
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

507 | P a g e

www.ijacsa.thesai.org

Exploring the Landscape: Analysis of Model Results

on Various Convolutional Neural Network

Architectures for iRESPOND System

Freddie Prianes1, Kaela Marie Fortuno2, Rosel Onesa3, Brenda Benosa4, Thelma Palaoag5, Nancy Flores6

College of Computer Studies, Camarines Sur Polytechnic Colleges, Nabua, Camarines Sur, Philippines1, 2, 3, 4

College of Information Technology and Computer Science, University of the Cordilleras, Baguio City, Philippines5, 6

Abstract—In the era of rapid technological advancement, the

integration of cutting-edge technologies plays a pivotal role in

enhancing the efficiency and responsiveness of critical systems.

iRESPOND, a real-time Geospatial Information and Alert

System, stands at the forefront of such innovations, facilitating

timely and informed decision-making in dynamic environments.

As the demand for accurate and swift responses, the role of CNN

models in iRESPOND becomes significant. The study focuses on

seven prominent CNN architectures, namely EfficientNet (B0,

B7, V2B0, and V2L), InceptionV3, ResNet50, and VGG19 and

with the integration of different optimizers and learning rates.

The methodology employed a strategic implementation of looping

during the training phase. This iterative approach is designed to

systematically re-train the CNN models, emphasizing identifying

the most suitable architecture among the seven considered

variants. The primary objective is to discern the optimal

architecture and fine-tune critical parameters, explicitly

targeting the optimizer and learning rate values. The differential

impact of each model on the system's ability is to discern patterns

and anomalies in the image datasets. ResNet50 exhibited robust

performance showcasing suitability for real-time processing in

dynamic environments with a better accuracy result of 95.02%.

However, the EfficientNetV2B0 model, characterized by its

advancements in network scaling, presented promising results

with a lower loss of 0.187. Generally, the findings not only

contribute valuable insights into the optimal selection of

architectures for iRESPOND but also highlight the importance of

fine-tuning hyperparameters through an iterative training

approach, which paves the way for the continued enhancement of

iRESPOND as an adaptive system.

Keywords—Artificial intelligence; image classification;

emergency response; model training; optimizers; learning rate

I. INTRODUCTION

In the contemporary landscape of rapid technological
progress, integrating state-of-the-art technologies has become
intrinsic to augmenting the efficiency and responsiveness of
critical systems [1]. Within this realm of innovations,
iRESPOND stands out as a real-time Geospatial Information
and Alert System, assuming a pioneering role in technology to
facilitate timely and informed decision-making in dynamic and
unpredictable environments. The escalating need for precision
and rapidity in addressing geospatial challenges accentuates the
crucial role played by Convolutional Neural Network (CNN)
models within the iRESPOND system.

As a complex and dynamic system, iRESPOND relies on
advanced computational models to process and analyze
geospatial data efficiently. CNNs, a specialized class of deep
neural networks designed for image analysis, emerge as pivotal
components that significantly enhance iRESPOND's capability
to discern intricate patterns and anomalies within vast image
datasets [2]—recognizing the significance of these EfficientNet
(B0, B7, V2B0, and V2L, Google Inception CNN 3rd Edition
(InceptionV3), Residual Network – 50 Layers Deep
(ResNet50), and Visual Geometry Group – 19 Convolutional
Layers (VGG19).

EfficientNet is a revolutionized model scaling that proposes
a compound scaling method that balances depth, width, and
resolution. EfficientNetB0 represents the baseline model, while
EfficientNetB7 is a larger variant [3]. These models achieve
state-of-the-art performance with fewer parameters, making
them efficient and scalable for various applications [4]. The
compound scaling ensures the models are optimized across
multiple dimensions, providing a favorable trade-off between
accuracy and computational efficiency [5].

Building upon the success of EfficientNet, EfficientNetV2
refines the original architecture. EfficientNetV2B0 and
EfficientNetV2L are variants designed for improved
performance. The advancements focus on improved training
stability and robustness [6]. EfficientNetV2 introduces novel
architectural choices, such as a new stem and a more efficient
inverted bottleneck structure, contributing to enhanced
generalization and efficiency [7].

InceptionV3 is part of the Inception family of CNN
architectures. Notable for its inception modules, which
incorporate multiple filter sizes within the same layer,
InceptionV3 captures hierarchical features at different scales
[8]. The inception architecture aims to balance computational
efficiency and representation capacity, making it suitable for
various computer vision tasks [9].

ResNet introduced the concept of residual learning,
addressing the vanishing gradient problem in deep neural
networks [10]. ResNet50, a variant with 50 layers, has become
a benchmark architecture known for its deep, skip-connection
design, allowing for the training of profound networks [11].
The skip connections facilitate the flow of gradients during
backpropagation, enabling the successful training of deep
networks without degradation in performance [12].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

508 | P a g e

www.ijacsa.thesai.org

The VGG architecture is characterized by simplicity and
uniformity [13]. VGG19, an extended version with 19 layers,
features convolutional layers with small 3x3 filters and max-
pooling layers [14]. While computationally intensive, VGG
architectures are known for their excellent performance in
image classification tasks, demonstrating the importance of
depth in CNNs [15].

The scope of exploration of this study extends not only to
the CNN, as mentioned above architecture, but it also
encompasses various optimizers, i.e., Adaptive Moment
Estimation (Adam) and Root Mean Squared Propagation
(RMSProp) and learning rates, with the overarching goal of
identifying the most effective combination to optimize the
performance of iRESPOND.

