
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

45 | P a g e

www.ijacsa.thesai.org

Generative Adversarial Neural Networks for Realistic

Stock Market Simulations

Badre Labiad1, Abdelaziz Berrado2, Loubna Benabbou3

AMIPS Research Team, Ecole Mohammadia d’Ingénieurs, Mohammed V University in Rabat, Morocco1, 2

Département Sciences de la Gestion, Universit du Québec Rimouski (UQAR), Campus de Lévis, Québec Canada3

Abstract—Stock market simulations are widely used to create

synthetic environments for testing trading strategies before

deploying them to real-time markets. However, the weak realism

often found in these simulations presents a significant challenge.

Improving the quality of stock market simulations could be

facilitated by the availability of rich and granular real Limit

Order Books (LOB) data. Unfortunately, access to LOB data is

typically very limited. To address this issue, a framework based

on Generative Adversarial Networks (GAN) is proposed to

generate synthetic realistic LOB data. This generated data can

then be utilized for simulating downstream decision-making

tasks, such as testing trading strategies, conducting stress tests,

and performing prediction tasks. To effectively tackle challenges

related to the temporal and local dependencies inherent in LOB

structures and to generate highly realistic data, the framework

relies on a specific data representation and preprocessing

scheme, transformers, and conditional Wasserstein GAN with

gradient penalty. The framework is trained using the FI-2010

benchmark dataset and an ablation study is conducted to

demonstrate the importance of each component of the proposed

framework. Moreover, qualitative and quantitative metrics are

proposed to assess the quality of the generated data.

Experimental results indicate that the framework outperforms

existing benchmarks in simulating realistic market conditions,

thus demonstrating its effectiveness in generating synthetic LOB

data for diverse downstream tasks.

Keywords—Limit order book simulations; transformers;

wasserstein GAN with gradient penalty; FI-2010 benchmark

dataset

I. INTRODUCTION

Stock markets are complex systems, with underlying
dynamics that remain largely unknown. Modeling such
environments using traditional approaches poses unique
challenges, including selecting appropriate hand-crafted
features and verifying market assumptions. Leveraging the
advancements in machine learning and deep learning
techniques, numerous studies have sought to model market
behaviors utilizing these innovative tools [1]-[4].

The dynamics of markets are influenced by interactions
among multiple agents. These interactions are documented in
the Limit Order Book (LOB) through buy and sell orders,
providing rich insights into the market microstructure [5]. Such
data is invaluable to traders, investors, regulators, and
researchers. Unfortunately, the granular details within the LOB
are not publicly accessible, with only aggregated daily
summaries of price changes being made available. One
potential solution involves adopting an agnostic approach

toward the unknown underlying dynamics and embracing
solutions capable of extracting crucial characteristics from the
actual data.

Generative Adversarial Networks (GANs) [6] offer an
intriguing solution for modeling the LOB data due to their
exceptional ability to generate data from complex distributions.
Recent breakthroughs in GANs have accelerated their adoption
across various domains, including image generation [7], [8],
text generation [9], and audio generation [10].

In finance, numerous studies have leveraged GANs to
model financial data, demonstrating their competitiveness
compared to other deep learning techniques [11–16]. While
GANs exhibit promising attributes for producing realistic
simulations, their application as a data generation technique for
stock market data remains relatively nascent [17]. Furthermore,
only a handful of studies have explored the potential of GANs
for stock market simulation [18, 19]. This work aims to bridge
this gap.

In this work, the aim is to develop a solution capable of
simulating the LOB by generating synthetic data that closely
resemble real data, capturing key statistical properties and
mimicking the behavior of stock order dynamics realistically.
The output of the framework is synthetic yet realistic LOB
data. The practical implications of this endeavor are manifold.
The generated data can be utilized for training forecasting
models, calibrating trading strategies, conducting stress tests,
performing backtests, and detecting anomalies. Additionally,
the proposed procedure helps address data access limitations
by creating synthetic data.

The main contribution of this study is a new framework
based on GANs models for generating synthetic Limit Order
Book data to simulate stock market behaviors. The proposed
solution relies on a specific data representation and
preprocessing scheme, along with conditional Wasserstein
GAN with a gradient penalty for model training. An
assessment methodology is proposed to evaluate the quality
and realism of the generated LOB data, and a comparison with
state-of-the-art models is provided.

The paper is organized as follows: a review of related
works is presented in Section II. The developed framework is
detailed in Section III. Subsequently, experimental settings and
results are presented and discussed in Sections IV and V,
respectively. Finally, Section VI provides conclusions and
outlines possible future avenues of research.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

46 | P a g e

www.ijacsa.thesai.org

II. RELATED WORKS

In this section, an overview of the LOB and GANs basics is
provided, along with a review of works that have simulated
LOB data using various techniques.

A. Limit Order Book Background and Simulation

The LOB serves as a comprehensive record of all orders
submitted to an exchange system, providing a detailed snapshot
of market activities at a microstructure level. At any given
moment, the LOB includes active orders organized by price
levels. An active order is an order that is still unmatched or
uncancelled. Orders are categorized as either asks or bids, and
they can be modified or cancelled until they are executed. An
execution, or trade, occurs when there is a match between ask
and bid prices. Orders may be market orders, executed
immediately at the best available price, or limit orders,
executed only when there is a matching sell (buy) order at the
desired price. Fig. 1 presents a simplified visualization of an
LOB. The LOB undergoes continuous updates due to the
arrival of new orders, cancellations, and executions, altering
the current state of the market.

