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Abstract—In the era of rapid technological advancement, the 

integration of cutting-edge technologies plays a pivotal role in 

enhancing the efficiency and responsiveness of critical systems. 

iRESPOND, a real-time Geospatial Information and Alert 

System, stands at the forefront of such innovations, facilitating 

timely and informed decision-making in dynamic environments. 

As the demand for accurate and swift responses, the role of CNN 

models in iRESPOND becomes significant. The study focuses on 

seven prominent CNN architectures, namely EfficientNet (B0, 

B7, V2B0, and V2L), InceptionV3, ResNet50, and VGG19 and 

with the integration of different optimizers and learning rates. 

The methodology employed a strategic implementation of looping 

during the training phase. This iterative approach is designed to 

systematically re-train the CNN models, emphasizing identifying 

the most suitable architecture among the seven considered 

variants. The primary objective is to discern the optimal 

architecture and fine-tune critical parameters, explicitly 

targeting the optimizer and learning rate values. The differential 

impact of each model on the system's ability is to discern patterns 

and anomalies in the image datasets. ResNet50 exhibited robust 

performance showcasing suitability for real-time processing in 

dynamic environments with a better accuracy result of 95.02%. 

However, the EfficientNetV2B0 model, characterized by its 

advancements in network scaling, presented promising results 

with a lower loss of 0.187. Generally, the findings not only 

contribute valuable insights into the optimal selection of 

architectures for iRESPOND but also highlight the importance of 

fine-tuning hyperparameters through an iterative training 

approach, which paves the way for the continued enhancement of 

iRESPOND as an adaptive system. 
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I. INTRODUCTION  

In the contemporary landscape of rapid technological 
progress, integrating state-of-the-art technologies has become 
intrinsic to augmenting the efficiency and responsiveness of 
critical systems [1]. Within this realm of innovations, 
iRESPOND stands out as a real-time Geospatial Information 
and Alert System, assuming a pioneering role in technology to 
facilitate timely and informed decision-making in dynamic and 
unpredictable environments. The escalating need for precision 
and rapidity in addressing geospatial challenges accentuates the 
crucial role played by Convolutional Neural Network (CNN) 
models within the iRESPOND system. 

As a complex and dynamic system, iRESPOND relies on 
advanced computational models to process and analyze 
geospatial data efficiently. CNNs, a specialized class of deep 
neural networks designed for image analysis, emerge as pivotal 
components that significantly enhance iRESPOND's capability 
to discern intricate patterns and anomalies within vast image 
datasets [2]—recognizing the significance of these EfficientNet 
(B0, B7, V2B0, and V2L, Google Inception CNN 3rd Edition 
(InceptionV3), Residual Network – 50 Layers Deep 
(ResNet50), and Visual Geometry Group – 19 Convolutional 
Layers (VGG19).  

EfficientNet is a revolutionized model scaling that proposes 
a compound scaling method that balances depth, width, and 
resolution. EfficientNetB0 represents the baseline model, while 
EfficientNetB7 is a larger variant [3]. These models achieve 
state-of-the-art performance with fewer parameters, making 
them efficient and scalable for various applications [4]. The 
compound scaling ensures the models are optimized across 
multiple dimensions, providing a favorable trade-off between 
accuracy and computational efficiency [5]. 

Building upon the success of EfficientNet, EfficientNetV2 
refines the original architecture. EfficientNetV2B0 and 
EfficientNetV2L are variants designed for improved 
performance. The advancements focus on improved training 
stability and robustness [6]. EfficientNetV2 introduces novel 
architectural choices, such as a new stem and a more efficient 
inverted bottleneck structure, contributing to enhanced 
generalization and efficiency [7]. 

InceptionV3 is part of the Inception family of CNN 
architectures. Notable for its inception modules, which 
incorporate multiple filter sizes within the same layer, 
InceptionV3 captures hierarchical features at different scales 
[8]. The inception architecture aims to balance computational 
efficiency and representation capacity, making it suitable for 
various computer vision tasks [9]. 

ResNet introduced the concept of residual learning, 
addressing the vanishing gradient problem in deep neural 
networks [10]. ResNet50, a variant with 50 layers, has become 
a benchmark architecture known for its deep, skip-connection 
design, allowing for the training of profound networks [11]. 
The skip connections facilitate the flow of gradients during 
backpropagation, enabling the successful training of deep 
networks without degradation in performance [12]. 
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The VGG architecture is characterized by simplicity and 
uniformity [13]. VGG19, an extended version with 19 layers, 
features convolutional layers with small 3x3 filters and max-
pooling layers [14]. While computationally intensive, VGG 
architectures are known for their excellent performance in 
image classification tasks, demonstrating the importance of 
depth in CNNs [15].  

