
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

677 | P a g e

www.ijacsa.thesai.org

A Model for Automatic Code Generation from High

Fidelity Graphical User Interface Mockups using

Deep Learning Techniques

Michel Samir, Ahmed Elsayed, Mohamed I. Marie

Department of Information Systems-Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt

Abstract—Graphical user interface (GUI) is the most

prevalent type of user interfaces (UI) due to its visual nature,

which allows direct manipulation and interaction with the

software. Mockup-based design is a frequently used workflow for

constructing GUI. In this workflow, the anticipated UI design

process typically progresses through multiple steps, culminating

in the creation of a higher fidelity mockup and subsequent

implementation of that mockup into code. The design process

involves repeating those multiple steps because of the ongoing

changes in requirements, which can make the process tedious

and necessitate modifications to the GUI code. Additionally, the

process of implementing and converting a design into GUI code

itself is laborious and time-consuming task that can prevent

developers from dedicating the bulk of their time implementing

the software's functionality and logic, making it a costly

endeavor. Automating the code generation process using GUI

design images can be a solution to mitigate these issues and allow

more time to be allocated towards building the application's

functionality. In this research paper, deep learning object

detectors are employed to detect the predominant UI elements

and their spatial arrangement in a high-fidelity UI mockup

image. This approach generates an intermediate representation,

including the layout hierarchy of the user interface leading to the

automation of the front-end code generation process for the

mockup. The proposed approach demonstrates its effectiveness

through experimental results, achieving a recognition mean

average precision (mAP) of 91.37% for atomic elements and

87.40% for container elements in the mockup image.

Additionally, similarity metrics are employed to assess the visual

resemblance between the generated mockups and the original

ones.

Keywords—Code generation; graphical user interfaces; deep

learning; computer vision; mockups

I. INTRODUCTION

In an interactive software, there are user interfaces (UIs)
which are used by users to communicate with the system and to
operate the system’s functionalities. The most popular form of
UI is graphical user interface (GUI) because of its visual nature
which allows direct manipulation of the software. The
development of GUIs for apps is often a manual and time-
consuming task. Based on a survey [1] conducted among over
5,700 developers, around 51% reported working on app UI
design tasks on a daily basis, more than other development
tasks, which they tended to perform every few days. Another
study revealed that an average of 45% of the code size of
software is relevant to the user interface and that the average

time spent on the user interface portion is nearly 50% during
the implementation phase [2].

A common workflow for building user interfaces is
mockup-based design [3]. In this approach, a graphic designer
creates a rough illustration of the anticipated UI design.
Ideally, design process need to go through several steps. It
often starts as a digital or sketched wireframe [4]. A wireframe
is a document which outlines the basic structure of the
application. A wireframe does not define specific details such
as colors. After a wireframe is created, it is refined and more
detail is added i.e. it becomes a higher fidelity mockup [5].
After finalizing the design, the implementation of that design
starts. Finally, that prototype should be evaluated to check its
usability and to discover design problems. Those steps are
repeated until the prototype considered satisfactory. With
continuous changes in the requirements, this whole design
process becomes monotonous and the GUI code needs to be
modified accordingly.

This process of implementing client-side software based on
a GUI mockup created by designers is the responsibility of
developers. Implementing and converting a design into GUI
code is time-consuming for the developer and prevent
developers from dedicating the majority of their time
implementing the actual functionality and logic of the software
and therefore costly. Moreover, considering the complexity of
UI, generating the GUI code from mockups requires extensive
experience as extracting visible elements and their relationship,
selecting proper widgets from diversity of UI components, and
generating source code are error-prone task. One more problem
associated with generating front-end code from GUI image is
that computer languages used to implement such GUIs are
specific to each target runtime system; thus resulting in tedious
and repetitive work when the software being built is expected
to run on multiple platforms using native technologies [10].

To cut down these problems, and to invest time in building
the actual functionality of the application, front-end code
automation is required. Basically, developers have to visually
realize UI elements and their spatial layout in the image, and
then translate this knowledge into proper GUI components and
their compositions. Automating this visual understanding and
translation would be beneficial for bootstrapping GUI
implementation. However, it is a challenging task due to the
diversity of UI designs and the complexity of GUI code to
generate. Understanding mockups in the form of images by a
machine is a problem of Computer Vision since it entails a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

678 | P a g e

www.ijacsa.thesai.org

machine making deductions from mockups, understanding
them and extracting logical information from them. Computer
Vision has made surpassing progress since its beginning. Deep
learning methods may be applicable to this task. Deep Neural
Networks (DNN) has been extremely popular with the
introduction of Convolutional Neural Networks (CNN) and has
shown considerable success over classical techniques when
applied to other domains, particularly in vision problems [6, 7,
8].

Detection of objects in UI screenshots is an unusual visual
recognition task that requires a distinct solution. In this
research paper, a novel approach is introduced for identifying
UI elements in high fidelity GUI mockups through the
utilization of Deep Learning, as well as generating code
automatically. To accomplish this, YOLOv7 [9] object detector
models are employed in order to detect atomic and container
elements within a UI screenshot. These detectors are trained
using a specifically curated dataset of UI mockup images.
Subsequently, UI representation object and layout hierarchy
are constructed to assist generating cross platform code.

This study makes two primary contributions. Firstly, it
proposes a unique approach that separates atomic and container
UI elements into distinct models, resulting in enhanced
detection accuracy. Secondly, it involves the creation of a data
preprocessing pipeline specifically designed to overcome the
limitations found in the semantic dataset. This research paper
sticks to mockups rather than hand-drawn wireframes as there
is no universally agreed-upon standard for wireframe symbols
and they may not provide the level of precision and
consistency required for complex UI designs.

The rest of the paper is organized as follows. The
background is illustrated in Section II, followed by the related
works in Section III. The dataset and data preprocessing
pipeline are discussed in Section IV, followed by the research
methodology in Section V. The evaluation is illustrated in
Section VI. Section VII provides a discussion that compares
the results with existing studies. Section VIII sketches out the
future work. Finally, Section IX concludes the paper.

II. BACKGROUND

There is a misunderstanding regarding the meanings of
wireframes, mockups, and how they differ from each other. It
is important to provide an accurate explanation and distinguish
these concepts from one another. The design process can be
divided into three stages sequentially, namely wireframes,
mockups, and prototypes. While the aforementioned sequence
is prevalent and commonly used, it is possible for the design
process not to go through all the stages or have minor
variations depending on the designer, team, and project. For
the purpose of this discussion, the focus will be on wireframes
and mockups.

A. Wireframes

A wireframe also known as screen blueprint is a document
which outlines the basic structure and layout of a page or
screen when referred to applications that demonstrates what
interface elements will exist on key pages. A wireframe is
regarded as a low fidelity design document due to its simplicity
and lack of visual styles and branding elements. Additionally,

it does not provide specific details, such as colors, images or
even right content. Furthermore, its purpose is to offer a basic
visual understanding of a page at the beginning of a project to
obtain approval from stakeholders and the team before
commencing the creative phase.

Wireframes can be classified into two categories: digital or
hand-drawn wireframes. Hand-drawn wireframe, also known
as sketch, is useful for early design stages and rapid iterations.
It helps designers to quickly visualize rough ideas, create an
initial model for the overall layout in a basic format. On the
other hand, digital wireframe is more detailed but yet simple. It
is usually created using digital wireframing tools. While it still
does not include specific components like images or full text, it
provides much more detail than its Hand-drawn counterpart as
shown in Fig. 1.

Despite the availability of digital wireframing tools, most
designers tend to begin by sketching on paper with a pen
(Hand-drawn wireframe). This is because designers usually
possess an art background and may feel limited by digital tools.
Although there is no universally agreed-upon standard,
wireframe sketches generally use a similar group of symbols
that have commonly understood meanings. Fig. 2 illustrates
some of these elements.

Fig. 1. The difference between Hand-drawn wireframe (a) and Digital

wireframe (b).

Fig. 2. Examples of elements commonly used to represent UI elements in

wireframes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

679 | P a g e

www.ijacsa.thesai.org

B. Mockups

A mockup is a high fidelity design document that is the
most detailed and closest to the actual end product design and
similar in nature to an app GUI screenshot. It proposes the final
look of the design and is usually built between wireframing
and prototyping. Wireframes are designed to represent the
structure and functional requirements, which are then featured
in mockups. Therefore, mockups are essentially wireframes
with visual design, such as images, colors, and typography.
Fig. 3 shows the difference between wireframe and mockup.