Fig. 1. Simplified graphical representation of the LOB showing the bid and

ask sides prices structure and the impact of different order types on the LOB’s

price levels.

The deployment of new algorithms or trading strategies in
real environments necessitates extensive testing under various
market scenarios. These tests are typically conducted within a
simulation framework that mimics the states of the LOB. The
LOB, being a dynamic and complex system, poses a challenge
for both market practitioners and researchers. Explicitly
expressing the LOB as a function is often infeasible due to the
hidden complexity of its underlying dynamics.

Furthermore, despite the increasing use of GANs in various
stock market applications, their application for LOB simulation
remains relatively understudied. Only a few studies have
explored certain aspects of GANs for stock market simulation,
with other works focusing solely on generating individual
stock price time series. This section reviews related works
pertaining to the aforementioned aspects of LOB simulation
(see Table I).

The multi-agent approach is widely adopted as a technique
for market generation, simulating interactions among agents in
the market. It involves emulating multiple types of traders with
diverse trading strategies and testing the performance of new

experimental trading strategies by simulating market responses
to modifications of agent archetypes within the simulation.

 The authors of [21] proposed an Agent-Based Interactive
Discrete Event Simulation (ABIDES) environment, which
provides the capability to simulate interactions among various
types of trading agents. This simulation occurs within a
continuous double-auction mechanism, with an exchange
agent, utilizing a Limit Order Book (LOB) featuring price-
then-FIFO matching rules. Additionally, ABIDES incorporates
a simulation kernel responsible for managing the flow of time
and facilitating all inter-agent communication. The objective of
ABIDES is to replicate a realistic financial market environment
by simulating the characteristics observed in real financial
markets.

TABLE I. MARKET SIMULATION TECHNIQUES

Ref. Objective Technique

[17]
Generation of financial time

series

Generative adversarial networks

(GANs)

[19] Simulating market orders Conditional GAN

[18] Simulating market orders

Conditional Wasserstein GAN

with

Gradient Penalty.

[20] Simulating market orders Conditional GAN

[21] Simulating agents interactions ABIDES

[22] Simulating orders execution
Reinforcement learning

(RL)

[23]
Calibration of multi-agent

simulation

GAN with self-

attention

[24]
Simulating multi-agent

 systems
Reinforcement learning

[25]
Simulating multi-agent

 systems

Model generating

transactions

[26] Simulation of the order flow

Sequence Generative

Adversarial Network

(SeqGAN)

[27]
Simulating order optimal

execution

ABIDES and Re-inforcement

learning

[28]
Generation of financial time

series
Wasserstein GAN

Furthermore, in study [27] the authors proposed a multi-
agent LOB simulation environment for the training of RL
execution agents within ABIDES. By comparing the LOB
stylized facts on simulations using their method with the ones
of a market-replay simulation using real LOB data, they
showed the realism of their simulations.

In study [22], an approach is deployed to model order
execution decisions based on signals derived from LOB
knowledge by a Markov Decision Process; and train an
execution agent in a LOB simulator, which simulates multi-
agent interaction.

The reference in [23] introduced a method, for the
calibration of multiagent simulators, that can distinguish
between “real” and “fake” price and volume time series as a
part of GAN with self-attention, and then utilize it within an
optimization framework to tune the parameters of a simulator
model with known agent archetypes to represent market
scenarios.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

47 | P a g e

www.ijacsa.thesai.org

In study [24], the authors designed a multi-agent stock
market simulator, in which each agent learns to trade
autonomously via reinforcement learning. The authors showed
that the proposed simulator can reproduce key market
microstructure metrics, such as various price autocorrelation
scalars over multiple time intervals.

Lastly, in study [25] a simulative model of a financial
market, based on the LOB data is presented. The traders’
heterogeneity is characterized by their trading rules, and by
introducing a behavioral individual risk aversion and a learning
ability.

The aforementioned works depend on explicit hand-crafted
rules and intricate assumptions to tailor simulations to desired
specifications. These simulations are influenced by numerous
hyperparameters, including the selection of agent types, the
variety and quantity of permissible orders, and other factors.
While this approach provides considerable flexibility in
generating diverse simulated scenarios, it may lead to
shortcomings in simulating market dynamics realistically,
particularly when compared to real market conditions.

B. Generative Adversarial Networks Background

GANs are frameworks for training generative models [6].
A GAN has two components: a Generator G which learns to
produce synthetic examples looking like the real ones and, a
Discriminator D which tries to discriminate between real and
synthetic examples. To train a GAN, a vector of noise Z~𝑃𝑍 is
fed to Generator G which tries to map this vector to real data.
The adversarial learning process corresponds to the following
Minmax function:

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)

[log(1 −

𝐷(𝐺(𝑍)))] (1)

In practice, GANs with the Minmax function are hard to
train due to the mode collapse challenge [29]. Ref. [30]
proposed a solution to fix this issue, namely the Wasserstein
GAN (WSGAN).