Adam combines the advantages of adaptive learning rate
methods and momentum-based optimization [16]. It maintains
two moving average estimators: the first moment (mean) of the
gradients (similar to momentum) and the second moment
(uncentered variance) of the gradients. These estimates are then
used to adjust the learning rates for each parameter adaptively
[17]. Adam computes individual adaptive learning rates for
each parameter, allowing for practical training across different
dimensions and reducing the need for manual tuning of the
learning rate hyperparameter [18]. This adaptability to different
gradients and learning rates makes Adam well-suited for
various tasks and architectures [19].

RMSprop addresses some limitations of traditional gradient
descent algorithms, particularly the sensitivity of learning rates
to the scale of gradients in different dimensions of training
[20]. RMSprop modifies the learning rate for each parameter
based on the average of recent squared gradients [21]. By
scaling the learning rates inversely proportional to the square
root of these averages, RMSprop effectively adapts the
learning rates for each parameter independently [22]. This
adaptive adjustment helps mitigate the exploding and vanishing
gradient problems, increasing stability and efficiency [23].

In general, these diverse arrays of architectures and
optimizers have significantly impacted the field of computer
vision and image analysis. Each brings unique characteristics,
design principles, and innovations to deep learning,
contributing to various applications, including image
recognition, object detection, and many others.

II. RELATED WORKS

The deliberate use of deep learning techniques exemplifies
a larger trend in disaster management wherein machine
learning approaches are becoming more popular due to its
ability to handle complex and dynamic datasets [24, 25].
Despite the potential for deep learning algorithms to enhance
accuracy, concerns persist regarding their resource-intensive
nature and inefficiency in real-time monitoring applications
[26]. Rathod et al. study highlights the efficacy of CNN-based
models in getting better accuracy for disaster image
classification, but it also shows how little foundation has been
laid for establishing a robust computerized system for disaster
response and recovery management [27].

According to Shah et al., traditional disaster classification
methods lack in precision and speed which are essential for

quick decision-making and resource allocation during
emergencies. Challenges in data protection, latency transport,
and unified-controlled data storage make disaster classification
system implementation even more difficult [28]. Hence,
exploring the efficacy of transfer learning techniques becomes
imperative to address data scarcity issues and bolster model
performance in deep learning scenarios, particularly where
datasets are limited [29].

Moreover, the study of Asif et al. underscores the potential
of neural network-based image processing architectures in
enhancing crisis-related operations. However, the authors also
acknowledge the limitations in evaluating activities, contexts,
and related images during emergencies and disasters. Similarly,
Tang et al. point out the shortcomings of existing forest
classification algorithms based on graphics analysis, while
Kallas & Napolitano, and Daly & Thom works also highlight
the challenges in sub-classifying complex structural damage
types and recognizing fire and smoke in images respectively
[26, 30-32]. Subsequently, Mukhopadhyay et al. emphasizes
the necessity for future research in emergency prediction to
assess the accuracy of prediction models thoroughly,
necessitating additional modeling and empirical studies to
comprehend method advantages and drawbacks fully [33].

Navigating these challenges reveals promising outcomes in
developing emergency and disaster-related models. Sharma,
Jain, and Mishra stress the importance of testing CNNs across
multiple datasets to unveil their true potential and limitations.
Although they observed superior performance by GoogLeNet
and ResNet50 compared to AlexNet in object recognition
precision within images, significant performance variations
persist across different object categories [34]. In line with these
results, Zainorzoli et al., and Sushma & Lakshmi affirm
ResNet50 as the highest accuracy achieved among tested
models. Comparative evaluations against popular CNN
architectures like AlexNet, GoogLeNet, VGG16, and VGG19
consistently position ResNet50 as a better choice, displaying
higher precision and reliability in object recognition across
diverse datasets and applications, particularly in emergency
incident image classification scenarios. [35, 36]

The collective body of related studies contributes diverse
approaches and applications to the disaster prediction and
response domain, spanning advanced machine learning models
to innovative technological solutions. However, addressing
complex challenges and bridging gaps in diverse image
datasets for various emergency and disaster classifications,
achieving higher prediction accuracy rates, and real-time
processing of incident reports in disaster response and
mitigation necessitate further research and collaborative
efforts. Thus, the contributions of these studies are important in
introducing a CNN model custom-made for the iRESPOND
system.

III. METHODS

Achieving optimal performance for image classification
using CNN models requires close attention to detail. A
systematic process was used in a specialized repository to
construct and optimize a CNN model. Robust experimentation
was initiated by first changing global variables essential for
training the model, such as seed, epochs, learning rates, and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

509 | P a g e

www.ijacsa.thesai.org

base model selection that has already been trained [37]. The
subsequent processes were carried out precisely to guarantee a
thorough comprehension of the model's behavior and
performance, from dataset preparation to model creation and
evaluation.

Fig. 1. Re-training process.

In analyzing the performance of the CNN models for image
classification, as shown in Fig. 1, a systematic approach was
undertaken within a dedicated repository of image datasets of
disasters and emergencies [38]. Next, global variables crucial
for model training were modified, encompassing parameters
such as the generic seed, number of epochs, learning rates,
choice of pre-trained base models including EfficientNetB0,
B7, V2B0, and V2L, InceptionV3, ResNet50, and VGG19,
together with the pre-processing methods and optimization
algorithms like Adam and RMSprop [39]. Subsequently, the
dataset was read and decoded into pairs, ensuring proper
preparation for training [40]. Random partitioning divided the
dataset into training, validation, and test sets, providing robust
model evaluation [41]. The CNN model was then constructed,
featuring specified hyperparameters and layers, including the
selected base model, global average pooling, dropout layers for
regularization, and softmax activation function for multi-label
classification tasks [42]. Performance metrics were plotted,
depicting training and validation accuracy and losses over
epochs, facilitating insights into model convergence and
potential overfitting [43]. Moreover, image samples were
visualized, presenting original images alongside the sample
prediction result [44]. Then, global variables were adjusted
based on observed results, allowing for further optimization
and exploration of model configurations and re-train the model

[45]. Finally, all results will be compiled to assess and evaluate
which architecture provides a better performance. This
structured approach enabled a comprehensive understanding of
the CNN model's behavior and performance, facilitating
iterative improvements toward enhanced accuracy and
interpretability in image classification tasks [46].