The scope of exploration of this study extends not only to 
the CNN, as mentioned above architecture, but it also 
encompasses various optimizers, i.e., Adaptive Moment 
Estimation (Adam) and Root Mean Squared Propagation 
(RMSProp) and learning rates, with the overarching goal of 
identifying the most effective combination to optimize the 
performance of iRESPOND. 

Adam combines the advantages of adaptive learning rate 
methods and momentum-based optimization [16]. It maintains 
two moving average estimators: the first moment (mean) of the 
gradients (similar to momentum) and the second moment 
(uncentered variance) of the gradients. These estimates are then 
used to adjust the learning rates for each parameter adaptively 
[17]. Adam computes individual adaptive learning rates for 
each parameter, allowing for practical training across different 
dimensions and reducing the need for manual tuning of the 
learning rate hyperparameter [18]. This adaptability to different 
gradients and learning rates makes Adam well-suited for 
various tasks and architectures [19]. 

RMSprop addresses some limitations of traditional gradient 
descent algorithms, particularly the sensitivity of learning rates 
to the scale of gradients in different dimensions of training 
[20]. RMSprop modifies the learning rate for each parameter 
based on the average of recent squared gradients [21]. By 
scaling the learning rates inversely proportional to the square 
root of these averages, RMSprop effectively adapts the 
learning rates for each parameter independently [22]. This 
adaptive adjustment helps mitigate the exploding and vanishing 
gradient problems, increasing stability and efficiency [23]. 

In general, these diverse arrays of architectures and 
optimizers have significantly impacted the field of computer 
vision and image analysis. Each brings unique characteristics, 
design principles, and innovations to deep learning, 
contributing to various applications, including image 
recognition, object detection, and many others. 

II. RELATED WORKS 

The deliberate use of deep learning techniques exemplifies 
a larger trend in disaster management wherein machine 
learning approaches are becoming more popular due to its 
ability to handle complex and dynamic datasets [24, 25]. 
Despite the potential for deep learning algorithms to enhance 
accuracy, concerns persist regarding their resource-intensive 
nature and inefficiency in real-time monitoring applications 
[26]. Rathod et al. study highlights the efficacy of CNN-based 
models in getting better accuracy for disaster image 
classification, but it also shows how little foundation has been 
laid for establishing a robust computerized system for disaster 
response and recovery management [27]. 

According to Shah et al., traditional disaster classification 
methods lack in precision and speed which are essential for 

quick decision-making and resource allocation during 
emergencies. Challenges in data protection, latency transport, 
and unified-controlled data storage make disaster classification 
system implementation even more difficult [28]. Hence, 
exploring the efficacy of transfer learning techniques becomes 
imperative to address data scarcity issues and bolster model 
performance in deep learning scenarios, particularly where 
datasets are limited [29]. 

Moreover, the study of Asif et al. underscores the potential 
of neural network-based image processing architectures in 
enhancing crisis-related operations. However, the authors also 
acknowledge the limitations in evaluating activities, contexts, 
and related images during emergencies and disasters. Similarly, 
Tang et al. point out the shortcomings of existing forest 
classification algorithms based on graphics analysis, while 
Kallas & Napolitano, and Daly & Thom works also highlight 
the challenges in sub-classifying complex structural damage 
types and recognizing fire and smoke in images respectively 
[26, 30-32]. Subsequently, Mukhopadhyay et al. emphasizes 
the necessity for future research in emergency prediction to 
assess the accuracy of prediction models thoroughly, 
necessitating additional modeling and empirical studies to 
comprehend method advantages and drawbacks fully [33]. 

