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Abstract—Stock market simulations are widely used to create 

synthetic environments for testing trading strategies before 

deploying them to real-time markets. However, the weak realism 

often found in these simulations presents a significant challenge. 

Improving the quality of stock market simulations could be 

facilitated by the availability of rich and granular real Limit 

Order Books (LOB) data. Unfortunately, access to LOB data is 

typically very limited. To address this issue, a framework based 

on Generative Adversarial Networks (GAN) is proposed to 

generate synthetic realistic LOB data. This generated data can 

then be utilized for simulating downstream decision-making 

tasks, such as testing trading strategies, conducting stress tests, 

and performing prediction tasks. To effectively tackle challenges 

related to the temporal and local dependencies inherent in LOB 

structures and to generate highly realistic data, the framework 

relies on a specific data representation and preprocessing 

scheme, transformers, and conditional Wasserstein GAN with 

gradient penalty. The framework is trained using the FI-2010 

benchmark dataset and an ablation study is conducted to 

demonstrate the importance of each component of the proposed 

framework. Moreover, qualitative and quantitative metrics are 

proposed to assess the quality of the generated data. 

Experimental results indicate that the framework outperforms 

existing benchmarks in simulating realistic market conditions, 

thus demonstrating its effectiveness in generating synthetic LOB 

data for diverse downstream tasks. 

Keywords—Limit order book simulations; transformers; 

wasserstein GAN with gradient penalty; FI-2010 benchmark 
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I. INTRODUCTION 

Stock markets are complex systems, with underlying 
dynamics that remain largely unknown. Modeling such 
environments using traditional approaches poses unique 
challenges, including selecting appropriate hand-crafted 
features and verifying market assumptions. Leveraging the 
advancements in machine learning and deep learning 
techniques, numerous studies have sought to model market 
behaviors utilizing these innovative tools [1]-[4]. 

The dynamics of markets are influenced by interactions 
among multiple agents. These interactions are documented in 
the Limit Order Book (LOB) through buy and sell orders, 
providing rich insights into the market microstructure [5]. Such 
data is invaluable to traders, investors, regulators, and 
researchers. Unfortunately, the granular details within the LOB 
are not publicly accessible, with only aggregated daily 
summaries of price changes being made available. One 
potential solution involves adopting an agnostic approach 

toward the unknown underlying dynamics and embracing 
solutions capable of extracting crucial characteristics from the 
actual data. 

Generative Adversarial Networks (GANs) [6] offer an 
intriguing solution for modeling the LOB data due to their 
exceptional ability to generate data from complex distributions. 
Recent breakthroughs in GANs have accelerated their adoption 
across various domains, including image generation [7], [8], 
text generation [9], and audio generation [10]. 

In finance, numerous studies have leveraged GANs to 
model financial data, demonstrating their competitiveness 
compared to other deep learning techniques [11–16]. While 
GANs exhibit promising attributes for producing realistic 
simulations, their application as a data generation technique for 
stock market data remains relatively nascent [17]. Furthermore, 
only a handful of studies have explored the potential of GANs 
for stock market simulation [18, 19]. This work aims to bridge 
this gap. 

In this work, the aim is to develop a solution capable of 
simulating the LOB by generating synthetic data that closely 
resemble real data, capturing key statistical properties and 
mimicking the behavior of stock order dynamics realistically. 
The output of the framework is synthetic yet realistic LOB 
data. The practical implications of this endeavor are manifold. 
The generated data can be utilized for training forecasting 
models, calibrating trading strategies, conducting stress tests, 
performing backtests, and detecting anomalies. Additionally, 
the proposed procedure helps address data access limitations 
by creating synthetic data. 

The main contribution of this study is a new framework 
based on GANs models for generating synthetic Limit Order 
Book data to simulate stock market behaviors. The proposed 
solution relies on a specific data representation and 
preprocessing scheme, along with conditional Wasserstein 
GAN with a gradient penalty for model training. An 
assessment methodology is proposed to evaluate the quality 
and realism of the generated LOB data, and a comparison with 
state-of-the-art models is provided. 