Additionally, those mentioned concepts can be classified in
another way. They can be classified into three different levels:
(1) low-fidelity, which resembles hand-drawn wireframes and
outlines the basic structure of a page, (2) mid-fidelity, which
resembles digital wireframes and is the start of mocking up the
actual interface, and (3) high-fidelity, essentially mockups with
high-quality visuals and contents.

When it comes to wireframes and mockups, designers have
different practices and preferences, they can: (1) start with
hand-drawn wireframes and then immediately craft mockups,
(2) start with digital wireframes and then convert them into
mockups, or (3) start with hand-drawn wireframes, convert
them to a digital format and then to mockups. After completing
the final design document, designers pass their work on to
front-end developers for implementing it into code.
Implementing user interfaces involves re-creating in code what
the designers created graphically in a software. Although
developers typically prioritize implementing core
functionalities, they often end up spending a significant amount
of time coding user interfaces.

III. RELATED WORK

Recently, there has been a growing interest in the use of
deep learning and computer vision techniques to automatically
generate UI code, which is a relatively new field of research.
This section provides a review of the existing techniques and
approaches that uses deep learning and computer vision to
classify UI components in mockups presented as images. In
this section, the attention will be directed towards the relevant
studies that specifically concentrate on mockups and
screenshots.

Fig. 3. The difference between Hand-drawn wireframe (a) and Digital

wireframe (b) and Mockup (c).

Authors in [10] proposed an application, called Pix2code
that transforms high-fidelity GUI screenshots created by
designers into computer code. This application utilizes a Deep
Learning framework to convert GUI images into their
corresponding code for three different platforms, namely web-
based, Android and iOS. The pix2code dataset is constructed
by mapping bootstrap-based websites into Domain-specific
language (DSL) consisting of 18 vocabulary tokens that
describe websites layout and components. The dataset
comprises 3,500 pairs of websites GUI images and their
corresponding markup which is in DSL code. The main idea
behind Pix2code is to train a model to learn the mapping
between a GUI screenshot and the corresponding code that
generates the GUI. The model relies on two main components.
First, a Convolutional Neural Network is used to perform
unsupervised feature learning on the GUI image. Second, a
Recurrent Neural Network (RNN) is used to perform language
modeling on the DSL code associated with the input GUI
image.

In Pix2code, a three-step approach is required to solve the
problem. First, a CNN-based image encoder is used to extract
high-level visual features from GUI screenshot. These features
are then passed through a fully connected layer to generate a
fixed-length feature vector, which represents the input image.
Second, long short-term memory (LSTM) network is used
which is a type of RNN architecture. The LSTM network is
trained to perform language modeling on the DSL code
associated with the input GUI image. As a result of this
training, the LSTM network gains an understanding of the
syntax and semantics of the source code, which enables it to
generate a language-encoded vector. This vector is a sequence
of one-hot encoded tokens that correspond to the DSL code.
Third, LSTM-based code decoder is used. Vectors from the
previous two steps are concatenated and then fed into this
decoder, which is able to generate high-quality code that
accurately reflects the layout and components of the input GUI
image. This LSTM decoder is trained to learn the relationship
between objects present in the input GUI image and the
associated tokens present in the DSL code.

While Pix2code performs well with simple datasets, it
struggles with complex datasets containing numerous code
tokens. To address this limitation, a novel front-end code
generation approach is proposed [11], which utilizes multiple
heads of attention to examine the feature vectors of GUI
screenshots. This technique enables the analysis of the feature
vectors, generation of code tokens, and seamless integration of
the analysis and generation processes.

In the cited study [12], the approach is divided into three
main components: (1) object detection, (2) text recognition,
and (3) code generation. The process involves inputting a GUI
image and running parallel modules for image processing, deep
learning, and text detection and recognition. The GUI elements
are detected using a fusion of deep neural network and
traditional image processing techniques, followed by
integrating the results from the text detection and recognition
module. The detection results are then used to generate
corresponding codes using a parser. Another study proposed in
[13], employed a Deep Learning (DL) approach to design a
system for generating GUI code for websites. A dataset

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

680 | P a g e

www.ijacsa.thesai.org

containing the coordinate, width, height, and type information
of GUI objects is curated using 7500 webpages. This dataset is
then utilized in the proposed system to detect objects within
GUI images and generate DSL mark-up code.

Nguyen et al. [14] was the first to propose the technology
of automatic reverse engineering of mobile application user
interface (REMAUI). By analyzing screenshots of a mobile
application's user interface, REMAUI detects the presence of
different components, such as buttons, textboxes, and pictures,
and generates their corresponding code. Their study was the
first to utilize computer vision and optical character recognition
techniques in addition to mobile specific heuristics to enable
conversion of screen images into code for mobile platforms.
This method not only translates the structure, but also the style
(images, colors, fonts) of the designs. The REMAUI method
works successfully, but its potential is limited by the time-
consuming process needed to adapt techniques for identifying
new elements.

Moran et al. [15] proposed ReDraw based on REMAUI.
ReDraw is an algorithm that takes mockups of mobile
application screens and generates structured XML code for
them. The paper outlines a three-stage approach to automate
the conversion of GUI designs to code, which involves the
following steps: (1) Detection, (2) Classification, and (3)
Assembly. The initial stage of their approach involves utilizing
computer vision techniques to identify the individual
components of the GUI. In the second stage, the identified
components are classified based on their functionality, such as
toggle-button, text-area, etc. This is achieved through the use
of CNN. In the final stage, the XML code is generated by
combining the results of the previous stages with the K-nearest
neighbor (KNN) algorithm, which organizes the code based on
web programming hierarchy. It is worth noting that the authors
of this paper have also contributed to the development of a
dataset. The dataset includes 14,382 GUI images with a total of
191,300 annotated GUI segments. These segments encompass
15 different classifications, including RadioButton,
ProgressBar, Switch, Button, and Checkbox. The
aforementioned CNN model relies on this dataset for training
and evaluation purposes.

A framework proposed in [16] takes UI pages as input and
generates the corresponding GUI code for Android or iOS as
output. The authors first utilize traditional image processing
techniques, such as edge detection, to identify the location of
UI elements. They then employ CNN-based classification to
determine the semantics of the UI elements, such as their type.
The proposed framework consists of three phases, namely
component identification, component type mapping, and GUI
code generation. Component identification involves extracting
components from the UI pages using image processing
techniques, followed by identifying the component types (such
as Button or TextView) using a deep learning algorithm based
on CNN classification. Component type mapping maps the
identified component types to their corresponding components
in the target platform. GUI code generation generates the final
GUI implementation code based on the component types and
their attributes obtained from the previous two phases. The
critical phase in this framework is the component type

mapping, which employs a large map to generate the final code
based on heuristic rules.

UIED is a GUI element detection toolkit [17] that was
introduced in 2020. Using an image-based approach, it
provides users with a platform for detecting GUI elements. The
toolkit offers a web interface that enables users to upload their
GUIs, and the system automatically detects and identifies the
elements within them. In the approach proposed by [17], the
detection task is split into two parts: (1) non-text element
detection and (2) text detection. To extract non-text regions,
traditional computer vision algorithms are utilized, while deep
learning models are employed for classification and text
detection. To detect non-text elements, the approach utilizes
the Flood-Fill and Sklansky algorithms to identify potential
layout blocks. The image is then subjected to edge detection
and converted into a binary map form. The binary map is
segmented into block segments based on the previously
detected blocks, and the connected component labelling
algorithm is used to detect GUI elements within each block.
The detected elements are then classified using a ResNet-50,
which was trained on a dataset of 90,000 GUI elements divided
into 15 classes. To detect text, the approach utilizes the
advanced EAST OCR, which is a deep learning-based scene
text detector that can accurately identify text within the
screenshot image.