Navigating these challenges reveals promising outcomes in 
developing emergency and disaster-related models. Sharma, 
Jain, and Mishra stress the importance of testing CNNs across 
multiple datasets to unveil their true potential and limitations. 
Although they observed superior performance by GoogLeNet 
and ResNet50 compared to AlexNet in object recognition 
precision within images, significant performance variations 
persist across different object categories [34]. In line with these 
results, Zainorzoli et al., and Sushma & Lakshmi affirm 
ResNet50 as the highest accuracy achieved among tested 
models. Comparative evaluations against popular CNN 
architectures like AlexNet, GoogLeNet, VGG16, and VGG19 
consistently position ResNet50 as a better choice, displaying 
higher precision and reliability in object recognition across 
diverse datasets and applications, particularly in emergency 
incident image classification scenarios. [35, 36] 

The collective body of related studies contributes diverse 
approaches and applications to the disaster prediction and 
response domain, spanning advanced machine learning models 
to innovative technological solutions. However, addressing 
complex challenges and bridging gaps in diverse image 
datasets for various emergency and disaster classifications, 
achieving higher prediction accuracy rates, and real-time 
processing of incident reports in disaster response and 
mitigation necessitate further research and collaborative 
efforts. Thus, the contributions of these studies are important in 
introducing a CNN model custom-made for the iRESPOND 
system. 

III. METHODS 

Achieving optimal performance for image classification 
using CNN models requires close attention to detail. A 
systematic process was used in a specialized repository to 
construct and optimize a CNN model. Robust experimentation 
was initiated by first changing global variables essential for 
training the model, such as seed, epochs, learning rates, and 
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base model selection that has already been trained [37]. The 
subsequent processes were carried out precisely to guarantee a 
thorough comprehension of the model's behavior and 
performance, from dataset preparation to model creation and 
evaluation. 

 
Fig. 1. Re-training process. 

In analyzing the performance of the CNN models for image 
classification, as shown in Fig. 1, a systematic approach was 
undertaken within a dedicated repository of image datasets of 
disasters and emergencies [38]. Next, global variables crucial 
for model training were modified, encompassing parameters 
such as the generic seed, number of epochs, learning rates, 
choice of pre-trained base models including EfficientNetB0, 
B7, V2B0, and V2L, InceptionV3, ResNet50, and VGG19, 
together with the pre-processing methods and optimization 
algorithms like Adam and RMSprop [39]. Subsequently, the 
dataset was read and decoded into pairs, ensuring proper 
preparation for training [40]. Random partitioning divided the 
dataset into training, validation, and test sets, providing robust 
model evaluation [41]. The CNN model was then constructed, 
featuring specified hyperparameters and layers, including the 
selected base model, global average pooling, dropout layers for 
regularization, and softmax activation function for multi-label 
classification tasks [42]. Performance metrics were plotted, 
depicting training and validation accuracy and losses over 
epochs, facilitating insights into model convergence and 
potential overfitting [43]. Moreover, image samples were 
visualized, presenting original images alongside the sample 
prediction result [44]. Then, global variables were adjusted 
based on observed results, allowing for further optimization 
and exploration of model configurations and re-train the model 

[45]. Finally, all results will be compiled to assess and evaluate 
which architecture provides a better performance. This 
structured approach enabled a comprehensive understanding of 
the CNN model's behavior and performance, facilitating 
iterative improvements toward enhanced accuracy and 
interpretability in image classification tasks [46]. 

The process of creating and improving the CNN model for 
image classification serves as an example of how machine 
learning operations are iterative. By means of thorough testing, 
visualization, and modification of global variables, valuable 
insights were obtained, and advancements were achieved 
throughout the entire process [47]. The method used in this 
study promoted a better understanding of the complex 
principles behind CNN-based image classification in addition 
to aiding in the optimization of model performance. The study 
serves as a monument to the commitment and creativity 
propelling developments in computer vision and artificial 
intelligence as the years' progress. 

IV. RESULTS 

A. Image Repository 

The image repository covers a broad range of incidents, 
from man-made accidents to natural disasters like floods and 
earthquakes to different types of environmental and 
infrastructure damage, which composed of 13,578 image 
datasets. The diversity of the dataset is crucial because it will 
be the basis for accurately capturing the complex and uncertain 
character of an emergency report sent in the iRESPOND 
system. There are a lot of images in each area in the collection, 
so there is enough coverage and depiction of many situations 
and settings. The models will be efficiently trained by the 
availability of these data, which enables them to learn and 
recognize complex patterns and features related to various 
emergencies and disasters. It will be trained to perform 
robustly over a wide range of emergency circumstances and 
generalize effectively to new data by utilizing this diversified 
dataset. This will increase the model's usefulness and efficacy 
in real-world applications. 