Even if, the WSGAN shows smooth training, [31]
explained that vanishing or exploding gradients can always
occur. They proposed a solution, the WGAN-GP, which adds a
gradient penalty to the objective WSGAN function:

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝐷(𝑥)] − 𝐸𝑧~𝑝𝑧(𝑧)

[𝐷(𝐺(𝑍))] −

𝜆𝐸𝑥~𝑝�̂�(𝑥)[(‖𝛻𝑥 ̂𝐷(�̂�)‖2 − 1)2] (2)

𝜆 is the gradient penalty coefficient. Gradients are
calculated in linear interpolation �̂�~𝑝𝑥(�̂�) between real and
synthetic examples, 𝑝𝑥 is the sampling distribution of those
linear interpolations. WGAN-GP is the actual state of the art in
many domains: image field [32], airfoil shapes simulation [33],
and text processing [34].

1) GAN for Time-series generation: In study [17] the

authors proposed a generative adversarial network for

financial time-series modeling. The model relies on a

generator with a multilayer perceptron (MLP), convolutional

neural networks (CNNs), and the combination of these two

neural networks (MLP-CNNs), the same architecture is used

for the discriminator. The proposed approach is assessed

regarding the ability to reproduce some major stylized facts of

the studied data. They showed that the proposed model

produces a time series that recovers the statistical properties of

financial time series.

In study [26] the authors used the Sequence Generative
Adversarial Network (SeqGAN) for modeling the order flow to
simulate the intraday price variation. To assess the
performance of the proposed framework a comparison is made
between the generated data and the real ones regarding the
returns distribution tails and the volatility of the mid-price time
series. The experimental results showed that their method
reproduces the statistics of real data better than the benchmark.

Authors in study [28] used Wasserstein GAN for data
augmentation to generate stock market order time series. Using
data from Tokyo Stock Exchange, they showed that the
probability distribution of synthetic order events generated by
the GAN was close to reality.

The aforementioned approaches aim to enhance stock
market prediction accuracy by augmenting training datasets
with synthetic examples. While the application of GANs in this
context shows promise in improving stock market modeling, it
primarily addresses aspects related to price variation. However,
market simulation presents a more complex challenge, as it
seeks to model the microstructure dynamics of the stock
market at the order level.

2) GAN for stock market simulation: In study [19] the

authors proposed an approach to generate stock market orders

based on conditional GANs. The adopted architecture relies

on LSTM and convolutional layers for the generator and

discriminator. The generator considers, in addition to

historical data, handcrafted features that approximate market

mechanisms. This work includes an ablation study to assess

the importance of each component of the proposed

architecture and provides a set of assessment metrics to

evaluate the quality of generated data. For comparison

purposes, two baseline models are used: Variational auto-

encoder and Deep Convolutional Generative Adversarial

Network (DCGAN). The proposed method showed better

results than the benchmarks.

In study [20], a conditional GAN was used to build a
framework called LOB-GAN to simulate the market ordering
behavior. They used the LOB-GAN to help a reinforcement
learning-based trading portfolio agent to make better
generalizations. Their experimental results suggest that the
framework improves out-of-sample portfolio performance by
4%.

Authors in study [18] proposed a market generator to
simulate synthetic market orders. The quality of generated data
is assessed in terms of stylized facts. The adopted architecture
relies on a Conditional Wasserstein Generative Adversarial
Network with Gradient Penalty. The generator and
discriminator use long short-term memory (LSTM) and
convolutional layers. The output of the proposed approach is a
single order to feed to the exchange given the current state of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

48 | P a g e

www.ijacsa.thesai.org

the market. This work does not provide an ablation study to
assess the contribution of each component in the proposed
framework.

Authors in study [35] surveyed the metrics to assess the
robustness and realism of the market simulation. This work
proposes a catalog of known stylized facts regarding LOB
microstructure behavior: return distributions, volumes, and
order flow, non-stationary patterns, order market impact, and,
cross-asset correlations.

Although the studies mentioned earlier show promise, they
are not without significant challenges and limitations. These
include reliance on manually engineered features, limitations in
simulating individual orders rather than entire market
dynamics, and the complexity inherent in the models utilized.
These factors may hinder the scalability and accuracy of the
simulations, thus impacting their effectiveness in capturing
real-world market behavior.

III. THE PROPOSED FRAMEWORK

The objective is to simulate the dynamics of the Limit
Order Book (LOB) by generating synthetic data. To achieve
this goal, a generative framework has been developed. This
section provides a detailed exposition of the principal
components constituting the proposed framework.

A. Overview of the Frameworks

Fig. 2 offers an overview of the main steps of the proposed
framework. Initially, raw Limit Order Book (LOB) data
undergo preprocessing, adopting a spatial-temporal
representation conducive to machine learning tasks. To capture
the spatial-temporal dependencies inherent in market data, a
transformer-based temporal model is selected for the generator,
while a convolutional neural network serves as the
discriminator. Additionally, both a condition vector and a noise
vector are inputted into the generator, enhancing its capability
to effectively capture local and temporal correlations.

Fig. 2. The principal components of the proposed framework are depicted as

a data flow pipeline. Real data undergo preprocessing before being passed to

the Generator and the Discriminator, operating within an adversarial scheme.

B. Data Representation and Preprocessing

The commonly-used representation of the LOB consists of
a time series of multiple levels of orders. It’s a series of timely
indexed snapshots with a local structure of the ask and bid
orders organized by price levels as illustrated in Fig. 3.

Fig. 3. Representation of the LOB as time-indexed consecutive snapshots. A

snapshot represents the state of the price level structure of the LOB at a given
moment.