The paper is organized as follows: a review of related 
works is presented in Section II. The developed framework is 
detailed in Section III. Subsequently, experimental settings and 
results are presented and discussed in Sections IV and V, 
respectively. Finally, Section VI provides conclusions and 
outlines possible future avenues of research. 
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II. RELATED WORKS 

In this section, an overview of the LOB and GANs basics is 
provided, along with a review of works that have simulated 
LOB data using various techniques. 

A. Limit Order Book Background and Simulation 

The LOB serves as a comprehensive record of all orders 
submitted to an exchange system, providing a detailed snapshot 
of market activities at a microstructure level. At any given 
moment, the LOB includes active orders organized by price 
levels. An active order is an order that is still unmatched or 
uncancelled. Orders are categorized as either asks or bids, and 
they can be modified or cancelled until they are executed. An 
execution, or trade, occurs when there is a match between ask 
and bid prices. Orders may be market orders, executed 
immediately at the best available price, or limit orders, 
executed only when there is a matching sell (buy) order at the 
desired price. Fig. 1 presents a simplified visualization of an 
LOB. The LOB undergoes continuous updates due to the 
arrival of new orders, cancellations, and executions, altering 
the current state of the market. 

 

Fig. 1. Simplified graphical representation of the LOB showing the bid and 

ask sides prices structure and the impact of different order types on the LOB’s 

price levels. 

The deployment of new algorithms or trading strategies in 
real environments necessitates extensive testing under various 
market scenarios. These tests are typically conducted within a 
simulation framework that mimics the states of the LOB. The 
LOB, being a dynamic and complex system, poses a challenge 
for both market practitioners and researchers. Explicitly 
expressing the LOB as a function is often infeasible due to the 
hidden complexity of its underlying dynamics. 

Furthermore, despite the increasing use of GANs in various 
stock market applications, their application for LOB simulation 
remains relatively understudied. Only a few studies have 
explored certain aspects of GANs for stock market simulation, 
with other works focusing solely on generating individual 
stock price time series. This section reviews related works 
pertaining to the aforementioned aspects of LOB simulation 
(see Table I). 

The multi-agent approach is widely adopted as a technique 
for market generation, simulating interactions among agents in 
the market. It involves emulating multiple types of traders with 
diverse trading strategies and testing the performance of new 

experimental trading strategies by simulating market responses 
to modifications of agent archetypes within the simulation. 

 The authors of [21] proposed an Agent-Based Interactive 
Discrete Event Simulation (ABIDES) environment, which 
provides the capability to simulate interactions among various 
types of trading agents. This simulation occurs within a 
continuous double-auction mechanism, with an exchange 
agent, utilizing a Limit Order Book (LOB) featuring price-
then-FIFO matching rules. Additionally, ABIDES incorporates 
a simulation kernel responsible for managing the flow of time 
and facilitating all inter-agent communication. The objective of 
ABIDES is to replicate a realistic financial market environment 
by simulating the characteristics observed in real financial 
markets. 

TABLE I. MARKET SIMULATION TECHNIQUES 

Ref. Objective Technique 

[17] 
Generation of financial time 

series 

Generative adversarial networks 

(GANs) 

[19] Simulating market orders Conditional GAN 

[18] Simulating market orders 

Conditional Wasserstein GAN 

with 

Gradient Penalty. 

[20] Simulating market orders Conditional GAN 

[21] Simulating agents interactions ABIDES 

[22] Simulating orders execution 
Reinforcement learning 

(RL) 

[23] 
Calibration of multi-agent 

simulation 

GAN with self- 

attention 

[24] 
Simulating multi-agent

 systems 
Reinforcement learning 

[25] 
Simulating multi-agent

 systems 

Model generating 

transactions 

[26] Simulation of the order flow 

Sequence Generative 

Adversarial Network 

(SeqGAN) 

[27] 
Simulating order optimal 

execution 

ABIDES and Re-inforcement 

learning 

[28] 
Generation of financial time 

series 
Wasserstein GAN 

Furthermore, in study [27] the authors proposed a multi-
agent LOB simulation environment for the training of RL 
execution agents within ABIDES. By comparing the LOB 
stylized facts on simulations using their method with the ones 
of a market-replay simulation using real LOB data, they 
showed the realism of their simulations. 

In study [22], an approach is deployed to model order 
execution decisions based on signals derived from LOB 
knowledge by a Markov Decision Process; and train an 
execution agent in a LOB simulator, which simulates multi-
agent interaction. 