Screen Recognition [18] is a system that generates
metadata describing UI components from a single GUI image.
This metadata is then forwarded to iOS VoiceOver, which
enhances accessibility. The system is optimized for mobile
devices, ensuring that it is both memory-efficient and fast. To
achieve this, it utilizes deep learning techniques trained on an
iPhone application dataset. The authors created a dataset of
GUIs from thousands of iPhone applications by manually
downloading the top 200 most popular applications from each
of the 23 categories (excluding games). They then gathered
screenshots of visited UIs and their metadata (tree structure,
properties of UI elements), but the data was incomplete, so
manual annotation was required. Ultimately, 40 individuals
annotated all UI elements in the collected screenshots using
bounding boxes and identifiers, resulting in a dataset of 77,637
annotated UI screens. The UI detection model is designed to
extract elements from a GUI and classify them accordingly. To
achieve this, the solution employs an SSD model with a
MobileNetV1 backbone. After the inference, the output is post-
processed to eliminate extraneous detections, and the built-in
OCR service is utilized to identify any missing elements.
However, since the detector generates separate bounding boxes
for each element, the UI elements need to be grouped. This is
accomplished using hard-coded heuristics that were
empirically acquired from 300 randomly selected samples.

IV. DATA PREPROCESSING PIPELINE

Before presenting the proposed methodology and exploring
it in details, a dataset is established that comprises clean UI
annotations based on an existing mobile UI corpus. This
section introduces a data preprocessing pipeline specifically
designed to overcome challenges and problems associated with
the UI corpus in order to produce a polished and clean dataset.
This pipeline not only helps overcome UI corpus challenges

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

681 | P a g e

www.ijacsa.thesai.org

but also plays a crucial role in converting raw data instance
within the dataset into a format that is compatible with the
proposed methodology. In this section, a detailed description is
provided of the dataset creation process and outlines the steps
involved in the data preprocessing pipeline.

A. Mobile UI Corpus

The research experimental dataset is constructed by
leveraging the open sourced Rico [19] dataset. The Rico
dataset stands out as the most extensive public collection of
mobile GUIs. It comprises 66,261 distinct GUI screens
obtained from over 9.7k free Android applications spanning 27
diverse categories. Each example within this large-scale dataset
consists of a screenshot and its corresponding view hierarchy
metadata. A view hierarchy represents a tree structure of the UI
layout wherein each node corresponds to an element within the
UI. Each node encompasses a range of properties, including the
UI element's position, its Android class, and various attributes
that define the element.

Although the view hierarchy metadata provides
specification for UI elements and their layout, a notable issue
arises from the fact that the captured view hierarchies often
contain enormous number of different element types. This
abundance of different types poses challenges for training deep
learning models and can potentially adversely affect their
performance. Additionally, the view hierarchy metadata may
include elements with overly generic types like View,
WebView, as well as elements with custom types such as
custom views or views from third-party packages.
Consequently, this lack of specificity in element types hampers
the conveyance of meaningful semantic information about the
UI components displayed on the screen.

To address this, Liu et al. [20] suggest a method for
generating semantic annotations where semantic types are
assigned to the UI elements of the Rico view hierarchies. These
annotations are applied on each screenshot in Rico dataset,
enabling the identification of elements present in the UI along
with their associated view hierarchy as a tree. 25 types of UI
elements are defined in these sematic annotations, including
TEXT, IMAGE, DRAWER, BUTTON, and more. However,
the generated annotations are still noisy and not suitable for the
purpose of comprehending GUIs. In this paper, these semantic
annotations, which is in JSON format, and its corresponding
screenshots obtained from the Rico dataset are referred to as
the semantic dataset.

B. Semantic Dataset Limitations

In this section, the objective is to highlight the limitations
identified in the semantic dataset, with the aim of obtaining a
clean UI dataset that improves the performance of the proposed
model. The primary concern lies within the UI elements
themselves. One issue arises when the JSON annotation
contains bounding boxes of an element that do not have visual
correspondences on the corresponding screenshot. Another
issue involves misaligned elements where bounding boxes
partially cover other elements. An additional issue arises with
elements that are extremely small, resulting in a zero area due
to the element's boundary box having zero values for both
width and height.

Another primary concern revolves around the incorrect
semantic annotations assigned to UI elements. For instance, an
ON-OFF SWITCH element being mistakenly labeled as an
INPUT element. In addition to incorrect labeling of certain UI
elements in the screenshots, there are cases where entire
screenshots are inaccurately labeled, as if the annotations
belong to an entirely different screenshot as shown in Fig. 4.
Another significant concern emerges when the annotation
JSON contains different semantic types that share the same
bounding boxes. This creates a problem in determining which
type among them is the correct one to consider for that
particular boundary box.

Another observed issue is the presence of elements that are
repeated multiple times in a screenshot, following a pattern
such as items in a list or grid. While these elements may have
similar shapes and structures, they are assigned different
semantic types. For instance, in a list arrangement, some
elements are labeled as ICON type while others are labeled as
IMAGE type, despite all of them having the same shape. There
is an additional concern regarding DRAWER and MODAL
types, which are regarded as containers. The problem revolves
around identifying UI elements that are contained within these
types, as well as distinguishing elements that are not part of
them, even if their boundary boxes overlap with both.

The most recent and significant issue observed is that
certain UI elements are semantically labeled based on their
functionality. However, visually, these elements should be
categorized under a different UI type due to their shape and
resemblance to that type. For instance, there are UI elements
labeled as RADIO_BUTTON based on their functionality, but
visually, they closely resemble the BUTTON type on the
screenshot as shown in Fig. 5. This issue has the potential to
significantly challenge the model and impact its performance.
In order to construct the experimental dataset, limitations and
issues highlighted above with the semantic dataset should be
addressed through a data preprocessing pipeline.

Fig. 4. Entire screenshot (a) are inaccurately labeled in semantic dataset (b).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

682 | P a g e

www.ijacsa.thesai.org

Fig. 5. Radio buttons that closely resemble the Button type.

C. Data Preprocessing Pipeline

The data preprocessing pipeline comprises four phases, as
shown in Fig. 6: (1) neglecting phase, (2) extraction phase, (3)
selection phase, and (4) formatting phase. In the initial stage,
known as the neglecting phase, any incorrect data instances in
the dataset are discarded. Data instances in the dataset are
neglected if the entire screenshots have incorrect labels.
Additionally, data instances are neglected if the screenshots do
not come from an application and only consist of an Android
launcher.

During the second phase, the objective is to extract all UI
elements that are presented in the annotation JSON for each
screenshot. To accomplish this, a Depth-First Search (DFS)
algorithm is employed using recursion to traverse the
annotation’s tree for each screen. The outcome of this phase is
the generation of a file for each screenshot, where each file
contains a Python dictionary comprising all the extracted final
UI elements. While executing this phase, UI elements with
zero area are disregarded. In cases where multiple UI elements
share the same boundary box, the last UI element visited
during the pre-order traversal is retained and its semantic type
is considered as the appropriate choice for that boundary box
neglecting other elements that share the same boundary box.

During execution and when encountering a node in the
JSON tree with the DRAWER or MODAL types, these types
are treated as the parent node and added to a STACK. This
signifies that all the visited children (UI elements), until
reaching the parent node again, are contained within this type.
Subsequently, the parent node's type is removed from the stack.
All these UI elements associated with the parent node are
stored in a separate list. Next, a check is performed to
determine if there is any overlay (IOU) between any other UI
element found in the annotation JSON and the parent type
(DRAWER or MODAL). If the overlay exceeds 20%, the
element is removed as it is considered to be hidden under the
parent type (DRAWER or MODAL), as observed through
Trial and error.

Fig. 6. Data preprocessing pipeline.

In the selection phase, the goal is to discern and filter the
most suitable UI images for each semantic type, while
excluding the incorrect ones. For every semantic type such as
TOOLBAR, DRAWER, and others, a corresponding folder is
generated to store all the images related to that semantic type.
To accomplish this, the output of the preceding phase is
utilized, which includes a generated file for each screenshot
containing the extracted UI elements. For each file, each UI
element is extracted based on its boundary box by cropping it
from the image, and then place it in the folder that corresponds
to its semantic type. The outcome is a set of folders, each
named after one of the semantic types, and each folder contains
images of UI element specific to that semantic type.

Two checks on the images are performed within each
folder. Firstly, any image that has been labeled incorrectly is
identified and should actually belong to a different type.
Secondly, we prioritize retaining the standard shapes
associated with each type, while eliminating UI elements that
might have similar functionality but visually belong to a
different semantic type. Based on these checks, all false images
are eliminated/deleted, resulting in filtered folders that
exclusively contain the visually best images of their respective
UI elements.