Each input data point in the LOB can be expressed as x⃗   ∈
 ℝT×4L. Where T is the history of the stock snapshots reflecting
the evolution of the LOB after each event such as execution,
modification, or cancellation. L is the number of price levels on
each side of the LOB. The snapshot is a spatial representation
of the LOB in terms of the price level. Let’s 𝑖 in [1, 𝐿], the

snapshot is a vector 𝑥𝑡 = {𝑝𝑎
𝑖 (𝑡), 𝑣𝑎

𝑖 (𝑡), 𝑝𝑏
𝑖 (𝑡), 𝑣𝑏

𝑖 (𝑡) }𝑖=1
𝐿 the

𝑝𝑎
𝑖 (𝑡) and 𝑝𝑏

𝑖 (𝑡) are the ask and bid prices and 𝑣𝑎
𝑖 (𝑡) and 𝑣𝑏

𝑖 (𝑡)
are the ask and bid volumes. Hence, the 4L representation
expresses the length of each snapshot in the LOB at time t.

The spatial-temporal representation of the LOB implies
many challenges from a machine-learning point of view. The
prices-levels representation does not yield local smoothness of
the LOB features. As an illustration, let’s consider a LOB with
only three levels of prices on each side. Fig. 4 shows the initial
state of the LOB at t=i. Each side contains active orders at the
price levels 95, 97, and 99 for the bid side and 101, 103, and
106 for the ask side. This state will be perturbed by a bid at the
price of 98 and ask at price of 102.

Fig. 4. LOB’s snapshot at time t=i with price levels ranging from 95 to 106

and an upcoming new ask and bid orders at prices 102 and 98.

The new state of the LOB resulting from these two orders
is depicted in Fig. 5. It is evident that the new price levels on
each side have undergone a complete transformation, as price
levels 95 and 106 are no longer visible in this LOB with 3 price
levels. Instead, the bid side now consists of price levels 97, 98,
and 99, while the ask side comprises levels 101, 102, and 103.
This illustration highlights how even a minor perturbation can
induce a substantial shift in the data structure. Put differently,
any slight perturbation of the LOB due to changes in price
level values causes a significant alteration in the LOB
snapshots. Such variability poses a challenge to model
robustness, as consecutive LOB snapshots can exhibit entirely

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

49 | P a g e

www.ijacsa.thesai.org

different data structures. To address this challenge, a
modification in data representation is adopted by employing
"mid-price-centered moving windows" as introduced by [36].

In LOB simulation, the mid-price data is a region of
particular interest since it is generally where the stock price is
formed by the matching of the bid and ask order. The "mid-
price-centered moving windows" representation [36] consists
of a two-dimensional window around the mid-price for a time
point, it contains N LOB history and 2W + 1 continuous price
levels stepped by the tick size ∆p. This representation gives a
view of the LOB within a history of N time point and a price
range [p(t) − W∆p,p(t) + W∆p].

Fig. 5. LOB’s snapshot structure at time t=i+1 following the processing of

the new ask and bid orders with price levels ranging from 97 to 103 instead of

95 to 106.

In this new two-dimensional LOB’s representation x ∈
RN×2W+1, each element xn,i, n = 1,...,N, i = 0,...,2W of the
moving window representation indicates the volume of limit
orders at price level p(t)−W∆p+i and at LOB snapshot t − N +
n The ask side is marked by xn,i > 0 and the bid side by xn,i <
0 and |xn,i| for volume size. Fig. 6 illustrates this 2-dimensional
representation of the first 200 LOB snapshots from the FI-2010
dataset [37].

This data representation provides an efficient data
structuration around the mid-price region and data are
summarised in a spatial-temporal presentation of the ask and
bid volume. The extent of this region [p(t)−W∆p,p(t)+W∆p] is
a hyperparameter to be determined during the training process.

Fig. 6. Mid-price-centered moving windows of the LOB snapshots.

While providing a harmonious data view, the mid-price-
centered moving windows are a sparse presentation of the LOB
data. To overcome this limitation, [36] proposes an interesting
variation namely the accumulated moving window
representation. Each element xn,i becomes the sum of total
volumes up to the corresponding price level on each side in the
n-th snapshot. Fig. 7 illustrates the accumulated moving
window representation of the first 200 LOB snapshots from the
FI-2010 dataset.

After the aforementioned preprocessing steps, the input
data are in the form of x ∈ RN×2W+1. For the FI-2010 dataset
used for this study, we consider N = 50 and W = 20.

C. The Generator

The choice of a Transformer [38] to model LOB data is
motivated by its ability to efficiently capture interactions and
long-range dependencies in sequential data. In addition,
Transformer offers a great computational performance due to
its parallel matrix multiplication operations since it has no
recurrence.

Fig. 7. The accumulated moving windows of the LOB snapshots.

The Transformer model relies on a self-attention
mechanism that learns regions of interest by considering all
past snapshots in the LOB history. In particular, it is expected
from the Transformer Generator to efficiently capture the
dynamic around the mid-price region.

The Transformer is composed of an Encoder-Decoder
structure. In the Encoder, we find two sublayers: self-attention
followed by a position-wise feed-forward layer. The Decoder
has three sublayers: self-attention, cross attention, and position-
wise feed-forward layer. To prevent information loss, the
Transformer uses residual connections between sublayers. Self-
attention sublayers employ multiple attention heads that learn
different sets of attention projections.