The reference in [23] introduced a method, for the 
calibration of multiagent simulators, that can distinguish 
between “real” and “fake” price and volume time series as a 
part of GAN with self-attention, and then utilize it within an 
optimization framework to tune the parameters of a simulator 
model with known agent archetypes to represent market 
scenarios. 
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In study [24], the authors designed a multi-agent stock 
market simulator, in which each agent learns to trade 
autonomously via reinforcement learning. The authors showed 
that the proposed simulator can reproduce key market 
microstructure metrics, such as various price autocorrelation 
scalars over multiple time intervals. 

Lastly, in study [25] a simulative model of a financial 
market, based on the LOB data is presented. The traders’ 
heterogeneity is characterized by their trading rules, and by 
introducing a behavioral individual risk aversion and a learning 
ability. 

The aforementioned works depend on explicit hand-crafted 
rules and intricate assumptions to tailor simulations to desired 
specifications. These simulations are influenced by numerous 
hyperparameters, including the selection of agent types, the 
variety and quantity of permissible orders, and other factors. 
While this approach provides considerable flexibility in 
generating diverse simulated scenarios, it may lead to 
shortcomings in simulating market dynamics realistically, 
particularly when compared to real market conditions. 

B. Generative Adversarial Networks Background 

GANs are frameworks for training generative models [6]. 
A GAN has two components: a Generator G which learns to 
produce synthetic examples looking like the real ones and, a 
Discriminator D which tries to discriminate between real and 
synthetic examples. To train a GAN, a vector of noise Z~𝑃𝑍 is 
fed to Generator G which tries to map this vector to real data. 
The adversarial learning process corresponds to the following 
Minmax function: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷  𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)

[log(1 −

𝐷(𝐺(𝑍)))] (1) 

In practice, GANs with the Minmax function are hard to 
train due to the mode collapse challenge [29]. Ref. [30] 
proposed a solution to fix this issue, namely the Wasserstein 
GAN (WSGAN). 

Even if, the WSGAN shows smooth training, [31] 
explained that vanishing or exploding gradients can always 
occur. They proposed a solution, the WGAN-GP, which adds a 
gradient penalty to the objective WSGAN function: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷  𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝐷(𝑥)] − 𝐸𝑧~𝑝𝑧(𝑧)

[𝐷(𝐺(𝑍))] −

𝜆𝐸𝑥~𝑝�̂�(𝑥)[(‖𝛻𝑥 ̂𝐷(�̂�)‖2 − 1 )2 ] (2) 

𝜆 is the gradient penalty coefficient. Gradients are 
calculated in linear interpolation �̂�~𝑝𝑥(�̂�) between real and 
synthetic examples, 𝑝𝑥 is the sampling distribution of those 
linear interpolations. WGAN-GP is the actual state of the art in 
many domains: image field [32], airfoil shapes simulation [33], 
and text processing [34]. 

1) GAN for Time-series generation: In study [17] the 

authors proposed a generative adversarial network for 

financial time-series modeling. The model relies on a 

generator with a multilayer perceptron (MLP), convolutional 

neural networks (CNNs), and the combination of these two 

neural networks (MLP-CNNs), the same architecture is used 

for the discriminator. The proposed approach is assessed 

regarding the ability to reproduce some major stylized facts of 

the studied data. They showed that the proposed model 

produces a time series that recovers the statistical properties of 

financial time series. 

In study [26] the authors used the Sequence Generative 
Adversarial Network (SeqGAN) for modeling the order flow to 
simulate the intraday price variation. To assess the 
performance of the proposed framework a comparison is made 
between the generated data and the real ones regarding the 
returns distribution tails and the volatility of the mid-price time 
series. The experimental results showed that their method 
reproduces the statistics of real data better than the benchmark. 

Authors in study [28] used Wasserstein GAN for data 
augmentation to generate stock market order time series. Using 
data from Tokyo Stock Exchange, they showed that the 
probability distribution of synthetic order events generated by 
the GAN was close to reality. 

The aforementioned approaches aim to enhance stock 
market prediction accuracy by augmenting training datasets 
with synthetic examples. While the application of GANs in this 
context shows promise in improving stock market modeling, it 
primarily addresses aspects related to price variation. However, 
market simulation presents a more complex challenge, as it 
seeks to model the microstructure dynamics of the stock 
market at the order level. 