The final phase is the formatting phase, where the boundary
boxes of the UI elements are normalized. Moreover, each UI
type is encoded with a predefined number to ensure
compatibility with the YOLO format. The purpose of the
formatting phase is to prepare the dataset in a suitable format to
be used as input for the proposed model. To achieve this, the
generated files obtained from the extraction phase are utilized.
We iterate through each UI element in each file and verify if it
is still present in the corresponding folder of its semantic type.
If it is, the UI element is considered valid. Its boundary box,
alongside its corresponding UI type, is saved in a text file using
the YOLO format. Conversely, if the UI element is not found
in the designated folder, it is neglected and excluded from
further processing.

By employing the YOLO labeling format, this phase yields
the creation of a text file for each screenshot, mirroring their
respective names. Each text file contains separate lines, with
each line presenting the details of a single UI element,
including its boundary box and type. The boundary box and
type for each UI element are described using specific
representations. The bounding box is denoted by four values:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

683 | P a g e

www.ijacsa.thesai.org

x_center, y_center, width, and height. The x_center and
y_center represent the normalized coordinates of the bounding
box's center. To achieve normalization, the pixel values of x
and y, corresponding to the center of the bounding box on the
x- and y-axis, are divided by the width and height of the image,
respectively. The width and height values indicate the
dimensions of the bounding box, and they are also normalized.
In relation to the UI type, all semantic types are assigned
numerical encodings. Each number corresponds to a specific
UI type.

Finally, each UI element is represented in the YOLO
format as a line, consisting of the encoded UI type known as
class, normalized x_center, normalized y_center, normalized
width, and normalized height. The outcome of this phase is our
custom dataset in which each data instance includes a UI
screenshot along with its corresponding text file, providing
descriptions of the UI objects present in the screenshot in
YOLO format.

D. Semantic Types

In this research, the primary emphasis lies on specific 20
semantic types, from those outlined by Liu et al. [20] in their
semantic dataset. However, modifications are made by
introducing new semantic types that are described below. The
intention behind introducing these new types is to prioritize the
visual aspects of the elements, enabling us to accurately
translate these UI elements into corresponding code widgets.

Before introducing new semantic types, the WEB VIEW
type is excluded because it does not qualify as a standalone
semantic type. WEB VIEW refers to web content that is
displayed within a mobile application, encompassing various
UI elements that are not individually labeled. This research
opted to exclude the VIDEO type and instead categorized them
as IMAGE type since we consider them to be indistinguishable
on static screenshots. Additionally, based on the same
rationale, the ADVERTISEMENT type is excluded and
classified as an IMAGE type. This decision is supported by the
fact that in the code, the same image cannot be selected to be
displayed as an advertisement, as it is a real-time process. We
differentiate between the IMAGE and ICON types. IMAGE is
reserved for real images that depict tangible objects, which can
be captured by sensors. On the other hand, ICON is used to
represent vector graphics images and logos.

In contrast, additional UI types are also introduced,
including BOTTOM_SHEET, SPINNER, and
PROGRESS_BAR. Within the RICO dataset, there are
numerous screenshots that feature progress bars, even though
they are not specifically classified as a type in the semantic
dataset. To address this, an analysis was conducted by
inspecting the nodes in the view hierarchy that contained an
Android class named ProgressBar. In relation to
BOTTOM_SHEET, the investigation of the DRAWER type
revealed that bottom sheets are classified along with drawers.
Drawers are side-bar menus that display an application's
primary navigation options and can be toggled to open or close.
On the other hand, bottom sheets are surfaces that contain
supplementary content and are anchored to the bottom of the
screen. We decided to categorize them separately because we
perceived significant visual distinctions that warranted the

creation of new class. Moreover, from a coding perspective,
these elements require the implementation of entirely different
widgets. Similarly, a similar situation was encountered with the
SPINNER type. Initially, it was grouped under the MODAL
type. However, as modals represent pop-up windows or
dialogs, and spinners are drop-down menus, we decided to
separate them due to the same rationale applied to the
DRAWER and BOTTOM_SHEET types.

In total, a set of 23 semantic types has been established,
encompassing BOTTOM_NAVIGATION, BUTTON_BAR,
CARD, CHECKBOX, DATE_PICKER, DRAWER, ICON,
IMAGE, INPUT, LIST_ITEM, MAP_VIEW, MODAL,
MULTI-TAB, ON/OFF_SWITCH, PAGER_INDICATOR,
RADIO_BUTTON, SLIDER, TEXT, BUTTON, TOOLBAR,
SPINNER, PROGRESS_BAR, and BOTTOM_SHEET.

V. RESEARCH METHODOLOGY

Our methodology involves a five-phase pipeline that takes
a high fidelity mockup image as input and generates a cross-
platform application in real-time as the output. There are five
phases involved in our methodology: (1) Model preparation,
(2) Object detection, (3) Element post-processing,
(4) Construction of the layout hierarchy, and (5) Code
generation. The overall architecture of the proposed
methodology is illustrated in Fig. 7. As depicted, the process
utilizes pre-trained models to expedite training and enhance
overall performance. Subsequently, our custom datasets are
employed to fine-tune the pre-trained models and tailor them
specifically to the desired domain. The training process for
these custom models is a one-time occurrence. Once the
custom models have been trained, they are employed solely for
the purpose of detecting UI elements in the input mockup
image.

This paper adopts a DNN approach for object detection.
Object detection involves the classification and localization of
various objects within an image. It encompasses the
assignment of appropriate labels to each object and the creation
of bounding boxes around them to enhance recognition. Object
detection not only informs us about the presence of specific
objects in an image, but also provides information about their
spatial location. To locate the UI elements within the mockup
images, the YOLOv7 real-time object detection model was
utilized. YOLO, also known as You Only Look Once, is a deep
learning model that has undergone several iterations to become
a powerful solution for real-time object detection and
localization. It falls under the category of one-stage detectors,
offering fast inference speeds. In this section, the research
paper will delve into the five-phase pipeline, providing a
comprehensive and detailed explanation.

A. Model Preparation

To enhance the efficiency of YOLOv7, two aspects need to
be tackled: (1) dataset-related concerns and
(2) hyperparameters of the YOLO model. The first aspect
involves addressing two areas: (1) balancing the dataset, and
(2) improving dataset quality. The second aspect focuses on the
selection of anchor boxes.

Starting with the first aspect, balancing a dataset is crucial
because imbalanced datasets pose challenges for predictive

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

684 | P a g e

www.ijacsa.thesai.org

modeling. By achieving balance, we ensure that the model does
not exhibit bias towards a particular class. To illustrate this
point, let's consider the outcome of the selection phase. If the
number of UI images in the TEXT folder is compared to the
number in the DATE_PICKER folder, a significant class
imbalance is observed, with a ratio of 1:1455. This stark
contrast in the number of instances for each class highlights the
pronounced imbalance within the semantic dataset.

Fig. 7. The overall architecture of the proposed methodology.

In order to address this concern and achieve a balanced
dataset, a technique that involves selecting a portion of our
custom dataset has been applied in a manner that ensures a
more even distribution of instances among all the classes. In
this technique, a consistent quantity of screenshots will be
allocated to each class (semantic type) in order to ensure that
each class is represented in the dataset, particularly for classes
with a small number of instances. It is essential that the
screenshots selected for a specific class encompass instances
that pertain to that class. Assigning a consistent number of
screenshots to each class does not guarantee an equal number
of instances, as a single screenshot may contain multiple
instances of the same class and instances from other classes as
well. By adopting this approach, we are able to regulate the
quantity of screenshots chosen for each class and consequently
the overall number of screenshots. This not only guarantees a
minimum number of instances for each class but also sets an
upper limit for classes with a large number of instances. As a
result, it promotes a more balanced distribution of instances
across the classes. This technique is utilized to create all the
future datasets from the custom dataset specified in Section IV,
which will subsequently be employed with YOLO models.

Furthermore, the utilization of class weights is a prevalent
technique employed to tackle class imbalance within a dataset.
These weights determine the relative significance of each class
during the training process. In this proposed approach, we have
incorporated YOLOv7's inverse class frequency weighting,
which assigns higher weights to underrepresented classes and
lower weights to overrepresented classes based on their inverse
frequency within the dataset. As a result, this approach
amplifies the importance of less prevalent classes during the
training process.