B. Modify the Global Variables 

As shown in Fig. 2, there are various configurations and 
parameters necessary for training the model for image 
classification in the iRESPOND system. We define the classes 
first, representing different categories of emergencies and 
disasters, such as earthquakes, floods, urban fires, 
infrastructure damage, etc. This categorization is needed for 
organizing and labeling the dataset appropriately, ensuring that 
the model can learn to distinguish between different types of 
emergency scenarios. 

Several global variables are defined, including the random 
seed for reproducibility, the proportions for splitting the dataset 
into training, validation, and test sets, and the dimensions of 
the input images. These variables are for controlling the 
training process and evaluating the model's performance 
effectively. We specify the directories for accessing the source 
dataset and storing the refactored data after pre-processing to 
ensure proper data management and organization throughout 
the training pipeline. 
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Fig. 2. Global variables (Code Snippet). 

Key components of the model are configured next; 
including the choice of a base model pre-trained on ImageNet, 
in this case, EfficientNet (B0, B7, V2B0, and V2L), 
InceptionV3 ResNet50, and VGG19, along with the 
corresponding pre-processing method. The choice of base 
model and pre-processing technique significantly influences 
the model's performance and ability to extract meaningful 
features from input images. 

Additionally, we define the optimizer used during zmodel 
training, with options for RMSprop or Adam optimization 
algorithms. The learning rate, an essential hyperparameter 
affecting the convergence and stability of the training process, 
is also specified. 

C. Read and Decode 

For this section, we initialized a function called 
"prime_dataset()" designed to facilitate the reading and 
decoding of the dataset. Based on Fig. 3, this function operates 
iteratively through each class folder within the dataset, where 
each folder corresponds to a distinct category of emergency or 
disaster-related scenarios. 

Within each class folder, the function iterates over the 
images contained within, capturing both the image file name 
and its associated class label. This is achieved by utilizing shell 
commands, with the "ls" command listing all files within the 
specified directory. The resulting list of file names is then 
parsed using regular expressions to extract individual image 
filenames. 

 

Fig. 3. Reading and decoding (Code Snippet). 

Throughout this process, each image file is associated with 
its corresponding class label and added to a list named 
"images", ensuring that the dataset is structured appropriately 
for subsequent processing and model training. However, it's 
worth noting that the exact method for reading and loading 
images may vary depending on the specific dataset format and 
requirements. Therefore, additional pre-processing steps, such 
as image resizing or normalization, may be necessary to 
prepare the data adequately for model training. 

D. Partition the Dataset 

The dataset is partitioned into training, validation, and test 
sets with proportions of 70%, 20%, and 10%, respectively. 
This partitioning ensures that the models are trained on a 
sufficiently large portion of the data while also having separate 
datasets for validation and final evaluation. In order to do so, 
we created directories for each class within the training, 
validation, and testing directories, ensuring proper organization 
of the partitioned data. This organizational structure facilitates 
subsequent data loading and model training processes. 

As the code segment presented in Fig. 4, it iterates through 
each class folder in the dataset, determining the number of files 
present in each class using the "os.walk()" function. For each 
class, a portion of the images is randomly selected based on the 
specified split ratios (TRAIN_SPLIT and VALID_SPLIT). 
Using the "random.sample()" function, files are randomly 
sampled from the class folder, with the number of files 
sampled proportional to the respective split ratio. These 
sampled files are then moved to the corresponding directories 
within the training and validation sets. 

 
Fig. 4. Partitioning the dataset (Code Snippet). 
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After moving files to the training and validation directories, 
the remaining files within each class folder are moved to the 
testing directory. This ensures that every image in the dataset is 
accounted for and partitioned appropriately across the three 
sets. 

Moreover, the original source directory containing the 
entire dataset is removed using "shutil.rmtree()", as the data 
has been successfully partitioned and relocated to the 
respective training, validation, and testing directories. This 
cleanup step helps maintain a clean and organized directory 

structure, reducing clutter and facilitating easier management 
of the dataset during subsequent stages of the model 
development process. 

E. Build the CNN Model 

The process of building the CNN model for image 
classification is set to start by initializing the "build_model()" 
function and setting 
"ImageFile.LOAD_TRUNCATED_IMAGES" to "True", 
ensuring that truncated images can be loaded without error 
during training as presented in Fig. 5. 

 

Fig. 5. Building the CNN model (Code Snippet). 