The process of creating and improving the CNN model for
image classification serves as an example of how machine
learning operations are iterative. By means of thorough testing,
visualization, and modification of global variables, valuable
insights were obtained, and advancements were achieved
throughout the entire process [47]. The method used in this
study promoted a better understanding of the complex
principles behind CNN-based image classification in addition
to aiding in the optimization of model performance. The study
serves as a monument to the commitment and creativity
propelling developments in computer vision and artificial
intelligence as the years' progress.

IV. RESULTS

A. Image Repository

The image repository covers a broad range of incidents,
from man-made accidents to natural disasters like floods and
earthquakes to different types of environmental and
infrastructure damage, which composed of 13,578 image
datasets. The diversity of the dataset is crucial because it will
be the basis for accurately capturing the complex and uncertain
character of an emergency report sent in the iRESPOND
system. There are a lot of images in each area in the collection,
so there is enough coverage and depiction of many situations
and settings. The models will be efficiently trained by the
availability of these data, which enables them to learn and
recognize complex patterns and features related to various
emergencies and disasters. It will be trained to perform
robustly over a wide range of emergency circumstances and
generalize effectively to new data by utilizing this diversified
dataset. This will increase the model's usefulness and efficacy
in real-world applications.

B. Modify the Global Variables

As shown in Fig. 2, there are various configurations and
parameters necessary for training the model for image
classification in the iRESPOND system. We define the classes
first, representing different categories of emergencies and
disasters, such as earthquakes, floods, urban fires,
infrastructure damage, etc. This categorization is needed for
organizing and labeling the dataset appropriately, ensuring that
the model can learn to distinguish between different types of
emergency scenarios.

Several global variables are defined, including the random
seed for reproducibility, the proportions for splitting the dataset
into training, validation, and test sets, and the dimensions of
the input images. These variables are for controlling the
training process and evaluating the model's performance
effectively. We specify the directories for accessing the source
dataset and storing the refactored data after pre-processing to
ensure proper data management and organization throughout
the training pipeline.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

510 | P a g e

www.ijacsa.thesai.org

Fig. 2. Global variables (Code Snippet).

Key components of the model are configured next;
including the choice of a base model pre-trained on ImageNet,
in this case, EfficientNet (B0, B7, V2B0, and V2L),
InceptionV3 ResNet50, and VGG19, along with the
corresponding pre-processing method. The choice of base
model and pre-processing technique significantly influences
the model's performance and ability to extract meaningful
features from input images.

Additionally, we define the optimizer used during zmodel
training, with options for RMSprop or Adam optimization
algorithms. The learning rate, an essential hyperparameter
affecting the convergence and stability of the training process,
is also specified.

C. Read and Decode

For this section, we initialized a function called
"prime_dataset()" designed to facilitate the reading and
decoding of the dataset. Based on Fig. 3, this function operates
iteratively through each class folder within the dataset, where
each folder corresponds to a distinct category of emergency or
disaster-related scenarios.

Within each class folder, the function iterates over the
images contained within, capturing both the image file name
and its associated class label. This is achieved by utilizing shell
commands, with the "ls" command listing all files within the
specified directory. The resulting list of file names is then
parsed using regular expressions to extract individual image
filenames.

Fig. 3. Reading and decoding (Code Snippet).

Throughout this process, each image file is associated with
its corresponding class label and added to a list named
"images", ensuring that the dataset is structured appropriately
for subsequent processing and model training. However, it's
worth noting that the exact method for reading and loading
images may vary depending on the specific dataset format and
requirements. Therefore, additional pre-processing steps, such
as image resizing or normalization, may be necessary to
prepare the data adequately for model training.

D. Partition the Dataset

The dataset is partitioned into training, validation, and test
sets with proportions of 70%, 20%, and 10%, respectively.
This partitioning ensures that the models are trained on a
sufficiently large portion of the data while also having separate
datasets for validation and final evaluation. In order to do so,
we created directories for each class within the training,
validation, and testing directories, ensuring proper organization
of the partitioned data. This organizational structure facilitates
subsequent data loading and model training processes.

As the code segment presented in Fig. 4, it iterates through
each class folder in the dataset, determining the number of files
present in each class using the "os.walk()" function. For each
class, a portion of the images is randomly selected based on the
specified split ratios (TRAIN_SPLIT and VALID_SPLIT).
Using the "random.sample()" function, files are randomly
sampled from the class folder, with the number of files
sampled proportional to the respective split ratio. These
sampled files are then moved to the corresponding directories
within the training and validation sets.

Fig. 4. Partitioning the dataset (Code Snippet).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

511 | P a g e

www.ijacsa.thesai.org

After moving files to the training and validation directories,
the remaining files within each class folder are moved to the
testing directory. This ensures that every image in the dataset is
accounted for and partitioned appropriately across the three
sets.

Moreover, the original source directory containing the
entire dataset is removed using "shutil.rmtree()", as the data
has been successfully partitioned and relocated to the
respective training, validation, and testing directories. This
cleanup step helps maintain a clean and organized directory

structure, reducing clutter and facilitating easier management
of the dataset during subsequent stages of the model
development process.