Improving dataset quality is also a crucial concern in the
process of training a YOLO model. One recurring issue
observed in both the Rico dataset and the semantic dataset is
the incomplete labeling of all visual elements present in the

screenshot. For instance, while a button may be correctly
annotated with the semantic type BUTTON, the accompanying
text or icon within the button may not be labeled as shown in
Fig. 8.

Fig. 8. Incomplete labeling of all visual elements present in the screenshot.

The buttons lack proper labeling for their text.

Incomplete labeling for certain classes within the dataset
may cause the proposed model to produce false negatives,
leading to biased or suboptimal model performance,
particularly for the classes with incomplete labeling. The
model may struggle to accurately detect and classify instances
of these classes resulting in reduced accuracy. In addition,
incomplete labeling can lead to a problem in training models
because the model might learn incorrect associations from the
unlabeled instances of the class. This can result in poor
performance when the model is used for prediction on new,
unseen data. In order to mitigate this issue, ensuring complete
labeling for all classes in the training dataset is essential.
Consequently, the necessary step of manually verifying and
adding annotations to the unlabeled objects in the screenshots
was taken. To accomplish this, Labelimg [21] was utilized, a
free, open-source software program written in Python for
labeling images that enabled us to thoroughly check and
annotate the previously unlabeled objects.

When it comes to the second aspect, which involves
adjusting the hyperparameters of the YOLO model, the
selection of anchor boxes can significantly enhance efficiency.
YOLOv7 is categorized as an anchor-based model. Anchor
boxes are predetermined bounding boxes with specific
dimensions in terms of height and width. These boxes should
be specifically designed to capture the object classes with the
scale and aspect ratio that you aim to detect. The general idea
is to generate numerous possible bounding boxes initially and
then choose the most suitable ones to match the target objects.
These selected boxes are then slightly adjusted in terms of
position and size to achieve the optimal fit.

The choice of anchor boxes is crucial as YOLO predicts
bounding boxes as offsets from these predefined anchors. By
selecting optimal anchor boxes, the neural network's workload
is reduced, resulting in higher model accuracy. To illustrate the
optimal choice of anchor boxes, it is advisable to select anchor
boxes that encompass a range of scales and aspect ratios. This
ensures a better alignment with the size and shape of the
objects being detected. Typically, anchor boxes are selected
based on the object sizes found within your training datasets.
To achieve this, K-Mean++ clustering algorithm is employed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

685 | P a g e

www.ijacsa.thesai.org

to generate anchor boxes. This involves grouping the ground
truth bounding boxes of UI elements in the training dataset into
clusters and utilizing the centroids of these clusters as the
anchor boxes, based on the number of anchor sizes that is
needed. Fig. 9 illustrates the result of grouping boundary boxes
of atomic elements into nine clusters based on their scale,
where the centroids of these clusters act as anchor boxes.

Fig. 9. The anchor boxes are represented by the centroids of atomic elements

clusters.

B. Object Detection

Detecting GUI elements in the input mockup image is the
essential phase of the proposed methodology. This particular
phase consists of two modules, each with its own responsibility
for detecting various elements in the mockup. The first module
is designed to detect individual atomic elements, while the
second module focuses on detecting container elements. Both
modules take the mockup image as input and return the
detected elements. Atomic elements are fundamental UI
components that cannot be further divided and serve as the
basic building blocks of an interface, such as checkbox or text
elements. On the other hand, container elements are UI
components that encompass and contain other UI elements,
like toolbars and drawers. They act as visual boundaries or
enclosures that primarily group and include atomic UI
elements. Fig. 10 provides examples of both atomic and
container elements.

Fig. 10. Examples of both atomic and container elements.

The research paper has separated these types of UI
elements into two modules for two reasons. Firstly, it is to

address the challenge of handling different object scales.
Object detection can be difficult when dealing with objects of
varying sizes. One YOLO model may struggle with detecting
small objects while performing well on larger ones, and vice
versa. By utilizing two YOLO models specifically trained for
different object scales, you can enhance the accuracy and
reliability of detection. Secondly, by having separate models,
you can ensure that training a new class in one model does not
interfere with the previously learned classes in the other model.
This approach allows you to expand the system's capabilities
by adding new classes or new instances for a specific class
without affecting the performance of the other model.

To detect atomic and container elements, a separate YOLO
model was employed for each module. Each model was trained
individually using distinct dataset derived from the custom
dataset mentioned in Section IV. The previously mentioned
dataset balancing technique was also applied to ensure the
datasets were well-distributed. Both atomic and container
models were trained for 400 epochs. For each module, the
dataset is structured in the YOLO format. This includes a
mockup image accompanied by a corresponding text file that
describes the UI elements present in the mockup image. The
text file contains information such as the object class, object
coordinates, height, and width for each UI element. However,
only the UI elements relevant to that specific module are
retained in the dataset, while the other classes are removed.
Initially, pre-trained YOLOv7 models were utilized that
underwent training on the COCO dataset. Subsequently, for
each module, fine-tuning on the YOLOv7 model was
performed using its respective dataset.

In the atomic module, the dataset consists of a total of
1,400 examples. These examples are divided into training and
validation sets, with 1,120 examples allocated for training and
280 examples for validation. Similarly, in the container
module, the dataset also contains 1,200 examples. These
examples are split into 960 for training and 240 for validation.
The output of each module is a generated list that contains the
detected elements found in mockup image, providing
information such as their class labels and corresponding
bounding boxes. Finally, the outputs of both modules are
combined by concatenating them.

C. Element Post-processing

In order to convert the mockup to code, it is necessary to
detect the visual properties of the UI elements such as their
sizes, main colors, and more. The previous phase has generated
a list of detected UI elements, but this additional phase is
required to accurately identify and extract these visual
properties. In addition to capturing the visual properties related
to style, it is also important to capture the current state of
certain UI elements including aspects such as the content
displayed, the selection state (e.g., whether an element is
selected or not), or the percentage state (e.g., progress or
completion percentage).

By employing classical computer vision techniques,
essential styling properties can be extracted for each UI
element, such as width, height, main color, and background
color. Additionally, for some UI elements, there would be
other specific properties for them like border-radius for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

686 | P a g e

www.ijacsa.thesai.org

buttons, number of page indicator circles, and whether a slider
is 2-way slider or not and its selected range color. Furthermore,
certain UI elements contain dynamic content such as TEXT
elements. To extract text from these elements, Optical
Character Recognition (OCR) techniques are employed.
Specifically, we utilize the open-source Tesseract [22] OCR
engine, accessed through the Pytesseract wrapper, which is
implemented in Python. This allows us to recognize and extract
textual values from regions identified as text by the YOLO
model in the mockup image.

On the other hand, there are several UI types that have
selection states, such as RADIO_BUTTON, CHECKBOX,
PAGE_INDICATOR, and ON/OFF_SWITCH. The proposed
dataset, which is used to train the UI detection YOLO model,
includes examples of these UI types with their selection states.
Some of these types, like radio buttons, checkboxes, and on/off
switches, have a true or false selection state. The visual
information of these UI elements is utilized to determine
whether they are selected or not. The most common visual
indicators include the color and the position of certain parts
within the UI element itself. For instance, the selection state of
a switch can be detected by analyzing the direction of its
toggle. The other UI types such as MULTI-TAB,
BOTTOM_NAVIGATION, and PAGER_INDICATOR have
multiple selection states. Their visual information is utilized to
identify the specific item that is selected. The most common
visual indicators in this case are the color and size. For
example, the selected tab is highlighted with a different color
while the other tabs remain unhighlighted. Finally, when there
is only one selection, "selected" property is assigned as true if
the detected state is selected, otherwise false. In the case of
multiple selections, we only record the index of the selected
item.

There is another category of UI elements that exhibit a
distinct behavior, which is the percentage state. Certain UI
types, such as PROGRESS_BAR and SLIDER, always have a
selected range. In this case, we have observed that the primary
color and length serve as the most prevalent visual indicators.
By analyzing the width of the detected element in relation to
the length of the selected range, the percentage of the range
that is selected can be determined.

Lastly, after completing the post-processing phase, all the
determined outcome properties for each UI element are
consolidated into a platform-independent UI representation
object. This UI representation object is essentially a dictionary
consisting of key-value pairs, which effectively represents the
recognized UI elements along with their respective properties.