2) GAN for stock market simulation: In study [19] the 

authors proposed an approach to generate stock market orders 

based on conditional GANs. The adopted architecture relies 

on LSTM and convolutional layers for the generator and 

discriminator. The generator considers, in addition to 

historical data, handcrafted features that approximate market 

mechanisms. This work includes an ablation study to assess 

the importance of each component of the proposed 

architecture and provides a set of assessment metrics to 

evaluate the quality of generated data. For comparison 

purposes, two baseline models are used: Variational auto-

encoder and Deep Convolutional Generative Adversarial 

Network (DCGAN). The proposed method showed better 

results than the benchmarks. 

In study [20], a conditional GAN was used to build a 
framework called LOB-GAN to simulate the market ordering 
behavior. They used the LOB-GAN to help a reinforcement 
learning-based trading portfolio agent to make better 
generalizations. Their experimental results suggest that the 
framework improves out-of-sample portfolio performance by 
4%. 

Authors in study [18] proposed a market generator to 
simulate synthetic market orders. The quality of generated data 
is assessed in terms of stylized facts. The adopted architecture 
relies on a Conditional Wasserstein Generative Adversarial 
Network with Gradient Penalty. The generator and 
discriminator use long short-term memory (LSTM) and 
convolutional layers. The output of the proposed approach is a 
single order to feed to the exchange given the current state of 
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the market. This work does not provide an ablation study to 
assess the contribution of each component in the proposed 
framework. 

Authors in study [35] surveyed the metrics to assess the 
robustness and realism of the market simulation. This work 
proposes a catalog of known stylized facts regarding LOB 
microstructure behavior: return distributions, volumes, and 
order flow, non-stationary patterns, order market impact, and, 
cross-asset correlations. 

Although the studies mentioned earlier show promise, they 
are not without significant challenges and limitations. These 
include reliance on manually engineered features, limitations in 
simulating individual orders rather than entire market 
dynamics, and the complexity inherent in the models utilized. 
These factors may hinder the scalability and accuracy of the 
simulations, thus impacting their effectiveness in capturing 
real-world market behavior. 

III. THE PROPOSED FRAMEWORK 

The objective is to simulate the dynamics of the Limit 
Order Book (LOB) by generating synthetic data. To achieve 
this goal, a generative framework has been developed. This 
section provides a detailed exposition of the principal 
components constituting the proposed framework. 

A. Overview of the Frameworks 

Fig. 2 offers an overview of the main steps of the proposed 
framework. Initially, raw Limit Order Book (LOB) data 
undergo preprocessing, adopting a spatial-temporal 
representation conducive to machine learning tasks. To capture 
the spatial-temporal dependencies inherent in market data, a 
transformer-based temporal model is selected for the generator, 
while a convolutional neural network serves as the 
discriminator. Additionally, both a condition vector and a noise 
vector are inputted into the generator, enhancing its capability 
to effectively capture local and temporal correlations. 

 

Fig. 2. The principal components of the proposed framework are depicted as 

a data flow pipeline. Real data undergo preprocessing before being passed to 

the Generator and the Discriminator, operating within an adversarial scheme. 

B. Data Representation and Preprocessing 

The commonly-used representation of the LOB consists of 
a time series of multiple levels of orders. It’s a series of timely 
indexed snapshots with a local structure of the ask and bid 
orders organized by price levels as illustrated in Fig. 3. 

 

Fig. 3. Representation of the LOB as time-indexed consecutive snapshots. A 

snapshot represents the state of the price level structure of the LOB at a given 
moment. 

Each input data point in the LOB can be expressed as x⃗   ∈
 ℝT×4L. Where T is the history of the stock snapshots reflecting 
the evolution of the LOB after each event such as execution, 
modification, or cancellation. L is the number of price levels on 
each side of the LOB. The snapshot is a spatial representation 
of the LOB in terms of the price level. Let’s 𝑖 in [1, 𝐿], the 

snapshot is a vector    𝑥𝑡 = {𝑝𝑎
𝑖 (𝑡), 𝑣𝑎

𝑖 (𝑡), 𝑝𝑏
𝑖 (𝑡), 𝑣𝑏

𝑖 (𝑡) }𝑖=1
𝐿  the 

𝑝𝑎
𝑖 (𝑡) and 𝑝𝑏

𝑖 (𝑡) are the ask and bid prices and 𝑣𝑎
𝑖 (𝑡) and 𝑣𝑏

𝑖 (𝑡) 
are the ask and bid volumes. Hence, the 4L representation 
expresses the length of each snapshot in the LOB at time t. 