E. Build the CNN Model

The process of building the CNN model for image
classification is set to start by initializing the "build_model()"
function and setting
"ImageFile.LOAD_TRUNCATED_IMAGES" to "True",
ensuring that truncated images can be loaded without error
during training as presented in Fig. 5.

Fig. 5. Building the CNN model (Code Snippet).

The function prepares data batches for training, validation,
and testing using the "ImageDataGenerator" class from
TensorFlow's Keras API. Images are loaded from their
respective directories ("TRAIN_DIRECTORY",
"VALID_DIRECTORY", "TEST_DIRECTORY") and resized
to the specified target size ("IMAGE_SHAPE_2D").
Additionally, the images undergo pre-processing using the

"PREPROCESSING_METHOD" function to ensure
consistency and compatibility with the chosen base model.

The architecture of the CNN model is then constructed,
starting with the pre-trained base model with its top layers
removed. Following the base model, as shown in Table I, a
custom sequence of layers is added, including a global average

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

512 | P a g e

www.ijacsa.thesai.org

pooling layer, a dropout layer for regularization, and a dense
layer with softmax activation for multi-class classification.

The model is compiled with the specified optimizer, loss
function, and evaluation metrics. During model training, early
stopping is implemented, as a sample shown in Fig. 6, to
prevent overfitting, with training progress monitored using the
validation data.

F. Plotting the Model's Performance

Performance metrics such as training accuracy, validation
accuracy, training loss, and validation loss are plotted over
epochs to monitor the model's convergence and potential
overfitting as a result of building the CNN model from the
previous phase. Once training is complete, the model's
performance is evaluated using the test data, and metrics such
as accuracy and loss are printed to the console. As
"measure_performance" is set to "True", additional

visualizations and performance evaluations are conducted. This
includes plotting the model's accuracy and loss curves over
epochs, generating a confusion matrix to visualize the model's
performance across different classes, and a classification report
summarizing the model's performance metrics. See a sample
model accuracy, loss, confusion matrix, and classification
report using EfficientNetB0 with RMSprop Optimizer and 1%
Learning Rate in Fig. 7, 8, 9, and Table II, respectively.

G. Visualize Image Samples

After the trained model is returned and has provided a
comprehensive framework for building, training, and
evaluating CNN models for image classification, we have
invoked a sample image for visualization to see the certainty of
how the model correctly predicts. In this phase, we include
displaying the fed original image as well as the predicted label
of the sample image, as show in Fig. 10.

TABLE I. MODEL SUMMARY (SAMPLE)

Model: "sequential"

Layer (type) Output Shape Param #

efficientnetb0(Functional) (None, 7, 7, 1280) 4049571

layer(Layer) (None, 7, 7, 1280) 0

global_average_pooling2d (GlobalAveragePooling2D) (None, 1280) 0

dropout(Dropout) (None, 1280) 0

dense(Dense) (None, 12) 15372

Total params: 4064943 (15.51 MB)
Trainable params: 15372 (60.05 KB)

Non-trainable params: 4049571 (15.45 MB)

TABLE II. SAMPLE CLASSIFICATION RESULT

 precision recall f1-score support

accident_human_inflicted 0.94 0.67 0.78 24

earthquake 0.00 0.00 0.00 4

el_niño 0.83 0.95 0.89 21

flood 0.92 0.80 0.86 104

infrastructure_damage 0.86 0.94 0.90 143

landslide 0.67 0.78 0.72 46

no_damage_buildings_street 0.99 0.99 0.99 458

no_damage_human 0.80 1.00 0.89 12

no_damage_water_related 1.00 0.97 0.98 229

no_damage_wildlife_forest 0.99 1.00 0.99 228

urban_fire 0.81 0.67 0.73 43

wild_fire 0.82 0.89 0.85 53

accuracy 0.94 1365

macro avg 0.80 0.81 0.80 1365

weighted avg 0.94 0.94 0.94 1365

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

513 | P a g e

www.ijacsa.thesai.org

Fig. 6. Sample early stopping (EfficientNetB0, RMSprop Optimizer, and 1% Learning Rate.

Fig. 7. Sample accuracy graph.

Fig. 8. Sample loss graph.

Fig. 9. Sample confusion matrix.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

514 | P a g e

www.ijacsa.thesai.org

Fig. 10. Model Prediction Output Sample from EfficientNetB0 with

RMSprop Optimizer and 1% Learning Rate

H. Re-training

As the previous phase concludes and observations are made
regarding the model's performance, the global variables are

adjusted accordingly to explore different configurations and
optimize the model further. This adjustment process may
involve modifying parameters such as the optimizer and
learning rate to experiment with alternative optimization
strategies and fine-tune the model's performance. By allowing
for the re-training of the models with different optimizers and
learning rates, this phase enables us to conduct systematic
experimentation and exploration of various hyperparameter
configurations.

I. Evaluation

Based on the re-training of the CNN architectures with
Adam and RMSprop optimizers and different learning rates,
this section presents the culmination of the iterative process of
re-training CNN architectures with Adam and RMSprop
optimizers, along with various learning rates. This stage
involves compiling and analyzing the results obtained from the
re-trained models to compare their performance
comprehensively. The metrics include measures of accuracy
and loss, which collectively provide insights into the model's
classification performance across different classes. We have
also included prediction result on a sample image (same
sample image in Fig. 10) used across the re-training process.