The function prepares data batches for training, validation, 
and testing using the "ImageDataGenerator" class from 
TensorFlow's Keras API. Images are loaded from their 
respective directories ("TRAIN_DIRECTORY", 
"VALID_DIRECTORY", "TEST_DIRECTORY") and resized 
to the specified target size ("IMAGE_SHAPE_2D"). 
Additionally, the images undergo pre-processing using the 

"PREPROCESSING_METHOD" function to ensure 
consistency and compatibility with the chosen base model. 

The architecture of the CNN model is then constructed, 
starting with the pre-trained base model with its top layers 
removed. Following the base model, as shown in Table I, a 
custom sequence of layers is added, including a global average 
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pooling layer, a dropout layer for regularization, and a dense 
layer with softmax activation for multi-class classification. 

The model is compiled with the specified optimizer, loss 
function, and evaluation metrics. During model training, early 
stopping is implemented, as a sample shown in Fig. 6, to 
prevent overfitting, with training progress monitored using the 
validation data. 

F. Plotting the Model's Performance 

Performance metrics such as training accuracy, validation 
accuracy, training loss, and validation loss are plotted over 
epochs to monitor the model's convergence and potential 
overfitting as a result of building the CNN model from the 
previous phase. Once training is complete, the model's 
performance is evaluated using the test data, and metrics such 
as accuracy and loss are printed to the console. As 
"measure_performance" is set to "True", additional 

visualizations and performance evaluations are conducted. This 
includes plotting the model's accuracy and loss curves over 
epochs, generating a confusion matrix to visualize the model's 
performance across different classes, and a classification report 
summarizing the model's performance metrics. See a sample 
model accuracy, loss, confusion matrix, and classification 
report using EfficientNetB0 with RMSprop Optimizer and 1% 
Learning Rate in Fig. 7, 8, 9, and Table II, respectively. 

G. Visualize Image Samples 

After the trained model is returned and has provided a 
comprehensive framework for building, training, and 
evaluating CNN models for image classification, we have 
invoked a sample image for visualization to see the certainty of 
how the model correctly predicts. In this phase, we include 
displaying the fed original image as well as the predicted label 
of the sample image, as show in Fig. 10. 

TABLE I. MODEL SUMMARY (SAMPLE) 

Model: "sequential" 

Layer (type) Output Shape Param # 

efficientnetb0(Functional) (None, 7, 7, 1280) 4049571 

layer(Layer) (None, 7, 7, 1280) 0 

global_average_pooling2d (GlobalAveragePooling2D) (None, 1280) 0 

dropout(Dropout) (None, 1280) 0 

dense(Dense) (None, 12) 15372 

Total params: 4064943 (15.51 MB) 
Trainable params: 15372 (60.05 KB) 

Non-trainable params: 4049571 (15.45 MB) 
 

TABLE II. SAMPLE CLASSIFICATION RESULT 

 precision recall f1-score support 

accident_human_inflicted 0.94 0.67 0.78 24 

earthquake 0.00 0.00 0.00 4 

el_niño 0.83 0.95 0.89 21 

flood 0.92 0.80 0.86 104 

infrastructure_damage 0.86 0.94 0.90 143 

landslide 0.67 0.78 0.72 46 

no_damage_buildings_street 0.99 0.99 0.99 458 

no_damage_human 0.80 1.00 0.89 12 

no_damage_water_related 1.00 0.97 0.98 229 

no_damage_wildlife_forest 0.99 1.00 0.99 228 

urban_fire 0.81 0.67 0.73 43 

wild_fire 0.82 0.89 0.85 53 

accuracy   0.94 1365 

macro avg 0.80 0.81 0.80 1365 

weighted avg 0.94 0.94 0.94 1365 
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Fig. 6. Sample early stopping (EfficientNetB0, RMSprop Optimizer, and 1% Learning Rate. 

 
Fig. 7. Sample accuracy graph. 

 
Fig. 8. Sample loss graph. 

 
Fig. 9. Sample confusion matrix. 
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Fig. 10. Model Prediction Output Sample from EfficientNetB0 with 

RMSprop Optimizer and 1% Learning Rate 

H. Re-training 

As the previous phase concludes and observations are made 
regarding the model's performance, the global variables are 

adjusted accordingly to explore different configurations and 
optimize the model further. This adjustment process may 
involve modifying parameters such as the optimizer and 
learning rate to experiment with alternative optimization 
strategies and fine-tune the model's performance. By allowing 
for the re-training of the models with different optimizers and 
learning rates, this phase enables us to conduct systematic 
experimentation and exploration of various hyperparameter 
configurations. 