D. Constructing Layout Hierarchy

This phase holds great importance as its objective is to
construct the UI layout by aligning the UI elements in a
manner similar to the mockup. A novel approach was
implemented and is referred to as "UI element grouping". In
this approach, once the list of detected UI elements has been
obtained from both atomic and container models during the
object detection phase, we proceed to conduct an intersection
test. This test involves comparing each atomic element with the
container elements. If the intersection area between an atomic

element and a container element exceeds 90%, the atomic
element is considered to be inside the container element.

To initiate the UI element grouping approach, the atomic
list and container list obtained from the atomic and container
models are utilized as our input. Each UI element within these
lists comprises attributes such as class_type_index, area,
polygon, boundary_box [XLeft, YTop, XRight, YBottom], and
visual properties from the UI representation object. As a result
of the UI element grouping, an output in the form of a list is
generated representing the layout hierarchy of the mockup.
This hierarchy arranges the elements vertically, and we
determine whether an element is displayed individually in a
row or if it has neighboring elements arranged horizontally
within the same row.

To identify the layout structure and determine the
positioning of elements relative to each other, a well-defined
sequence of steps is followed as outlined in Algorithms 1-5. At
first, the YOLO models assign a unique index to each element
class, starting from zero and going up to the number of classes
minus one, for both atomic and container elements. To prevent
any numbering conflicts between the models results, the
indexes of atomic elements were adjusted to begin after the
indexes of container elements. Subsequently, any inner
elements were eliminated, whether they are atomic or container
elements. Only the outer elements, which are not contained
within any other element, will remain.

Algorithm 1: Adjust Indexes

Input:
List of detected UI elements from the atomic model (a_list)

List of detected UI elements from the container model (c_list)

Output:
Indexes of a_list elements will begin after the indexes of c_list

elements to avoid numbering conflict

1 procedure adjust_ indexes(a_list, c_list)

2 for each element in a_list do

3 class_type_index = class_type_index + c_list length

4 end for

5 return a_list, c_list

6 end procedure

Algorithm 2: Eliminate Inner Elements

Input: Output of Alg. 1 (a_list, c_list)

Output: List comprises outer elements only

1 procedure eliminate_inner_elements(a_list, c_list)

2 outer_elements_list = a_list + c_list

3 for each element (A) in outer_elements_list do

4 for each other element (B) in outer_elements_list do

5 if area of A > area of B then

6 if A polygon intersects B polygon > 90% then

7 remove element B from outer_elements_list

8 end if

9 end if

10 if area of B > area of A then

11 if B polygon intersects A polygon > 90% then

12 Remove element A from outer_elements_list

13 end if

14 end if

15 end for

16 end for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

687 | P a g e

www.ijacsa.thesai.org

Algorithm 2: Eliminate Inner Elements

17 return outer_elements_list

18 end procedure

Algorithm 3: Sort Element List

Input: Output of Alg. 2 (outer_elements_list)

Output: Sorted list (outer_elements_list)

1 procedure sort_list(outer_elements_list)

2 sort outer_elements_list by boundary_box[YTop]

3 return outer_elements_list

4 end procedure

Algorithm 4: Element Alignment

Input: Output of Alg. 3 (outer_elements_list)

Output:

List comprises inner lists, with each inner list representing an

element and indicating whether or not it has neighboring
elements arranged horizontally within the same row.

1 procedure element_alignment(outer_elements_list)

2 let all_elements_adjacents_list as list

3 for each element (A) in outer_elements_list do

4 let adjacents_list as list for element (A)

5 for each other element (B) in outer_elements_list do

6 if element B is adjacent to element A (Alg. 6) then

7 add element A and B to adjacents_list if not exist

8 end if

9 end for

10 add adjacents_list to all_elements_adjacents_list

11 end for

12 return all_elements_adjacents_list

13 end procedure

Algorithm 5: Remove Duplicates
Input: Output of Alg. 4 (all_elements_adjacents_list)

Output:

If an element has no neighboring elements, its element_list will

be empty. If it does have neighboring elements, each of those

elements will also have their own element_list with the same
elements. To avoid redundancy, duplicate lists are removed.

1 procedure remove_duplicates (all_elements_adjacents_list)

2 for each element_list in all_elements_adjacents_list do

3 if element_list is empty then

4 This element has no adjacent elements

5 Add only this element to element_list

6 end if

7 if element_list has elements (adjacent elements) then

8 Each adjacent element have list with the same elements

9 Remove those duplicate lists to that element_list

10 end if

11 end for

12 return all_elements_adjacents_list

13 end procedure

Afterward, the list of remaining elements, which includes
both containers and atomic elements, is sorted in a top-to-
bottom manner based on the Y-top point of each element. The
YOLO detection boundary boxes do not ensure that the
elements adjacent to each other will have their boundaries
starting at the same horizontal line. Therefore, the purpose of
sorting is not to arrange all elements vertically beneath each
other. It is primarily aimed at detecting horizontal alignment by

ordering the elements in a way that elements adjacent to each
other appear consecutively in the list.

Afterwards, the alignment algorithm is utilized to identify
elements that are positioned next to each other. In this
alignment algorithm, every element in the list is compared to
all other elements. The outcome is a separate list for each
element, which includes any adjacent elements found for that
specific element. We accomplish this by creating vertical lines
from the y-top point to the y-bottom point for each element,
and then comparing these lines with those of all other elements.
If the alignment is approximately 90% horizontally, the
elements are deemed to be in the same row and adjacent to
each other, as illustrated in Algorithm 6. Following this
criterion, if an element is compared to others and adjacent
elements are found, its list will include these adjacent elements.
Conversely, if an element is compared to others and no
adjacent elements are found, its list will be empty, indicating
that it is the sole element in that particular row.

As the final step of the algorithm, the list for each element
is examined. If the list is empty, it indicates that the element
has no adjacent elements. If there are adjacent elements
present, each element's list will include the other elements. To
avoid duplication, we remove any repeated elements, resulting
in a single list that contains all the adjacent elements. These
processes are repeated for every container element that
contains atomic elements. This allows us to identify the
structure of each container, even if it is an inner container. As a
result, we are able to detect the hierarchical layout for the
entire mockup.

E. Code Generation

The code generation phase is the final step in which the UI
representation object, along with the layout hierarchy, is
utilized to generate code that can be used across multiple
platforms, including Android and iOS. Nowadays, there are
several cross-platform solutions like Flutter and React Native,
which aim to develop code once and run it seamlessly on both
Android and iOS mobile systems. To generate cross-platform
code, we made use of Flutter, an open-source UI software
development kit developed by Google. We opted for Flutter
over other alternatives because it eliminates the use of Platform
Primitives. This ensures that the app visually appears almost
identical across all platforms, without relying on native look
components that may have variations. Algorithm 7
demonstrates the methodology employed for generating code.

Algorithm 6: Checking Alignment between UI Elements

Input:
Element (A) boundary_box [XLeft, YTop, XRight, YBottom]

Element (B) boundary_box [XLeft, YTop, XRight, YBottom]

Output:
If the two elements are adjacent, the function returns true;
otherwise, it returns false.

1 procedure calculate_vertical_overlap (box_A, box_B)

2 y1 = max(box_A[YTop], box_B[YTop])

3 y2 = min(box_A[YBottom], box_B[YBottom])

4 overlap = y2 - y1

5 return overlap

6 end procedure

7 procedure is_side_by_side(box_A, box_B):

8 overlap = calculate_vertical_overlap(box_A, box_B)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

688 | P a g e

www.ijacsa.thesai.org

Algorithm 6: Checking Alignment between UI Elements

9 height1 = box_A[YBottom] – box_A[YTop]

10 height2 = box_B[YBottom] – box_B[YTop]

11 return overlap >= 0.9 * min(height1, height2)

12 end procedure

Algorithm 7: Generating cross-platform code

Input:

Output of Alg. 5 (all_elements_adjacents_list). Each inner list
(element_list) in all_elements_adjacents_list represents whether

the current element has neighboring elements or not

Create:
Statefull widget class for each UI element type that receives

visual properties as parameters. Each widget in a separate file.