TABLE III. SUMMARY OF RESULTS ON ACCURACY AND LOSS PER OPTIMIZERS AND LEARNING RATE

CNN Architecture
Learning

Rate (%)

Optimizers

Adam RMSprop

Accuracy (%) Loss Accuracy (%) Loss

EfficientNetB0

10 92.8937733 2.228926181793213 93.2600737 1.8809784650802612

1 93.9194143 0.267235666513443 93.9194143 0.267235666513443

0.1 94.3589747 0.1868174523115158 b 94.3589747 0.1868174523115158

EfficientNetB7

10 90.6959713 3.016308546066284 91.6483521 2.9703691005706787

1 91.501832 0.39473479986190796 91.2820518 0.41184505820274353

0.1 91.4285719 0.270229309797287 91.4285719 0.270229309797287

EfficientNetV2B0

10 92.8937733 2.0541882514953613 93.4065938 2.1451196670532227

1 94.1391945 0.3025626838207245 93.7728941 0.29636630415916443

0.1 93.9926744 0.1890583485364914 93.9926744 0.1890583485364914

EfficientNetV2L

10 89.4505501 1.9358875751495361 89.3040299 1.9205394983291626

1 90.402931 0.36925235390663147 90.402931 0.36925235390663147

0.1 90.6959713 0.2923825979232788 90.6959713 0.2923825979232788

InceptionV3

10 87.6923084 10.626327514648438 88.351649 9.081643104553223

1 89.1575098 1.0289123058319092 89.5238101 1.1351069211959839

0.1 90.8424914 0.3351040780544281 90.8424914 0.3351040780544281

ResNet50

10 93.1135535 8.164137840270996 92.1611726 8.595427513122559

1 92.0879126 0.9594696164131165 92.3076928 0.8893887400627136

0.1 95.0219631 a 0.22417350113391876 93.8461542 0.21442490816116333

VGG19

10 88.2051289 12.45382308959961 90.5494511 7.596359729766846

1 89.37729 1.0163341760635376 91.4285719 0.7855556607246399

0.1 90.3296709 0.35073262453079224 90.3296709 0.35073262453079224

a. Highest model accuracy result

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

515 | P a g e

www.ijacsa.thesai.org

b. Lowest model loss result

TABLE IV. SUMMARY OF PREDICTION RESULT

CNN Architecture
Learning Rate

(%)

Optimizers

Adam RMSprop

EfficientNetB0

10 Infrastructure Damage c Landslide c

1 Flood Flood

0.1 Flood Flood

EfficientNetB7

10 Flood Flood

1 Flood Flood

0.1 Flood Flood

EfficientNetV2B0

10 Flood Landslide c

1 Landslide c Landslide c

0.1 Flood Flood

EfficientNetV2L

10 Earthquake c Infrastructure Damage c

1 Landslide c Landslide c

0.1 Infrastructure Damage c Infrastructure Damage c

InceptionV3

10 Flood Flood

1 Flood Flood

0.1 Flood Flood

ResNet50

10 Flood Flood

1 Flood Flood

0.1 Flood Flood

VGG19

10 Flood No Damage (Building / Street) c

1 Flood Flood

0.1 Flood Flood

c. Wrong Prediction

Table III highlights the performance of different
architectures trained with varying learning rates, focusing
specifically on accuracy and loss metrics. Among the
architectures evaluated, ResNet50 achieved the highest
accuracy of approximately 95% when trained with a learning
rate of 0.001. On the other hand, EfficientNetB0 exhibited the
lowest loss of 0.1868174523115158 when trained with the
same learning rate of 0.001.

The observation summarized in Table IV consistently
exhibits that some models have relatively higher error rates in
distinguishing between certain pairs of disaster scenarios, such
as flood and landslide, as well as infrastructure damage and
earthquake, which can be attributed to the shared
characteristics and visual similarities between these classes.
Moreover, the similarity between urban fire and wildfire
scenarios further exacerbates also the difficulty in
classification.

V. DISCUSSION

With the result on the performance of the architectures
based on Table III, it suggests that ResNet50, a well-
established and widely-used architecture, was particularly
effective in capturing and learning the intricate patterns and
features present in the image dataset which also been supported

in the study of Balavani et al. [48] And according to Wu et al.,
the choice of a lower learning rate of 0.001 likely facilitated
more stable and precise updates to the model's parameters
during training, leading to improved accuracy [49]. While
accuracy measures the proportion of correctly classified
instances, loss quantifies the difference between the predicted
and actual values, serving as a measure of how well the model
is performing overall [50]. As stated in the study of
Chandrasekhar & Peddakrishna, a lowest loss indicates that the
model's predictions are closer to the true values on average,
suggesting better overall performance [51]. In this case,
EfficientNetB0, known for its efficient architecture design and
superior performance, demonstrated effectiveness in
minimizing prediction errors and achieving optimal
performance in terms of loss.

Interestingly, the analysis also proves that the choice of
optimization algorithm did not significantly impact the model's
performance. Both Adam and RMSprop optimizers were used
in training the architectures, but neither seemed to contribute
significantly to the observed variations in accuracy or loss [52].
This finding implies that other factors, such as the architecture
itself and the choice of learning rate, played a more substantial
role in determining the model's performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

516 | P a g e

www.ijacsa.thesai.org

As a further observation, classes like flood and landslide
may share common visual elements, like water bodies, debris,
or altered landscapes, making it challenging for the models to
differentiate. Similarly, infrastructure damage and earthquake
scenarios may manifest similar visual cues, such as collapsed
buildings, rubble, or structural damage, leading to confusion
for the models in distinguishing between these classes.
Moreover, in urban fire and wildfire scenarios also exhibit
same visual characteristics on flames, smoke, or burned
landscapes, making it challenging also for the models to
distinguish between them accurately [30-32]. This observed
behavior intensifies the need of future work that aligns with the
inherent complexity and ambiguity present in disaster-related
imagery classification tasks.