The spatial-temporal representation of the LOB implies 
many challenges from a machine-learning point of view. The 
prices-levels representation does not yield local smoothness of 
the LOB features. As an illustration, let’s consider a LOB with 
only three levels of prices on each side. Fig. 4 shows the initial 
state of the LOB at t=i. Each side contains active orders at the 
price levels 95, 97, and 99 for the bid side and 101, 103, and 
106 for the ask side. This state will be perturbed by a bid at the 
price of 98 and ask at price of 102. 

 

Fig. 4. LOB’s snapshot at time t=i with price levels ranging from 95 to 106 

and an upcoming new ask and bid orders at prices 102 and 98. 

The new state of the LOB resulting from these two orders 
is depicted in Fig. 5. It is evident that the new price levels on 
each side have undergone a complete transformation, as price 
levels 95 and 106 are no longer visible in this LOB with 3 price 
levels. Instead, the bid side now consists of price levels 97, 98, 
and 99, while the ask side comprises levels 101, 102, and 103. 
This illustration highlights how even a minor perturbation can 
induce a substantial shift in the data structure. Put differently, 
any slight perturbation of the LOB due to changes in price 
level values causes a significant alteration in the LOB 
snapshots. Such variability poses a challenge to model 
robustness, as consecutive LOB snapshots can exhibit entirely 
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different data structures. To address this challenge, a 
modification in data representation is adopted by employing 
"mid-price-centered moving windows" as introduced by [36]. 

In LOB simulation, the mid-price data is a region of 
particular interest since it is generally where the stock price is 
formed by the matching of the bid and ask order. The "mid-
price-centered moving windows" representation [36] consists 
of a two-dimensional window around the mid-price for a time 
point, it contains N LOB history and 2W + 1 continuous price 
levels stepped by the tick size ∆p. This representation gives a 
view of the LOB within a history of N time point and a price 
range [p(t) − W∆p,p(t) + W∆p]. 

 

Fig. 5. LOB’s snapshot structure at time t=i+1 following the processing of 

the new ask and bid orders with price levels ranging from 97 to 103 instead of 

95 to 106. 

In this new two-dimensional LOB’s representation x ∈ 
RN×2W+1, each element xn,i, n = 1,...,N, i = 0,...,2W of the 
moving window representation indicates the volume of limit 
orders at price level p(t)−W∆p+i and at LOB snapshot t − N + 
n The ask side is marked by xn,i > 0 and the bid side by xn,i < 
0 and |xn,i| for volume size. Fig. 6 illustrates this 2-dimensional 
representation of the first 200 LOB snapshots from the FI-2010 
dataset [37]. 

This data representation provides an efficient data 
structuration around the mid-price region and data are 
summarised in a spatial-temporal presentation of the ask and 
bid volume. The extent of this region [p(t)−W∆p,p(t)+W∆p] is 
a hyperparameter to be determined during the training process. 

 

Fig. 6. Mid-price-centered moving windows of the LOB snapshots. 

While providing a harmonious data view, the mid-price-
centered moving windows are a sparse presentation of the LOB 
data. To overcome this limitation, [36] proposes an interesting 
variation namely the accumulated moving window 
representation. Each element xn,i becomes the sum of total 
volumes up to the corresponding price level on each side in the 
n-th snapshot. Fig. 7 illustrates the accumulated moving 
window representation of the first 200 LOB snapshots from the 
FI-2010 dataset. 

After the aforementioned preprocessing steps, the input 
data are in the form of x ∈ RN×2W+1. For the FI-2010 dataset 
used for this study, we consider N = 50 and W = 20. 

C. The Generator 

The choice of a Transformer [38] to model LOB data is 
motivated by its ability to efficiently capture interactions and 
long-range dependencies in sequential data. In addition, 
Transformer offers a great computational performance due to 
its parallel matrix multiplication operations since it has no 
recurrence. 