The attention used by the Transformer is given by:

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲, 𝑽) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝐷𝑘
) (3)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

50 | P a g e

www.ijacsa.thesai.org

where, 𝑸 ∈ ℝ𝑁×𝐷𝑘 are queries, 𝑲 ∈ ℝ𝑀×𝐷𝑘 are keys,
𝑽 ∈ ℝ𝑀×𝐷𝑣 and 𝑁,𝑀 are the lengths for queries and keys (or
values). 𝐷𝑘 , 𝐷𝑣 for keys (or queries) and values dimensions.

In the LOB context, the next snapshot is highly influenced
by the past ones. Hence, for the positional encoding, a relative
positional encoding [39] is opted for, as it is believed that the
relative positions or distances between snapshots are a key
element in LOB simulation.

D. The Transformer

The task of the discriminator (or the Critic when using
WGAN-GP) is to accurately distinguish between real and
synthetic data. In our context, the discriminator task is a
classification between real and synthetic snapshots.
Convolutional Neural Networks (CNN) are known for their
good performance in images and natural language processing.
Since snapshots have spatial-temporal structures, it’s believed
that the use of a Convolutional Neural Network (CNN) as a
discriminator is a good choice. Within the GAN settings, to get
a well trained discriminator the generator is expected to
produce a wide variety of diverse examples.

The CNN is composed mainly of two components: a
convolution layer and a pooling layer. The convolution layer
applies several filters to the input data which extract the key
features of the input data. The number of convolution filters
and layers is a hyperparameter to be determined. The pooling
layer downsamples the feature map while preserving most
information to ensure a more robust representation regarding
the location change of the feature map produced by the
convolution filters. To perform classification, the extracted
features are connected to a linear layer followed by a sigmoid
function.

E. The Condition Vector

To further enhance the capacity of the generator to
efficiently capture the past snapshots dynamic and produce a
“contextualized” output, a conditional GAN architecture [40] is
adopted. To do so, the generator relies on random vectors as
well as a condition vector to produce synthetic examples. As a
condition, a vector of the last 20 snapshots is used. Under these
settings, the produced samples (�̂�) by the Generator can be
interpreted as a conditional distribution of 𝑥 given Y : �̂� ∼
 ℙ𝐺(𝑥 | 𝑌). The random vector size is set to 100.

F. Training and Hyperparameters

The proposed framework includes several essential
hyperparameters that require precise tuning to achieve
consistent outcomes. Extensive experimentation with the
FI2010 dataset revealed optimal parameter values, as detailed
in Tables II and III, which yielded the most favorable results.

TABLE II. GENERATOR HYPERPARAMETERS

Hyperparameter Value

Batch size 64

Number of heads 5

Number of blocks 2

TABLE III. DISCRIMINATOR HYPERPARAMETERS

Hyperparameter Value

Convolution layers 2

Filter size 5

Convolution activation function tanh

Pooling size 2

Pooling activation function ReLu

A dropout layer with a rate of 0.2 is applied before the final
linear layer of the generator.

The choice of the aforementioned hyperparameters is
adjusted regarding a trade-off between the computational
complexity and the output quality.

The model is trained with the WGAN-GP loss using the
Adam Optimiser. The learning rate for the generator and critic
is 2 × 10−4 and the maximum epoch number is 100.

G. Baselines and Evaluation Procedure

The evaluation of GANs models poses a significant
challenge due to their inherent complexity and the multitude of
factors influencing their performance. In order to determine the
effectiveness of the framework in generating realistic LOB
data, a comprehensive approach is imperative. Hence, the
following strategy is meticulously devised to assess the fidelity
and quality of the generated data:

1) Baselines: For comparison purposes, three state-of-the-

art benchmarks are used:

a) A framework for market simulation based on a

Conditional GAN (CGAN) as in [18, 19].

b) A Recurrent Variational Autoencoder (VAE) [39].

c) And a Deep Convolutional Generative Adversarial

Network (DCGAN) [41].

2) Qualitative assessment: To evaluate the framework,

qualitative and quantitative approaches are employed. The

qualitative approach involves visual comparisons between the

distributions of real and synthetic data. While it is

acknowledged that this evaluation is not definitive, it is

considered to provide valuable intuition regarding the output

quality.

3) Quantitative assessment: To quantitatively assess the

performance of the framework, the two-sample Kolmogorov-

Smirnov test is employed. In this context, the null hypothesis

(H0) posits that "the synthetic and the real data are drawn

from the same distribution.

4) Ablation study: To explore the individual contributions

of each component within the framework towards generating

realistic data, an ablation study is conducted. This rigorous

analysis aims to systematically examine the effects of each

component, providing insights into their respective influences

on the quality of the generated data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

51 | P a g e

www.ijacsa.thesai.org

IV. THE EXPERIMENTAL SETTINGS

The framework is trained and tested on the FI-2010 dataset
[37] which is the new benchmark dataset for LOB modeling
[36]. The FI-210 records the LOB, for ten days, for five
instruments from the Nasdaq Nordic stock market (Helsinki
Stock Exchange). The FI-210 consists of 10 orders on each
side of the LOB. The F-210 can be downloaded from: «
https://etsin.fairdata.fi ».

The proposed methods of this study were implemented
using Python programming language. Keras library was used to
implement the GAN-based framework. Experiments were
conducted on a computer running the Windows 10 operating
system with the configuration of Intel(R) Core (TM) i5-8250U
CPU @ 1.60GHz (8 CPUs), 1.8GHz, 8 GB RAM, and 500
Gigabytes hard disk drive.