VI. CONCLUSION

Re-training allows for the comparison of the performance
of multiple models trained with different configurations. By
systematically evaluating and comparing the results obtained
from these models, we have gained a deeper understanding of
the factors influencing model performance and make informed
decisions regarding model selection and strategies. The re-
training phase made a continuous refinement and optimization
of the models for image classification tasks. Through iterative
experimentation and adjustment of global variables, we
explored a wide range of configurations, identified optimal
settings, and ultimately enhanced the effectiveness and
robustness of the models that can be deployed in the
iRESPOND system.

Moreover, through this re-training phase, we were able to
identify that among the tested architectures, ResNet50 and
EfficientNetB0 emerged as the top performers, exhibiting the
highest accuracy of 95.95% and lowest loss result of 0.187
respectively, when trained with a learning rate of 0.1%. This
finding underscores the efficacy of these architectures in
effectively capturing and learning the complex features present
in the datasets, thereby facilitating accurate classification
within the iRESPOND system. Also, the analysis suggests that
the choice of optimization algorithm, whether Adam or
RMSprop, did not exert a significant impact on the
performance of the models in this context. Despite variations in
optimization techniques, the observed performance metrics
remained consistent across both algorithms. This finding
indicates that factor other than the choice of optimizer, such as
the architecture itself and the learning rate, played a more
influential role in determining model performance and
effectiveness.

In addition, the observed higher error rates in distinguishing
between certain pairs of disaster scenarios are logical and
expected, given the inherent visual similarities and shared
characteristics between these classes. Addressing these
challenges requires not only fine-tuning hyperparameters but
also exploring advanced techniques such as incorporating
contextual information, utilizing ensemble learning
approaches, or leveraging domain-specific knowledge to
enhance model performance and robustness in image
classification.

ACKNOWLEDGMENT

The authors would like to express their appreciation to
Hon. Fernando V. Gonzales – City Mayor of Ligao, and Mr.
Rossauro C. Perillo – Dept. Head I of Local DRRMC for
allowing the authors to conduct the study in the local
government unit and providing pertinent data for this research.

REFERENCES

[1] Alam, and A. Mohanty, “Educational technology: Exploring the
convergence of technology and pedagogy through mobility, interactivity,
AI, and learning tools,” Cogent Engineering, vol. 10, issue 2, November
2023, doi: 10.1080/23311916.2023.2283282.

[2] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional
neural networks: an overview and application in radiology,” Insights
into Imaging Springer Verlag, vol. 9, issue 4, pp. 611–629, June 2018,
doi: 10.1007/s13244-018-0639-9.

[3] M. Tan, and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” International Conference on Machine
Learning, PMLR, pp. 6105-6114, May 2019, doi:
10.48550/arXiv.1905.11946.

[4] S. F. Ahmed, M. S. B. Alam, M. Hassan, M. R. Rozbu, T. Ishtiak, N.
Rafa, et al., “Deep learning modelling techniques: current progress,
applications, advantages, and challenges,” Artificial Intelligence
Review, vol. 56, pp. 13521–13617, April 2023, doi: 10.1007/s10462-
023-10466-8.

[5] C. Lin, P. Yang, Q. Wang, Z. Qiu, W. Lv, and Z. Wang, “Efficient and
accurate compound scaling for convolutional neural networks,” Neural
Networks, vol. 167, pp. 787-797, October 2023, doi:
10.1016/j.neunet.2023.08.053.

[6] M. Tan, and Q. V. Le, “EfficientNetV2: Smaller Models and Faster
Training,” International Conference on Machine Learning, pp. 10096-
10106, July 2021, doi: 10.48550/arXiv.2104.00298.

[7] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of
image classification algorithms based on convolutional neural
networks,” Remote Sensing, vol. 13(22), November 2021, doi:
10.3390/rs13224712.

[8] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision,”
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818-2826, 2016, doi: 10.48550/arXiv.1512.00567.

[9] E. Barcic, P. Grd, I. Tomicic, E. Barči, and I. Tomiči, “Convolutional
Neural Networks for Face Recognition: A Systematic Literature
Review,” Research Square (preprint), July 2023, doi: 10.21203/rs.3.rs-
3145839/v1.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770-778, 2016, doi:
10.48550/arXiv.1512.03385.

[11] A. V. Ikechukwu, S. Murali, R. Deepu, and R. C. Shivamurthy,
“ResNet-50 vs VGG-19 vs training from scratch: A comparative
analysis of the segmentation and classification of Pneumonia from chest
X-ray images,” Global Transitions Proceedings, vol. 2(2), pp. 375–381,
November 2021, doi: 10.1016/j.gltp.2021.08.027.

[12] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. A. Dujaili, Y. Duan, O. Al-
Shamma, et al., “Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions,” Journal of Big Data, vol.
8(1), March 2021, doi: 10.1186/s40537-021-00444-8.

[13] K. Simonyan, and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv (preprint), 2014, doi:
10.48550/arXiv.1409.1556.

[14] S. Audu, and A. A. Aminu, “Wavelet Attention VGG19 and XGBOOST
for Classification of Skin Disease,” International Journal of Computer
Science and Information Technology Research, vol. 11(4), pp. 5–13,
October 2023, doi: 10.5281/zenodo.8416714.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

517 | P a g e

www.ijacsa.thesai.org

[15] M. Krichen, “Convolutional Neural Networks: A Survey,” Computers,
vol. 12(8), no. 151, June 2023, doi: 10.3390/computers12080151.