 

Fig. 7. The accumulated moving windows of the LOB snapshots. 

The Transformer model relies on a self-attention 
mechanism that learns regions of interest by considering all 
past snapshots in the LOB history. In particular, it is expected 
from the Transformer Generator to efficiently capture the 
dynamic around the mid-price region. 

The Transformer is composed of an Encoder-Decoder 
structure. In the Encoder, we find two sublayers: self-attention 
followed by a position-wise feed-forward layer. The Decoder 
has three sublayers: self-attention, cross attention, and position-
wise feed-forward layer. To prevent information loss, the 
Transformer uses residual connections between sublayers. Self-
attention sublayers employ multiple attention heads that learn 
different sets of attention projections. 

The attention used by the Transformer is given by: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲, 𝑽) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝐷𝑘
) (3) 
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where, 𝑸 ∈  ℝ𝑁×𝐷𝑘 are queries, 𝑲 ∈  ℝ𝑀×𝐷𝑘 are keys, 
𝑽 ∈  ℝ𝑀×𝐷𝑣  and 𝑁,𝑀 are the lengths for queries and keys (or 
values). 𝐷𝑘 , 𝐷𝑣 for keys (or queries) and values dimensions. 

In the LOB context, the next snapshot is highly influenced 
by the past ones. Hence, for the positional encoding, a relative 
positional encoding [39] is opted for, as it is believed that the 
relative positions or distances between snapshots are a key 
element in LOB simulation. 

D. The Transformer 

The task of the discriminator (or the Critic when using 
WGAN-GP) is to accurately distinguish between real and 
synthetic data. In our context, the discriminator task is a 
classification between real and synthetic snapshots. 
Convolutional Neural Networks (CNN) are known for their 
good performance in images and natural language processing. 
Since snapshots have spatial-temporal structures, it’s believed 
that the use of a Convolutional Neural Network (CNN) as a 
discriminator is a good choice. Within the GAN settings, to get 
a well trained discriminator the generator is expected to 
produce a wide variety of diverse examples. 

The CNN is composed mainly of two components: a 
convolution layer and a pooling layer. The convolution layer 
applies several filters to the input data which extract the key 
features of the input data. The number of convolution filters 
and layers is a hyperparameter to be determined. The pooling 
layer downsamples the feature map while preserving most 
information to ensure a more robust representation regarding 
the location change of the feature map produced by the 
convolution filters. To perform classification, the extracted 
features are connected to a linear layer followed by a sigmoid 
function. 

E. The Condition Vector 

To further enhance the capacity of the generator to 
efficiently capture the past snapshots dynamic and produce a 
“contextualized” output, a conditional GAN architecture [40] is 
adopted. To do so, the generator relies on random vectors as 
well as a condition vector to produce synthetic examples. As a 
condition, a vector of the last 20 snapshots is used. Under these 
settings, the produced samples ( �̂� ) by the Generator can be 
interpreted as a conditional distribution of 𝑥 given Y : �̂�  ∼
 ℙ𝐺(𝑥 | 𝑌). The random vector size is set to 100. 

F. Training and Hyperparameters 

The proposed framework includes several essential 
hyperparameters that require precise tuning to achieve 
consistent outcomes. Extensive experimentation with the 
FI2010 dataset revealed optimal parameter values, as detailed 
in Tables II and III, which yielded the most favorable results. 

TABLE II. GENERATOR HYPERPARAMETERS 

Hyperparameter Value 

Batch size 64 

Number of heads 5 

Number of blocks 2 

TABLE III. DISCRIMINATOR HYPERPARAMETERS 

Hyperparameter Value 

Convolution layers 2 

Filter size 5 

Convolution activation function tanh 

Pooling size 2 

Pooling activation function ReLu 

A dropout layer with a rate of 0.2 is applied before the final 
linear layer of the generator. 

The choice of the aforementioned hyperparameters is 
adjusted regarding a trade-off between the computational 
complexity and the output quality. 

The model is trained with the WGAN-GP loss using the 
Adam Optimiser. The learning rate for the generator and critic 
is 2 × 10−4 and the maximum epoch number is 100. 