Output: Return generated front-end cross-platform code

1 procedure generate_code(all_elements_adjacents_list)

2 let column_widget_list as list

3 for each element_list in all_elements_adjacents_list do

4 if element_list length equals 1 then

5 Check element type and call its widget file

6 Send element’s visual properties as parameters

7 Add element’s widget to column_widget_list

8 end if

9 if element_list length >1 then

10 let row_widget_list as list

11 for each element in element_list do

12 Check element type and call its widget file

13 Send element’s visual properties as parameters

14 Add element widget to row_widget_list

15 end for

16 Add row_widget_list to column_widget_list

17 end if

18 end for

19 return column_widget_list

20 end procedure

There are two primary concerns that require attention: (1)
ensuring code readability and (2) implementing effective error
handling. Ensuring code readability is a top priority for us. To
achieve this, we embrace the concept of reusable components,
similar to writing a function once and utilizing it multiple
times. Each UI element is represented as a custom widget,
which accepts parameters to describe its visual properties as
described in the UI representation object. Each widget is
organized into its own separate file. Eventually, the generated
code files need to be compiled to run on the desired platform.
Finally, a mechanism is implemented to handle errors that may
appear in Flutter. Unlike HTML markup language, where
errors may not disrupt the entire process, Dart (programming
language used in Flutter) needs to be successfully compiled in
order to run.

VI. EVALUATION AND RESULTS

A diverse set of evaluation metrics and criteria are utilized
in this type of research, indicating a lack of a clear standard for
evaluation. To address this issue within this research, we aim to
establish a clear standard for evaluation. The evaluation
focuses on two main aspects: (1) the accuracy of object
detection models and (2) the degree of similarity in user
interfaces between the screens of the mockup and the screens

generated from code. Furthermore, a comparison with existing
systems was conducted.

The first aspect is to evaluate the accuracy of object
detection models, commonly used evaluation metrics are
utilized including Accuracy, Precision, and Recall, and others
which are widely used in the field of object detection.

 Accuracy =
TP+ TN

Total Predictions
 

Object detection models are commonly evaluated based on
a metric called Intersection Over Union (IOU). This metric
assesses the extent of overlap between two bounding boxes: the
predicted bounding box and the ground truth bounding box.
During the training stage, a target IOU threshold of 0.5 is
typically sought, meaning that if the model predicts an object
with a bounding box that overlaps the ground truth box by at
least 50%, it is considered a valid prediction. Adjusting the
IOU threshold can impact the values in the confusion matrix.
This adjustment influences the number of true positives (TP),
false positives (FP), and false negatives (FN), thereby
impacting the overall performance metrics derived from the
confusion matrix including precision, recall, and F1 score.

In order to demonstrate the efficacy of our proposed models
in classifying UI components, three metrics measures were
utilized: precision, recall, and F1 score. The calculation of
these measurements is as follows:

 Precision =
TP

TP+FP
 

 Recall =
TP

TP+FN
 

 F1 score =
2 𝑥 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

These metrics were assessed on the validation set for both
atomic (A) and container (C) models. The measured metrics
for each UI element are presented in Table I, showing the
interesting results achieved by both trained models. Despite the
presence of various styles within each component, it can
accurately identify almost all of them. Fig. 11 shows sample of
detection results by YOLOv7 on the validation set of both
atomic and container models. In the realm of object detection,
Average Precision (AP) and Mean Average Precision (mAP)
have gained widespread popularity as the primary evaluation
metrics in recent years. AP is a way to summarize the
precision-recall curve into a single value representing the
precision at different levels of recall. The average precision is
computed by taking the mean of these precision values across
all recall levels. A high average precision signifies strong
performance in terms of both precision and recall, while a low
average precision indicates lower values for either or both
metrics. Typically, average precision is calculated separately
for each class according to this equation:

 Average Precision (AP) = ∫ p(r)dr
1

r=0
 

To evaluate the performance of object detection model
across the different classes, the mAP is calculated by taking the
average of the AP values for all the classes being considered as
shown in this equation:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

689 | P a g e

www.ijacsa.thesai.org

 Mean Average Precision (mAP) =
1

𝑘
∑ 𝐴𝑃𝑖

𝑘
𝑖  

The emphasis was placed on evaluating the overall
performance of both YOLO models by prioritizing the
measurement of mAP. Notably, the atomic model achieved an
outstanding mAP score of 91.37%, while the container model
achieved a respectable score of 87.40%. These results indicate
a strong capability for detecting elements in both models,
reflecting their strong performance in this regard. We selected
mAP as our primary evaluation metric because it signifies a
model's stability and consistency across different confidence
thresholds. A high mAP suggests that the model performs well
at various levels of confidence in its predictions. On the other
hand, Precision, Recall, and F1 score are metrics used to assess
the model's performance at a specific confidence threshold.
When the mAP is good, it indicates that the model consistently
achieves high precision, recall, and F1 score across different
confidence thresholds. This consistency implies the model's
stability and reliability in making accurate predictions.

The second aspect is to measure the similarity of images
between the mockups and those produced by the generated
code. Three commonly employed image similarity metrics,
namely mean squared error (MSE), mean absolute error
(MAE), and Structural Similarity Index (SSIM), are utilized to
measure the similarity. The Mean Square Error calculates the
average of the squared differences between the predicted and
actual values. It serves as a metric to measure the disparity
between the two images, where higher values signify a larger
dissimilarity. On the other hand, the Mean Absolute Error
calculates the average absolute difference between the
predicted and actual values. Similar to MSE, a lower MAE
indicates better model performance, as it means that, on
average, the predictions are closer to the actual values.

TABLE I. PERFORMANCE OF THE TRAINED MODELS

UI Element Precision Recall F1 score

Checkbox (A) 0.93 0.95 0.94

Date Picker (A) 0.95 0.97 0.96

Icon (A) 0.91 0.87 0.89

Image (A) 0.81 0.86 0.83

Input (A) 0.83 0.8 0.81

Map View (A) 0.89 0.82 0.85

On-Off Switch (A) 0.93 0.96 0.94

Page Indicator (A) 0.94 0.88 0.9

Radio Button (A) 0.86 0.93 0.89

Slider (A) 0.9 0.83 0.86

Text (A) 0.91 0.97 0.93

Progress Bar (A) 0.84 0.78 0.8

Button (C) 0.79 0.82 0.8

List Item (C) 0.92 0.86 0.89

Card (C) 0.78 0.76 0.77

Drawer (C) 0.89 0.94 0.91

Modal (C) 0.9 0.86 0.88

Multi-Tab (C) 0.88 0.86 0.87

Toolbar (C) 0.91 0.87 0.89

Bottom Sheet (C) 0.83 0.86 0.84

Spinner (C) 0.78 0.8 0.79

Button Bar (C) 0.91 0.93 0.92

Bottom Navigation (C) 0.81 0.82 0.81

Structural Similarity Index is a widely used metric in image
processing that quantifies the structural similarity between two
images. It takes into account three components: luminance,
contrast, and structure. By comparing the SSIM index between
the mockup image and the generated code image, we can
assess how closely they resemble each other in terms of their
structural characteristics. A higher SSIM index indicates a
higher similarity between the two images. When evaluating on
a testing set of 50 images, our results for MSE, MAE, and
SSIM were 30%, 25.7%, and 83.3%, respectively.

Inference time is an important performance metric, as it
refers to the measurement of the time it takes for a machine or
deep learning model to make predictions or inferences on new
data. In order to determine the inference time of YOLO
models, the average time it took for inference on a testing set
consisting of 50 images was calculated. The inference time
varied between 45.6 ms and 85.0 ms, and we observed that as
the number of elements in an image mockup increased, the
inference time also increased as illustrated in Table II.

Fig. 11. Sample of detection results by YOLOv7 on the validation set of both

atomic and container models.

TABLE II. INFERENCE TIME FOR ATOMIC MODEL

Number of UI elements detected Inference time

4 Elements 46.9 ms

32 Elements 65.0 ms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

690 | P a g e

www.ijacsa.thesai.org

VII. DISCUSSION

To validate the significance of the proposed approach, a
comparative analysis was performed between the proposed
system and other systems that specifically target high fidelity
mockups using deep learning methods. Table III presents a
comprehensive comparison encompassing multiple
dimensions, such as system architecture, performance metrics,
and the count of detected UI elements. It is important to
highlight that each system utilizes a subset of metrics, and
therefore, each metric will be compared with its corresponding
counterpart in our set of metrics.