[16] D. P. Kingma, and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv (preprint), 2014, doi: 10.48550/arXiv.1412.6980.

[17] A. Barodi, A. Bajit, M. Benbrahim, and A. Tamtaoui, “Improving the
transfer learning performances in the classification of the automotive
traffic roads signs,” E3S Web of Conferences, vol. 234, no. 00064,
February 2021, doi: 10.1051/e3sconf/202123400064.

[18] M. Reyad, A. M. Sarhan, and M. Arafa, “A modified Adam algorithm
for deep neural network optimization,” Neural Computing and
Applications, vol. 35(23), pp. 17095–17112, April 2023, doi:
10.1007/s00521-023-08568-z.

[19] Z. Zhang, “Improved Adam Optimizer for Deep Neural
Networks,” 2018 IEEE/ACM 26th International Symposium on Quality
of Service (IWQoS), Banff, AB, Canada, 2018, pp. 1-2, 2018, doi:
10.1109/IWQoS.2018.8624183.

[20] T. Tieleman, G. Hinton, “Lecture 6.5-rmsprop: Divide the Gradient by a
Running Average of Its Recent Magnitude," COURSERA: Neural
Networks for Machine Learning, vol. 4(2), 26-31, 2012.

[21] R. Elshamy, R., O. A. Elnasr, M. Elhoseny, and S. Elmougy,
“Improving the efficiency of RMSProp optimizer by utilizing Nestrove
in deep learning,” Scientific Reports, vol. 13, no. 8814, May 2023, doi:
10.1038/s41598-023-35663-x.

[22] D. Soydaner, “A Comparison of Optimization Algorithms for Deep
Learning,” International Journal of Pattern Recognition and Artificial
Intelligence, Deep Learning, vol. 34, no. 13 (2052013), 2020, doi:
10.1142/S0218001420520138.

[23] A. Ghatak, “Optimization,” Deep Learning with R, Springer, Singapore,
ISBN: 978-981-13-5849-4, April 2019, doi: 10.1007/978-981-13-5850-
0_5

[24] S. Ghaffarian, F. R. Taghikhah, and H. R. Maier, “Explainable Artificial
Intelligence in Disaster Risk Management: Achievements and
Prospective Futures,” International Journal of Disaster Risk Reduction,
vol. 98, no. 104123, November 2023, doi: 10.1016/j.ijdrr.2023.104123.

[25] S. Ghaffarian, N. Kerle, E. Pasolli, and J. J. Arsanjani, “Post-disaster
building database updating using automated deep learning: An
integration of pre-disaster OpenStreetMap and multi-temporal satellite
data,” Remote Sensing, vol. 11(20), no. 2427, October 2019, doi:
10.3390/rs11202427.

[26] Y. Tang, H. Feng, J. Chen, and Y. Chen, “ForestResNet: A Deep
Learning Algorithm for Forest Image Classification,” Journal of Physics,
vol. 2024(1), no. 012053, August 2024, doi: 10.1088/1742-
6596/2024/1/012053.

[27] A. Rathod, V. Pariawala, M. Surana, and K. Saxena, “Leveraging CNNs
and Ensemble Learning for Automated Disaster Image Classification,”
International Conference on Sustainable and Innovative Solutions for
Current Challenges in Engineering & Technology, vol. 1, November
2023, doi: 10.48550/arXiv.2311.13531.

[28] J. Shah, D. Patel, J. Shah, S. Shah, and V. Sawant, “Proposed
Methodology for Disaster Classification Using Computer Vision and
Federated Learning,” Research Square ver.1(preprint), July 2023, doi:
10.21203/rs.3.rs-3160125/v1.

[29] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, et al., “ Review of deep learning: concepts, CNN
architectures, challenges, applications, future directions,” Journal of
Big Data, vol. 8, no. 53, March 2021, doi: 10.1186/s40537-021-00444-8.

[30] A. Asif, S. Khatoon, M. Hasan, M. A. Alshamari, S. Abdou, K. M.
Elsayed, et al., “Automatic analysis of social media images to identify
disaster type and infer appropriate emergency response,” Journal of Big
Data, vol. 8, no. 53, June 2021, doi: 10.1186/s40537-021-00471-5.

[31] S. Daly, and J. A. Thom, “Mining and Classifying Image Posts on Social
Media to Analyse Fires,” ISCRAM 2016 Conference Proceedings - 13th
International Conference on Information Systems for Crisis Response
and Management, no. 1395, pp. 1-14, May 2016.

[32] J. Kallas, and R. Napolitano, “AUTOMATED LARGE-SCALE
DAMAGE DETECTION ON HISTORIC BUILDINGS IN POST-
DISASTER AREAS USING IMAGE SEGMENTATION,” The
International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, vol. XLVIII-M-2-2023, pp. 797-804, June
2023, doi: 10.5194/isprs-archives-XLVIII-M-2-2023-797-2023.

[33] A. Mukhopadhyay, G. Pettet, S. M. Vazirizade, D. Lu, A. Jaimes, S. El
Said, et al., “A Review of Incident Prediction, Resource Allocation, and
Dispatch Models for Emergency Management,” Accident Analysis &
Prevention, vol. 165, no. 106501, February 2022, doi:
10.1016/j.aap.2021.106501.

[34] N. Sharma, V. Jain, and A. Mishra, “An Analysis of Convolutional
Neural Networks For Image Classification,” Procedia Computer
Science, vol. 132, pp. 377-384, June 2018, doi:
10.1016/j.procs.2018.05.198.