I. Evaluation 

Based on the re-training of the CNN architectures with 
Adam and RMSprop optimizers and different learning rates, 
this section presents the culmination of the iterative process of 
re-training CNN architectures with Adam and RMSprop 
optimizers, along with various learning rates. This stage 
involves compiling and analyzing the results obtained from the 
re-trained models to compare their performance 
comprehensively. The metrics include measures of accuracy 
and loss, which collectively provide insights into the model's 
classification performance across different classes. We have 
also included prediction result on a sample image (same 
sample image in Fig. 10) used across the re-training process. 

TABLE III. SUMMARY OF RESULTS ON ACCURACY AND LOSS PER OPTIMIZERS AND LEARNING RATE 

CNN Architecture 
Learning 

Rate (%) 

Optimizers 

Adam RMSprop 

Accuracy (%) Loss Accuracy (%) Loss 

EfficientNetB0 

10 92.8937733 2.228926181793213 93.2600737 1.8809784650802612 

1 93.9194143 0.267235666513443 93.9194143 0.267235666513443 

0.1 94.3589747 0.1868174523115158 b 94.3589747 0.1868174523115158 

EfficientNetB7 

10 90.6959713 3.016308546066284 91.6483521 2.9703691005706787 

1 91.501832 0.39473479986190796 91.2820518 0.41184505820274353 

0.1 91.4285719 0.270229309797287 91.4285719 0.270229309797287 

EfficientNetV2B0 

10 92.8937733 2.0541882514953613 93.4065938 2.1451196670532227 

1 94.1391945 0.3025626838207245 93.7728941 0.29636630415916443 

0.1 93.9926744 0.1890583485364914 93.9926744 0.1890583485364914 

EfficientNetV2L 

10 89.4505501 1.9358875751495361 89.3040299 1.9205394983291626 

1 90.402931 0.36925235390663147 90.402931 0.36925235390663147 

0.1 90.6959713 0.2923825979232788 90.6959713 0.2923825979232788 

InceptionV3 

10 87.6923084 10.626327514648438 88.351649 9.081643104553223 

1 89.1575098 1.0289123058319092 89.5238101 1.1351069211959839 

0.1 90.8424914 0.3351040780544281 90.8424914 0.3351040780544281 

ResNet50 

10 93.1135535 8.164137840270996 92.1611726 8.595427513122559 

1 92.0879126 0.9594696164131165 92.3076928 0.8893887400627136 

0.1 95.0219631 a 0.22417350113391876 93.8461542 0.21442490816116333 

VGG19 

10 88.2051289 12.45382308959961 90.5494511 7.596359729766846 

1 89.37729 1.0163341760635376 91.4285719 0.7855556607246399 

0.1 90.3296709 0.35073262453079224 90.3296709 0.35073262453079224 

a. Highest model accuracy result 
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b. Lowest model loss result 

TABLE IV. SUMMARY OF PREDICTION RESULT 

CNN Architecture 
Learning Rate 

(%) 

Optimizers 

Adam RMSprop 

EfficientNetB0 

10 Infrastructure Damage c Landslide c 

1 Flood Flood 

0.1 Flood Flood 

EfficientNetB7 

10 Flood Flood 

1 Flood Flood 

0.1 Flood Flood 

EfficientNetV2B0 

10 Flood Landslide c 

1 Landslide c Landslide c 

0.1 Flood Flood 

EfficientNetV2L 

10 Earthquake c Infrastructure Damage c 

1 Landslide c Landslide c 

0.1 Infrastructure Damage c Infrastructure Damage c 

InceptionV3 

10 Flood Flood 

1 Flood Flood 

0.1 Flood Flood 

ResNet50 

10 Flood Flood 

1 Flood Flood 

0.1 Flood Flood 

VGG19 

10 Flood No Damage (Building / Street) c 

1 Flood Flood 

0.1 Flood Flood 

c. Wrong Prediction 
 

Table III highlights the performance of different 
architectures trained with varying learning rates, focusing 
specifically on accuracy and loss metrics. Among the 
architectures evaluated, ResNet50 achieved the highest 
accuracy of approximately 95% when trained with a learning 
rate of 0.001. On the other hand, EfficientNetB0 exhibited the 
lowest loss of 0.1868174523115158 when trained with the 
same learning rate of 0.001. 