V. RESULTS AND DISCUSSION

As previously outlined, with the adoption of the 2-
dimensional LOB representation, the input data are
predominantly distributed around the mid-price. Therefore, the
primary assessment objective is to evaluate the framework's
ability to generate mid-price data that closely approximates
real-world observations.

Fig. 8. Mid-price distributions.

Fig. 8 depicts a notable similarity between the generated
mid-price data and the real counterparts. Both distributions
exhibit similar characteristics, notably in terms of their multi-
mode attributes, suggesting a strong correspondence between
the simulated and actual data.

Fig. 9. Real ask and bid of consecutive orders.

One critical aspect that cannot be overlooked is the
temporal correlation inherent in the distributions of the best ask
and bid data (see Fig. 9). The framework must generate these

data with attributes similar to those observed in real market
conditions.

Fig. 10 provides insight into the coherence of temporal
correlations exhibited in the generated distributions. This
aspect is crucial for capturing the dynamic nature of market
data over time. The effectiveness of maintaining such
coherence largely hinges on the self-attention mechanism
employed by the generator, highlighting its pivotal role in
ensuring the fidelity and accuracy of the generated data.

Another crucial aspect to consider is the distributions of the
best ask and bid data. It is essential for the framework to
generate best ask and bid data that exhibit similar attributes to
those observed in real market conditions. Thus, ensuring
consistency in these distributions is imperative for the fidelity
of the generated data.

Fig. 11 and Fig. 12 visually confirm the close resemblance
between the generated best ask and bid data and their real
counterparts, showcasing the framework's ability to accurately
capture essential market dynamics.

Fig. 10. Synthetic ask and bid distribution.

Fig. 11. The bid distributions.

Fig. 12. The ask distributions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

52 | P a g e

www.ijacsa.thesai.org

To quantitatively evaluate the proximity and similarity of
the generated data to the real ones, a Kolmogorov-Smirnov (K-
S) test is conducted. This statistical analysis allows for a
comprehensive assessment of the degree of correspondence
between the distributions of the generated and real data sets,
providing valuable insights into the fidelity and accuracy of the
simulated data.

TABLE IV. K-S DISTANCES

 Mid-price Best ask Best bid

Real vs Our framework 0.23 0.32 0.11

Real vs CGAN 0.22 0.39 0.25

Real vs VAE 0.61 0.67 0.72

Real vs DCGAN 0.42 0.45 0.51

These results, presented in Table IV, underscore the
framework's performance in generating synthetic data relative
to other models, as indicated by the Kolmogorov-Smirnov (K-
S) distances. The framework demonstrates superior
performance compared to CGAN, particularly in replicating
the distributions of best ask and best bid data. While CGAN
shows slightly lower K-S distances for mid-price, the
framework consistently outperforms across all metrics.
Furthermore, when compared to the VAE and DCGAN
models, the framework exhibits superior performance. The
lower K-S distances achieved by the framework underscore its
capability to generate synthetic data that closely resembles real
market observations.

To thoroughly assess the contributions of each framework
component, an ablation studyis conducted. This analysis
enables us to systematically evaluate the impact of individual
elements on overall performance, aiding in the optimization
and refinement of the framework's design for generating
synthetic data.

Table V presents the results of the ablation study,
showcasing the impact on the framework's performance,
measured by the K-S distances, when key components are
removed. When the data representation component is omitted
from the framework (using the original data structure instead),
there is a noticeable increase in the K-S distances across all
metrics. Similarly, removing the condition from the framework
leads to a moderate increase in the K-S distances. Furthermore,
omitting the Wasserstein Gradient Penalty (WGAN-GP) results
in a discernible rise in the K-S distances, indicating a
significant contribution of this component to the framework's
performance. Similarly, when the Transformer component is
replaced with LSTM, there is a notable increase in the K-S
distances, highlighting the importance of Transformers in
capturing essential temporal dependencies. Moreover,
removing the CNN component and replacing it with LSTM
also leads to an increase in the K-S distances, indicating the
importance of CNNs in capturing spatial dependencies.
Overall, these results underscore the critical role played by
each component in enhancing the framework's performance in
generating synthetic data that closely resembles real market
observations.

TABLE V. ABLATION STUDY RESULTS (K-S DISTANCES)

 Mid-price Best ask Best bid

Real vs Our framework 0.23 0.32 0.11

Real vs framework w/o data

representation (using original
data structure)

0.51 0.63 0.65

Real vs framework w/o condition 0.36 0.47 0.35

Real vs framework w/o WGAN-

GP (vanilla GAN)
0.44 0.57 0.49

Real vs framework w/o
Transformer (LSTM instead)

0.56 0.59 0.61

Real vs framework w/o CNN

(LSTM instead)
0.42 0.51 0.43

VI. CONCLUSION AND FUTURE WORK

In this study, a generative adversarial framework is
introduced to produce real-looking synthetic Limit Order Book
(LOB) data for simulating stock market dynamics. The
proposed framework applies a specific data preprocessing
scheme and utilizes conditional Wasserstein GAN with a
gradient penalty function to effectively capture the underlying
structure of the data. The framework is assessed using both
quantitative and qualitative criteria, demonstrating through
experimental results that it outperforms existing benchmarks in
simulating realistic market conditions. The synthetic data
generated by the framework holds promise for various
downstream tasks such as forecasting and calibrating trading
strategies. The contributions of this research are two fold:
aiding in the development of more realistic simulation tools
and providing traders with the ability to simulate diverse
market scenarios, thereby enhancing financial risk management
practices. For future research directions, exploring alternative
architectures for the generative framework and incorporating
realistic trading strategies to further assess the practical
applicability of the proposed solutions is recommended.
Additionally, investigating advanced techniques for
hyperparameter tuning to ensure the attainment of globally
optimal solutions can enhance the overall quality of the
evaluated frameworks.