G. Baselines and Evaluation Procedure 

The evaluation of GANs models poses a significant 
challenge due to their inherent complexity and the multitude of 
factors influencing their performance. In order to determine the 
effectiveness of the framework in generating realistic LOB 
data, a comprehensive approach is imperative. Hence, the 
following strategy is meticulously devised to assess the fidelity 
and quality of the generated data: 

1) Baselines: For comparison purposes, three state-of-the-

art benchmarks are used: 

a) A framework for market simulation based on a 

Conditional GAN (CGAN) as in [18, 19]. 

b) A Recurrent Variational Autoencoder (VAE) [39]. 

c) And a Deep Convolutional Generative Adversarial 

Network (DCGAN) [41]. 

2) Qualitative assessment: To evaluate the framework, 

qualitative and quantitative approaches are employed. The 

qualitative approach involves visual comparisons between the 

distributions of real and synthetic data. While it is 

acknowledged that this evaluation is not definitive, it is 

considered to provide valuable intuition regarding the output 

quality. 

3) Quantitative assessment: To quantitatively assess the 

performance of the framework, the two-sample Kolmogorov-

Smirnov test is employed. In this context, the null hypothesis 

(H0) posits that "the synthetic and the real data are drawn 

from the same distribution. 

4) Ablation study: To explore the individual contributions 

of each component within the framework towards generating 

realistic data, an ablation study is conducted. This rigorous 

analysis aims to systematically examine the effects of each 

component, providing insights into their respective influences 

on the quality of the generated data. 
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IV. THE EXPERIMENTAL SETTINGS 

The framework is trained and tested on the FI-2010 dataset 
[37] which is the new benchmark dataset for LOB modeling 
[36]. The FI-210 records the LOB, for ten days, for five 
instruments from the Nasdaq Nordic stock market (Helsinki 
Stock Exchange). The FI-210 consists of 10 orders on each 
side of the LOB. The F-210 can be downloaded from: « 
https://etsin.fairdata.fi ». 

The proposed methods of this study were implemented 
using Python programming language. Keras library was used to 
implement the GAN-based framework. Experiments were 
conducted on a computer running the Windows 10 operating 
system with the configuration of Intel(R) Core (TM) i5-8250U 
CPU @ 1.60GHz (8 CPUs), 1.8GHz, 8 GB RAM, and 500 
Gigabytes hard disk drive. 

V. RESULTS AND DISCUSSION 

As previously outlined, with the adoption of the 2-
dimensional LOB representation, the input data are 
predominantly distributed around the mid-price. Therefore, the 
primary assessment objective is to evaluate the framework's 
ability to generate mid-price data that closely approximates 
real-world observations. 

 

Fig. 8. Mid-price distributions. 

Fig. 8 depicts a notable similarity between the generated 
mid-price data and the real counterparts. Both distributions 
exhibit similar characteristics, notably in terms of their multi-
mode attributes, suggesting a strong correspondence between 
the simulated and actual data. 

 

Fig. 9. Real ask and bid of consecutive orders. 

One critical aspect that cannot be overlooked is the 
temporal correlation inherent in the distributions of the best ask 
and bid data (see Fig. 9). The framework must generate these 

data with attributes similar to those observed in real market 
conditions. 

Fig. 10 provides insight into the coherence of temporal 
correlations exhibited in the generated distributions. This 
aspect is crucial for capturing the dynamic nature of market 
data over time. The effectiveness of maintaining such 
coherence largely hinges on the self-attention mechanism 
employed by the generator, highlighting its pivotal role in 
ensuring the fidelity and accuracy of the generated data. 

Another crucial aspect to consider is the distributions of the 
best ask and bid data. It is essential for the framework to 
generate best ask and bid data that exhibit similar attributes to 
those observed in real market conditions. Thus, ensuring 
consistency in these distributions is imperative for the fidelity 
of the generated data. 

Fig. 11 and Fig. 12 visually confirm the close resemblance 
between the generated best ask and bid data and their real 
counterparts, showcasing the framework's ability to accurately 
capture essential market dynamics. 

 

Fig. 10. Synthetic ask and bid distribution. 

 

Fig. 11. The bid distributions. 