The observation summarized in Table IV consistently 
exhibits that some models have relatively higher error rates in 
distinguishing between certain pairs of disaster scenarios, such 
as flood and landslide, as well as infrastructure damage and 
earthquake, which can be attributed to the shared 
characteristics and visual similarities between these classes. 
Moreover, the similarity between urban fire and wildfire 
scenarios further exacerbates also the difficulty in 
classification. 

V. DISCUSSION 

With the result on the performance of the architectures 
based on Table III, it suggests that ResNet50, a well-
established and widely-used architecture, was particularly 
effective in capturing and learning the intricate patterns and 
features present in the image dataset which also been supported 

in the study of Balavani et al. [48] And according to Wu et al., 
the choice of a lower learning rate of 0.001 likely facilitated 
more stable and precise updates to the model's parameters 
during training, leading to improved accuracy [49]. While 
accuracy measures the proportion of correctly classified 
instances, loss quantifies the difference between the predicted 
and actual values, serving as a measure of how well the model 
is performing overall [50]. As stated in the study of 
Chandrasekhar & Peddakrishna, a lowest loss indicates that the 
model's predictions are closer to the true values on average, 
suggesting better overall performance [51]. In this case, 
EfficientNetB0, known for its efficient architecture design and 
superior performance, demonstrated effectiveness in 
minimizing prediction errors and achieving optimal 
performance in terms of loss. 

Interestingly, the analysis also proves that the choice of 
optimization algorithm did not significantly impact the model's 
performance. Both Adam and RMSprop optimizers were used 
in training the architectures, but neither seemed to contribute 
significantly to the observed variations in accuracy or loss [52]. 
This finding implies that other factors, such as the architecture 
itself and the choice of learning rate, played a more substantial 
role in determining the model's performance. 
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As a further observation, classes like flood and landslide 
may share common visual elements, like water bodies, debris, 
or altered landscapes, making it challenging for the models to 
differentiate. Similarly, infrastructure damage and earthquake 
scenarios may manifest similar visual cues, such as collapsed 
buildings, rubble, or structural damage, leading to confusion 
for the models in distinguishing between these classes. 
Moreover, in urban fire and wildfire scenarios also exhibit 
same visual characteristics on flames, smoke, or burned 
landscapes, making it challenging also for the models to 
distinguish between them accurately [30-32]. This observed 
behavior intensifies the need of future work that aligns with the 
inherent complexity and ambiguity present in disaster-related 
imagery classification tasks. 

VI. CONCLUSION 

Re-training allows for the comparison of the performance 
of multiple models trained with different configurations. By 
systematically evaluating and comparing the results obtained 
from these models, we have gained a deeper understanding of 
the factors influencing model performance and make informed 
decisions regarding model selection and strategies. The re-
training phase made a continuous refinement and optimization 
of the models for image classification tasks. Through iterative 
experimentation and adjustment of global variables, we 
explored a wide range of configurations, identified optimal 
settings, and ultimately enhanced the effectiveness and 
robustness of the models that can be deployed in the 
iRESPOND system. 

Moreover, through this re-training phase, we were able to 
identify that among the tested architectures, ResNet50 and 
EfficientNetB0 emerged as the top performers, exhibiting the 
highest accuracy of 95.95% and lowest loss result of 0.187 
respectively, when trained with a learning rate of 0.1%. This 
finding underscores the efficacy of these architectures in 
effectively capturing and learning the complex features present 
in the datasets, thereby facilitating accurate classification 
within the iRESPOND system. Also, the analysis suggests that 
the choice of optimization algorithm, whether Adam or 
RMSprop, did not exert a significant impact on the 
performance of the models in this context. Despite variations in 
optimization techniques, the observed performance metrics 
remained consistent across both algorithms. This finding 
indicates that factor other than the choice of optimizer, such as 
the architecture itself and the learning rate, played a more 
influential role in determining model performance and 
effectiveness. 

In addition, the observed higher error rates in distinguishing 
between certain pairs of disaster scenarios are logical and 
expected, given the inherent visual similarities and shared 
characteristics between these classes. Addressing these 
challenges requires not only fine-tuning hyperparameters but 
also exploring advanced techniques such as incorporating 
contextual information, utilizing ensemble learning 
approaches, or leveraging domain-specific knowledge to 
enhance model performance and robustness in image 
classification. 
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