REFERENCES

[1] R. Singh and S. Srivastava, “Stock prediction using deep learning,”
Multimed Tools Appl, vol. 76, no. 18, pp. 18569–18584, Sep. 2017, doi:
10.1007/s11042-016-4159-7.

[2] M. Nabipour, P. Nayyeri, H. Jabani, A. Mosavi, E. Salwana, and S. S.,
“Deep Learning for Stock Market Prediction,” Entropy, vol. 22, no. 8,
Art. no. 8, Aug. 2020, doi: 10.3390/e22080840.

[3] H. M, G. E.a., V. K. Menon, and S. K.p., “NSE Stock Market Prediction
Using Deep-Learning Models,” Procedia Computer Science, vol. 132,
pp. 1351–1362, Jan. 2018, doi: 10.1016/j.procs.2018.05.050.

[4] W. Long, Z. Lu, and L. Cui, “Deep learning-based feature engineering
for stock price movement prediction,” Knowledge-Based Systems, vol.
164, pp. 163–173, Jan. 2019, doi: 10.1016/j.knosys.2018.10.034.

[5] A. Madhavan, “Market microstructure: A survey,” Journal of Financial
Markets, vol. 3, no. 3, pp. 205–258, Aug. 2000, doi: 10.1016/S1386-
4181(00)00007-0.

[6] I. Goodfellow et al., “Generative adversarial networks,” Commun.
ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020, doi: 10.1145/3422622.

[7] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of
GANs for Improved Quality, Stability, and Variation.” arXiv, Feb. 26,
2018. doi: 10.48550/arXiv.1710.10196.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

53 | P a g e

www.ijacsa.thesai.org

[8] A. Brock, J. Donahue, and K. Simonyan, “Large Scale GAN Training
for High Fidelity Natural Image Synthesis.” arXiv, Feb. 25, 2019. doi:
10.48550/arXiv.1809.11096.

[9] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A
Neural Image Caption Generator,” presented at the Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 3156–3164.

[10] A. van den Oord et al., “WaveNet: A Generative Model for Raw
Audio.” arXiv, Sep. 19, 2016. doi: 10.48550/arXiv.1609.03499.

[11] K. Zhang, G. Zhong, J. Dong, S. Wang, and Y. Wang, “Stock Market
Prediction Based on Generative Adversarial Network,” Procedia
Computer Science, vol. 147, pp. 400–406, 2019, doi:
10.1016/j.procs.2019.01.256.

[12] A. Koshiyama, N. Firoozye, and P. Treleaven, “Generative Adversarial
Networks for Financial Trading Strategies Fine-Tuning and
Combination,” arXiv:1901.01751 [cs, q-fin, stat], Jan. 2019.

[13] X. Zhou, Z. Pan, G. Hu, S. Tang, and C. Zhao, “Stock Market Prediction
on High-Frequency Data Using Generative Adversarial Nets,”
Mathematical Problems in Engineering, vol. 2018, pp. 1–11, 2018, doi:
10.1155/2018/4907423.

[14] G. Mariani et al., “PAGAN: Portfolio Analysis with Generative
Adversarial Networks.” arXiv, Sep. 19, 2019. doi:
10.48550/arXiv.1909.10578.

[15] J. Engelmann and S. Lessmann, “Conditional Wasserstein GAN-based
oversampling of tabular data for imbalanced learning,” Expert Systems
with Applications, vol. 174, p. 114582, Jul. 2021, doi:
10.1016/j.eswa.2021.114582.

[16] M. Diqi, M. E. Hiswati, and A. S. Nur, “StockGAN: robust stock price
prediction using GAN algorithm,” Int. j. inf. tecnol., vol. 14, no. 5, pp.
2309–2315, Aug. 2022, doi: 10.1007/s41870-022-00929-6.

[17] S. Takahashi, Y. Chen, and K. Tanaka-Ishii, “Modeling financial time-
series with generative adversarial networks,” Physica A: Statistical
Mechanics and its Applications, vol. 527, p. 121261, Aug. 2019, doi:
10.1016/j.physa.2019.121261.

[18] A. Coletta et al., “Towards realistic market simulations: a generative
adversarial networks approach,” in Proceedings of the Second ACM
International Conference on AI in Finance, in ICAIF ’21. New York,
NY, USA: Association for Computing Machinery, Nov. 2021, pp. 1–9.
doi: 10.1145/3490354.3494411.

[19] J. Li, X. Wang, Y. Lin, A. Sinha, and M. Wellman, “Generating
Realistic Stock Market Order Streams,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 01, Art. no. 01, Apr.
2020, doi: 10.1609/aaai.v34i01.5415.