 

Fig. 12. The ask distributions. 
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To quantitatively evaluate the proximity and similarity of 
the generated data to the real ones, a Kolmogorov-Smirnov (K-
S) test is conducted. This statistical analysis allows for a 
comprehensive assessment of the degree of correspondence 
between the distributions of the generated and real data sets, 
providing valuable insights into the fidelity and accuracy of the 
simulated data. 

TABLE IV. K-S DISTANCES 

 Mid-price Best ask Best bid 

Real vs Our framework 0.23 0.32 0.11 

Real vs CGAN 0.22 0.39 0.25 

Real vs VAE 0.61 0.67 0.72 

Real vs DCGAN 0.42 0.45 0.51 

These results, presented in Table IV, underscore the 
framework's performance in generating synthetic data relative 
to other models, as indicated by the Kolmogorov-Smirnov (K-
S) distances. The framework demonstrates superior 
performance compared to CGAN, particularly in replicating 
the distributions of best ask and best bid data. While CGAN 
shows slightly lower K-S distances for mid-price, the 
framework consistently outperforms across all metrics. 
Furthermore, when compared to the VAE and DCGAN 
models, the framework exhibits superior performance. The 
lower K-S distances achieved by the framework underscore its 
capability to generate synthetic data that closely resembles real 
market observations. 

To thoroughly assess the contributions of each framework 
component, an ablation studyis conducted. This analysis 
enables us to systematically evaluate the impact of individual 
elements on overall performance, aiding in the optimization 
and refinement of the framework's design for generating 
synthetic data. 

Table V presents the results of the ablation study, 
showcasing the impact on the framework's performance, 
measured by the K-S distances, when key components are 
removed. When the data representation component is omitted 
from the framework (using the original data structure instead), 
there is a noticeable increase in the K-S distances across all 
metrics. Similarly, removing the condition from the framework 
leads to a moderate increase in the K-S distances. Furthermore, 
omitting the Wasserstein Gradient Penalty (WGAN-GP) results 
in a discernible rise in the K-S distances, indicating a 
significant contribution of this component to the framework's 
performance. Similarly, when the Transformer component is 
replaced with LSTM, there is a notable increase in the K-S 
distances, highlighting the importance of Transformers in 
capturing essential temporal dependencies. Moreover, 
removing the CNN component and replacing it with LSTM 
also leads to an increase in the K-S distances, indicating the 
importance of CNNs in capturing spatial dependencies. 
Overall, these results underscore the critical role played by 
each component in enhancing the framework's performance in 
generating synthetic data that closely resembles real market 
observations. 

TABLE V. ABLATION STUDY RESULTS (K-S DISTANCES) 

 Mid-price Best ask Best bid 

Real vs Our framework 0.23 0.32 0.11 

Real vs framework w/o data 

representation (using original 
data structure) 

0.51 0.63 0.65 

Real vs framework w/o condition 0.36 0.47 0.35 

Real vs framework w/o WGAN-

GP (vanilla GAN) 
0.44 0.57 0.49 

Real vs framework w/o 
Transformer (LSTM instead) 

0.56 0.59 0.61 

Real vs framework w/o CNN 

(LSTM instead) 
0.42 0.51 0.43 

VI. CONCLUSION AND FUTURE WORK 

In this study, a generative adversarial framework is 
introduced to produce real-looking synthetic Limit Order Book 
(LOB) data for simulating stock market dynamics. The 
proposed framework applies a specific data preprocessing 
scheme and utilizes conditional Wasserstein GAN with a 
gradient penalty function to effectively capture the underlying 
structure of the data. The framework is assessed using both 
quantitative and qualitative criteria, demonstrating through 
experimental results that it outperforms existing benchmarks in 
simulating realistic market conditions. The synthetic data 
generated by the framework holds promise for various 
downstream tasks such as forecasting and calibrating trading 
strategies. The contributions of this research are two fold: 
aiding in the development of more realistic simulation tools 
and providing traders with the ability to simulate diverse 
market scenarios, thereby enhancing financial risk management 
practices. For future research directions, exploring alternative 
architectures for the generative framework and incorporating 
realistic trading strategies to further assess the practical 
applicability of the proposed solutions is recommended. 
Additionally, investigating advanced techniques for 
hyperparameter tuning to ensure the attainment of globally 
optimal solutions can enhance the overall quality of the 
evaluated frameworks. 
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