𝑇𝑃) and False Positive (𝐹𝑃) rates, 
complemented by the computation of the Area Under the 𝑅𝑂𝐶 
Curve (𝐴𝑈𝐶). A higher 𝐴𝑈𝐶  signifies a more controlled 
increase in the 𝐹𝑃 rate compared to a substantial rise in the 𝑇𝑃 
rate for each adjustment of the predicted probability threshold. 
An ideal discrimination test is characterized by a 𝑅𝑂𝐶  plot 
reaching the upper-left corner, signifying 100% sensitivity and 
specificity. Fig. 6, which depicts ROC curves for the optimal 
SVDM model in classifying samples across two VCSS periods, 
illustrates that in VCSS-PRE, the AUC related to the Moderate 
group exceeded other categories and exhibited a more 
pronounced inclination towards the left-top side of the 
diagram. In the case of VCSS-1, the AUC for the Moderate and 
Absent groups surpassed that of the Mild curve. 

D. Sensitivity Analyses 

1) SHAP: SHAP (SHapley Additive exPlanations) is an 

algorithm used for interpreting machine learning models. It 

assigns Shapley values to each feature, indicating their 

individual contributions to model predictions. Derived from 

cooperative game theory, Shapley values ensure a fair 

distribution of the model's output among features by 

considering all possible feature combinations [42], [43]. This 

approach provides both local and global interpretability, 

explaining predictions for specific instances and revealing 

overall model behavior. SHAP values can be visualized 

through various plots, aiding in the understanding of complex 

models and building trust by uncovering the factors 

influencing predictions. 

Fig. 7 shows the effect of inputs on the output of the model. 
Based on the analysis, it was observed that CFS_Pre had the 
highest impact on the model output and Group had the lowest 
impact in all four classifications. 
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Fig. 7. Impact of input variables on model's output. 

IV. DISCUSSION 

The study has several limitations that should be considered 
in interpreting its findings. Firstly, the reliance on a sample size 
of 100 participants may restrict the generalizability of the 
results to broader populations. Future research endeavors 
should prioritize larger and more diverse samples to enhance 
external validity and ensure a representative study cohort. 
Additionally, the study's exploration of the duration of non-
pharmacological interventions, particularly yoga, was 
somewhat limited. A more in-depth investigation into longer 
intervention periods could provide valuable insights into the 
sustainability of effects and potential long-term benefits. 
Furthermore, the study predominantly focused on yoga as a 
non-pharmacological intervention, potentially limiting the 
breadth of its applicability. Future research could benefit from 
investigating the comparative effectiveness of various non-
pharmacological interventions, taking into consideration 
individual preferences and adherence rates. The study's 
reliance on quantitative outcome measures, while valuable, 
might not fully capture the nuanced impact of interventions on 
participants' daily lives and overall well-being. Incorporating 
qualitative assessments and patient-reported outcomes in future 
studies could provide a more comprehensive understanding of 
the holistic effects of these interventions. 

On the other hand, the study's findings offer promising 
applications in clinical settings and beyond. The optimization 
of non-pharmacological interventions using machine learning 
algorithms, as demonstrated in the study, suggests potential 

effectiveness in managing CVI. This could encourage 
healthcare practitioners to consider integrating such 
interventions into comprehensive patient care plans, especially 
for individuals with varying levels of CVI severity. 

Moreover, the study contributes to the evolving landscape 
of personalized medicine by showcasing the potential of 
machine learning models in tailoring interventions based on 
individual CVI profiles. This has implications for future 
applications, with the prospect of refining algorithms for more 
precise and personalized treatment recommendations. The 
findings may also have relevance in healthcare policy 
discussions, emphasizing the value of non-pharmacological 
approaches in addressing CVI. Policymakers could consider 
strategies to promote the integration of these interventions 
within healthcare systems, potentially leading to cost-effective 
and patient-centered care. 

V. CONCLUSION 

This investigation navigates the crossroads of technology, 
healthcare, and preventive strategies, delving into the potential 
of non-pharmacological interventions, notably yoga, to 
alleviate the urgency associated with Chronic Venous 
Insufficiency (CVI). Particularly, the study addresses the 
impact of such interventions during periods of heightened 
stress and sedentary lifestyles. The research unfolds avenues 
for predictive modeling and precision medicine by 
demonstrating the fusion of machine learning algorithms with 
healthcare. Leveraging a data-driven approach across a sample 
size of 100, the introduction of Support Vector Classification 
(SVC) models optimized with Dwarf Mongoose Optimization 
(DMO) and Smell Agent Optimization (SAO) provides 
valuable insights into the classification of CVI severity levels. 
Applying DMO and SAO optimization techniques to the SVC 
model resulted in a significant improvement in accuracy for 
VCSS-PRE values, with increases of 2% and 1%, respectively. 
As the 100 individuals were classified according to their 
circumstances, the DMO's remarkable capacity to improve 
classification accuracy was made clear. In particular, the 
SVDM model correctly categorized most people with an 
astounding accuracy rate of 94.3%, whereas the SVSA and 
SVC models incorrectly classified 15% and 16% of all people, 
respectively. When it comes to VCSS-1 values, the 
introduction of DMO and SAO optimization techniques to the 
SVC model improved Precision by 2.4% and 2.2%, 
respectively. With an accuracy rate of just 80%, the SVC 
model correctly classified the fewest individuals, whereas the 
SVSA and SVDM models had classification rates of 89% and 
90%, respectively. Further investigations into non-
pharmacological interventions and CVI could contribute to the 
body of knowledge by implementing a longitudinal design to 
monitor the long-term impact, ensuring a diverse range of 
participants to enhance the generalizability of findings, and 
conducting comparative analyses of interventions such as 
mindfulness and yoga. By incorporating patient-reported 
outcomes and investigating the various factors that impact 
adherence, a comprehensive understanding can be achieved. 
The integration of sophisticated imaging methodologies will 
provide impartial assessments of the advancement of CVI, 
whereas health economics evaluations can scrutinize cost-
effectiveness. Collaboration with healthcare professionals and 
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mechanistic investigation can enhance understanding of 
intervention pathways and promote the adoption of 
multidisciplinary approaches. Ethical considerations are of the 
utmost importance, encompassing participant safety and 
informed consent. 
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