[20] C.-H. Kuo, C.-T. Chen, S.-J. Lin, and S.-H. Huang, “Improving
Generalization in Reinforcement Learning–Based Trading by Using a
Generative Adversarial Market Model,” IEEE Access, vol. 9, pp.
50738–50754, 2021, doi: 10.1109/ACCESS.2021.3068269.

[21] D. Byrd, M. Hybinette, and T. H. Balch, “ABIDES: Towards High-
Fidelity Market Simulation for AI Research.” arXiv, Apr. 26, 2019. doi:
10.48550/arXiv.1904.12066.

[22] S. Vyetrenko and S. Xu, “Risk-Sensitive Compact Decision Trees for
Autonomous Execution in Presence of Simulated Market Response.”
arXiv, Jan. 06, 2021. doi: 10.48550/arXiv.1906.02312.

[23] V. Storchan, S. Vyetrenko, and T. Balch, “Learning who is in the market
from time series: market participant discovery through adversarial
calibration of multi-agent simulators.” arXiv, Aug. 02, 2021. doi:
10.48550/arXiv.2108.00664.

[24] J. Lussange, I. Lazarevich, S. Bourgeois-Gironde, S. Palminteri, and B.
Gutkin, “Modelling Stock Markets by Multi-agent Reinforcement
Learning,” Comput Econ, vol. 57, no. 1, pp. 113–147, Jan. 2021, doi:
10.1007/s10614-020-10038-w.

[25] A. E. Biondo, “Learning to forecast, risk aversion, and microstructural
aspects of financial stability,” Economics, vol. 12, no. 1, Dec. 2018, doi:
10.5018/economics-ejournal.ja.2018-20.

[26] Y.-S. Lim and D. Gorse, “Intra-Day Price Simulation with Generative
Adversarial Modelling of the Order Flow,” in 2021 20th IEEE
International Conference on Machine Learning and Applications
(ICMLA), Dec. 2021, pp. 397–402. doi:
10.1109/ICMLA52953.2021.00068.

[27] M. Karpe, J. Fang, Z. Ma, and C. Wang, “Multi-agent reinforcement
learning in a realistic limit order book market simulation,” in
Proceedings of the First ACM International Conference on AI in
Finance, in ICAIF ’20. New York, NY, USA: Association for
Computing Machinery, Oct. 2021, pp. 1–7. doi:
10.1145/3383455.3422570.

[28] Y. Naritomi and T. Adachi, “Data Augmentation of High Frequency
Financial Data Using Generative Adversarial Network,” in 2020
IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology (WI-IAT), Dec. 2020, pp. 641–648.
doi: 10.1109/WIIAT50758.2020.00097.

[29] T. Salimans et al., “Improved Techniques for Training GANs,” in
Advances in Neural Information Processing Systems, D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., Curran
Associates, Inc., 2016.

[30] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative
Adversarial Networks,” in Proceedings of the 34th International
Conference on Machine Learning, PMLR, Jul. 2017, pp. 214–223.

[31] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved Training of Wasserstein GANs,” in Advances in Neural
Information Processing Systems, Curran Associates, Inc., 2017.

[32] Q. Jin, R. Lin, and F. Yang, “E-WACGAN: Enhanced Generative Model
of Signaling Data Based on WGAN-GP and ACGAN,” IEEE Systems
Journal, vol. 14, no. 3, pp. 3289–3300, Sep. 2020, doi:
10.1109/JSYST.2019.2935457.

[33] K. Yonekura, N. Miyamoto, and K. Suzuki, “Inverse airfoil design
method for generating varieties of smooth airfoils using conditional
WGAN-gp,” Struct Multidisc Optim, vol. 65, no. 6, p. 173, Jun. 2022,
doi: 10.1007/s00158-022-03253-6.

[34] M. Hu, M. He, W. Su, and A. Chehri, “A TextCNN and WGAN-gp
based deep learning frame for unpaired text style transfer in multimedia
services,” Multimedia Systems, vol. 27, no. 4, pp. 723–732, Aug. 2021,
doi: 10.1007/s00530-020-00714-0.

[35] S. Vyetrenko et al., “Get real: realism metrics for robust limit order book
market simulations,” in Proceedings of the First ACM International
Conference on AI in Finance, in ICAIF ’20. New York, NY, USA:
Association for Computing Machinery, Oct. 2020, pp. 1–8. doi:
10.1145/3383455.3422561.

[36] Y. Wu, M. Mahfouz, D. Magazzeni, and M. Veloso, “Towards Robust
Representation of Limit Orders Books for Deep Learning Models.”
arXiv, Oct. 10, 2021. doi: 10.48550/arXiv.2110.05479.

[37] A. Ntakaris, M. Magris, J. Kanniainen, M. Gabbouj, and A. Iosifidis,
“Benchmark dataset for mid-price forecasting of limit order book data
with machine learning methods,” Journal of Forecasting, vol. 37, no. 8,
pp. 852–866, 2018, doi: 10.1002/for.2543.

[38] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural
Information Processing Systems, Curran Associates, Inc., 2017.

[39] J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, and Y. Bengio, “A
Recurrent Latent Variable Model for Sequential Data.” arXiv, Apr. 06,
2016. doi: 10.48550/arXiv.1506.02216.

[40] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets.”
arXiv, Nov. 06, 2014. doi: 10.48550/arXiv.1411.1784.

[41] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks.”
arXiv, Jan. 07, 2016. doi: 10.48550/arXiv.1511.06434.