Table III presents three distinct categories of techniques:
(1) end-to-end, (2) hybrid, and (3) object detection. The end-to-
end approach (E) utilizes a comprehensive deep learning model
to process mockups or wireframes and generate source code,
which can then be transformed into a user interface. Hybrid
techniques (H) typically employ traditional computer vision
methods to extract the spatial information of UI elements,
followed by CNN-based classification to determine their
respective types or classes. Object detection (O) involves the
identification, labelling, and precise delineation of objects
within an image to improve their recognition. Based on this
comparison, it is evident that the proposed approach exhibits
an improvement in recognizing GUI mockup elements
compared to the other systems, although it detects a larger
number of elements. It is crucial to emphasize that a
comprehensive study was conducted comparing an earlier
version that encompassed all UI elements in a single YOLOv7
model. However, the performance of this one YOLOv7 model
was not comparable to the two-model approach (atomic and
container) due to challenges posed by the visual similarity
between certain classes, such as CARD and BUTTON, and
DATE_PICKER and MODAL.

TABLE III. COMPARISON BETWEEN THE PROPOSED APPROACH AND

OTHER SYSTEMS

Criteria [10] [15] [16] [17] [18] Proposed

Number of

UI
elements

NAa 15 NA 15 12 23

Technique

utilized
E H H H O O

Text
recognition

(OCR)

No Yes NA Yes Yes Yes

Training
dataset

Custom Custom Custom Rico
Custom
(iOS)

Rico

Accuracy 77% NA 85% NA NA 88.2%

F1 Score NA NA NA 52% NA 86.8%

Precision NA 91.1% NA NA NA 87.3%

mAP NA NA NA NA 87.5%

91.37%,

87.4% for
(A), (C)

a. NA stands for Not Available

VIII. CONCLUSION

Converting mockup design images into front-end code
presents a formidable challenge, as it necessitates a visual
understanding of the images to detect the UI elements and their
hierarchical structure. This paper introduces a novel approach

that generates cross-platform front-end code from high fidelity
mockup images. At the core of the proposed pipeline,
YOLOv7 is utilized for the object detection phase. The
approach utilizes YOLOv7 to accurately detect atomic and
container UI elements, capturing their spatial location, and
subsequently leverages this information to construct a
comprehensive UI representation object that encompasses the
layout hierarchy of elements within the mockup, showcasing
its ability to effectively identify UI elements in mockups. Our
second contribution entails the development of a data
preprocessing pipeline aimed at addressing the limitations
present in the semantic dataset. This pipeline enables us to
construct custom datasets specifically tailored to the atomic
and container models. The conducted technical evaluation
showcases the promising nature of this approach and
encompasses a broad spectrum of evaluation metrics, providing
a foundation for future studies. This study ensures that deep
learning techniques are well-suited for visual recognition tasks
involving various types of GUI components.

IX. FUTURE WORK

Despite the comparatively small training datasets used,
remarkable results are achieved. As a future work, it is
imperative to augment the dataset by incorporating additional
instances of elements and meticulously annotating them,
thereby providing the models with a more diverse and
comprehensive set of training data. Furthermore, there is a
need for more extensive coverage of certain cases in the UI
element grouping approach. This is particularly important
when dealing with scenarios where multiple vertically arranged
cards are aligned next to only one card.

REFERENCES

[1] IDC, "Mobile Trends Report," 2015. [Online]. Available:
https://www.appcelerator.com/resource-center/research/2015-mobile-
trends-report/ Accessed: 15 February 2018.

[2] B. A. Myers and M. B. Rosson, “Survey on user interface
programming,” in Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’92, New York, New York, USA:
ACM Press, 1992, pp. 195–202. doi: 10.1145/142750.142789.

[3] M. W. Newman and J. A. Landay, “Sitemaps, storyboards, and
specifications,” in Proceedings of the 3rd conference on Designing
interactive systems: processes, practices, methods, and techniques, New
York, NY, USA: ACM, Aug. 2000, pp. 263–274. doi:
10.1145/347642.347758.

[4] P. Campos and N. Nunes, “Practitioner Tools and Workstyles for User-
Interface Design,” IEEE Software, vol. 24, no. 1, pp. 73–80, Jan. 2007,
doi: 10.1109/MS.2007.24.

[5] T. Silva da Silva, A. Martin, F. Maurer, and M. Silveira, “User-Centered
Design and Agile Methods: A Systematic Review,” in 2011 AGILE
Conference, IEEE, Aug. 2011, pp. 77–86. doi: 10.1109/AGILE.2011.24.

[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution
Using Deep Convolutional Networks,” Dec. 2014, [Online]. Available:
http://arxiv.org/abs/1501.00092.

[7] B. Varadarajan, G. Toderici, S. Vijayanarasimhan, and A. Natsev,
“Efficient Large Scale Video Classification,” May 2015, [Online].
Available: http://arxiv.org/abs/1505.06250.

[8] A F M Saifuddin Saif, Trung Duong and Zachary Holden, “Computer
Vision-based Efficient Segmentation Method for Left Ventricular
Epicardium and Endocardium using Deep Learning” International
Journal of Advanced Computer Science and Applications(IJACSA),
14(12), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141201.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 3, 2024

691 | P a g e

www.ijacsa.thesai.org

[9] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
Jul. 2022, [Online]. Available: https://arxiv.org/abs/2207.02696.

[10] T. Beltramelli, “pix2code,” in Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, New York,
NY, USA: ACM, Jun. 2018, pp. 1–6. doi: 10.1145/3220134.3220135.

[11] Z. Zhang, Y. Ding, and C. Huang, “Automatic Front-end Code
Generation from image Via Multi-Head Attention,” in 2023 4th
International Conference on Computer Engineering and Application
(ICCEA), IEEE, Apr. 2023, pp. 869–872. doi:
10.1109/ICCEA58433.2023.10135462.

[12] B. Cai, J. Luo, and Z. Feng, “A novel code generator for graphical user
interfaces,” Sci Rep, vol. 13, no. 1, p. 20329, Nov. 2023, doi:
10.1038/s41598-023-46500-6.

[13] B. Asiroglu et al., “A Deep Learning Based Object Detection System for
User Interface Code Generation,” in 2022 International Congress on
Human-Computer Interaction, Optimization and Robotic Applications
(HORA), IEEE, Jun. 2022, pp. 1–5. doi:
10.1109/HORA55278.2022.9799941.

[14] T. A. Nguyen and C. Csallner, “Reverse Engineering Mobile
Application User Interfaces with REMAUI (T),” in 2015 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, Nov. 2015, pp. 248–259. doi:
10.1109/ASE.2015.32.

[15] K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D.
Poshyvanyk, “Machine Learning-Based Prototyping of Graphical User
Interfaces for Mobile Apps,” IEEE Transactions on Software
Engineering, vol. 46, no. 2, pp. 196–221, Feb. 2020, doi:
10.1109/TSE.2018.2844788.

[16] S. Chen, L. Fan, T. Su, L. Ma, Y. Liu, and L. Xu, “Automated Cross-
Platform GUI Code Generation for Mobile Apps,” in 2019 IEEE 1st
International Workshop on Artificial Intelligence for Mobile
(AI4Mobile), IEEE, Feb. 2019, pp. 13–16. doi:
10.1109/AI4Mobile.2019.8672718.

[17] M. Xie, S. Feng, Z. Xing, J. Chen, and C. Chen, “UIED: a hybrid tool
for GUI element detection,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, New York, NY, USA:
ACM, Nov. 2020, pp. 1655–1659. doi: 10.1145/3368089.3417940.

[18] X. Zhang, L. De Greef, and S. White, “Screen Recognition: Creating
Accessibility Metadata for Mobile Applications from Pixels,” in
Conference on Human Factors in Computing Systems - Proceedings,
Association for Computing Machinery, May 2021. doi:
10.1145/3411764.3445186.

[19] B. Deka et al., “Rico,” in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, New York,
NY, USA: ACM, Oct. 2017, pp. 845–854. doi:
10.1145/3126594.3126651.

[20] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar,
“Learning Design Semantics for Mobile Apps,” in Proceedings of the
31st Annual ACM Symposium on User Interface Software and
Technology, New York, NY, USA: ACM, Oct. 2018, pp. 569–579. doi:
10.1145/3242587.3242650.

[21] Tzutalin, LabelImg, 2015. [Online]. Available:
https://github.com/tzutalin/labelImg. Accessed: Feb. 26, 2021.

[22] A. Kay, “Tesseract: an open-source optical character recognition
engine,” Linux Journal, vol. 2007, no. 159, p. 2, 2007.