[35] S. M. Zainorzuli, S. A. Che Abdullah, H. Z. Abidin and F. A. Ruslan,
“Comparison Study on Convolution Neural Network (CNN) Techniques
for Image Classification,” Journal of Electrical and Electronic Systems
Research, vol. 20, pp. 11-17, 2022, doi: 10.24191/jeesr.v20i1.002.

[36] L. Sushma, and K. P. Lakshmi, “An Analysis of Convolution Neural
Network for Image Classification using Different Models,” International
Journal of Engineering Research & Technology (IJERT), vol. 9(10),
October 2020, doi: 10.17577/IJERTV9IS100294.

[37] S. Tufail, H. Riggs, M. Tariq, and A. I. Sarwat, “Advancements and
Challenges in Machine Learning: A Comprehensive Review of Models,
Libraries, Applications, and Algorithms,” Electronics (Switzerland), vol.
12(8), April 2023, doi: 10.3390/electronics12081789.

[38] J. Li, G. Zhu, C. Hua, M. Feng, B. Bennamoun, P. Li, et al., “A
Systematic Collection of Medical Image Datasets for Deep Learning,”
ACM Computing Surveys, vol. 56(5), no. 116, pp. 1–51, November
2023, doi: 10.1145/3615862.

[39] T. I. Götz, S. Göb, S. Sawant, X. F. Erick, T. Wittenberg, C.
Schmidkonz, et al., “Number of necessary training examples for Neural
Networks with different number of trainable parameters,” Journal of
Pathology Informatics, vol. 13, no. 100114, July 2022, doi:
10.1016/j.jpi.2022.100114.

[40] P. Tarasiuk, and P. S. Szczepaniak, “Novel convolutional neural
networks for efficient classification of rotated and scaled images,”
Neural Computing and Applications, vol. 34(13), pp. 10519–10532,
December 2021, doi: 10.1007/s00521-021-06645-9.

[41] V. R. Joseph, and A. Vakayil, “SPlit: An Optimal Method for Data
Splitting,” Technometrics, vol. 64(2), pp. 166–176, June 2021, doi:
10.1080/00401706.2021.1921037.

[42] A. Zafar, M. Aamir, N. M. Nawi, A. Arshad, S. Riaz, A. Alruban, et al.,
“A Comparison of Pooling Methods for Convolutional Neural
Networks,” Applied Sciences (Switzerland), vol. 12(17), no. 8643,
August 2022, doi: 10.3390/app12178643.

[43] B. Dey, J. Ferdous, R. Ahmed, and J. Hossain, “Assessing deep
convolutional neural network models and their comparative performance
for automated medicinal plant identification from leaf images,” Heliyon,
vol. 10(1), no. E23655, December 2023, doi:
10.1016/j.heliyon.2023.e23655.

[44] J. Yang, and Y. Kwon, “Novel CNN-Based Approach for Reading
Urban Form Data in 2D Images: An Application for Predicting
Restaurant Location in Seoul, Korea,” ISPRS International Journal of
Geo-Information, vol. 12(9), September 2023, doi:
10.3390/ijgi12090373.

[45] U. M. Aseguinolaza, I. F. Iriondo, I. R. Moreno, N. Aginako, and B.
Sierra, “Convolutional neural network-based classification and
monitoring models for lung cancer detection: 3D perspective approach,”
Heliyon, vol. 9(11), no. E21203, October 2023, doi:
10.1016/j.heliyon.2023.e21203.

[46] S. Yeşilmen, and B. Tatar, “Efficiency of convolutional neural networks
(CNN) based image classification for monitoring construction related
activities: A case study on aggregate mining for concrete production,”
Case Studies in Construction Materials vol. 17, no. e01372, December
2022, doi: 10.1016/j.cscm.2022.e01372.

[47] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications
and Research Directions,” SN Computer Science, Springer, vol. 2(3), no.
160, March 2021, doi: 10.1007/s42979-021-00592-x.

[48] K. Balavani, D. Sriram, M. B. Shankar, and D. S. Charan, "An
Optimized Plant Disease Classification System Based on Resnet-50
Architecture and Transfer Learning," 2023 4th International Conference

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

518 | P a g e

www.ijacsa.thesai.org

for Emerging Technology (INCET), Belgaum, India, pp. 1-5, July 2023,
doi: 10.1109/INCET57972.2023.10170368.

[49] T. Wu, P. Zeng, and C. Song, "An optimization Strategy for Deep
Neural Networks Training," 2022 International Conference on Image
Processing, Computer Vision and Machine Learning (ICICML), Xi’an,
China, January 2013, pp. 596-603, doi:
10.1109/ICICML57342.2022.10009665.

[50] H. Kotta, K. Pardasani, M. Pandya,and R. Ghosh, "Optimization of Loss
Functions for Predictive Soil Mapping," Advanced Machine Learning

Technologies and Applications: Proceedings of AMLTA 2020, Springer
Singapore, vol. 1141, pp. 95-104, doi: 10.1007/978-981-15-3383-9_9.

[51] N. Chandrasekhar, and S. Peddakrishna, "Enhancing Heart Disease
Prediction Accuracy through Machine Learning Techniques and
Optimization," Processes, vol. 11(4), no. 1210, April 2023, doi:
10.3390/pr11041210

[52] H. Naganuma, K. Ahuja, S. Takagi, T. Motokawa, R. Yokota, K.
Ishikawa, et al., "Empirical study on optimizer selection for out-of-
distribution generalization," arXiv (preprint), November 2022, doi:
10.48550/arXiv.2211.08583.

