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Abstract—Graphical user interface (GUI) is the most 

prevalent type of user interfaces (UI) due to its visual nature, 

which allows direct manipulation and interaction with the 

software. Mockup-based design is a frequently used workflow for 

constructing GUI. In this workflow, the anticipated UI design 

process typically progresses through multiple steps, culminating 

in the creation of a higher fidelity mockup and subsequent 

implementation of that mockup into code. The design process 

involves repeating those multiple steps because of the ongoing 

changes in requirements, which can make the process tedious 

and necessitate modifications to the GUI code. Additionally, the 

process of implementing and converting a design into GUI code 

itself is laborious and time-consuming task that can prevent 

developers from dedicating the bulk of their time implementing 

the software's functionality and logic, making it a costly 

endeavor. Automating the code generation process using GUI 

design images can be a solution to mitigate these issues and allow 

more time to be allocated towards building the application's 

functionality. In this research paper, deep learning object 

detectors are employed to detect the predominant UI elements 

and their spatial arrangement in a high-fidelity UI mockup 

image. This approach generates an intermediate representation, 

including the layout hierarchy of the user interface leading to the 

automation of the front-end code generation process for the 

mockup. The proposed approach demonstrates its effectiveness 

through experimental results, achieving a recognition mean 

average precision (mAP) of 91.37% for atomic elements and 

87.40% for container elements in the mockup image. 

Additionally, similarity metrics are employed to assess the visual 

resemblance between the generated mockups and the original 

ones. 

Keywords—Code generation; graphical user interfaces; deep 

learning; computer vision; mockups 

I. INTRODUCTION 

In an interactive software, there are user interfaces (UIs) 
which are used by users to communicate with the system and to 
operate the system’s functionalities. The most popular form of 
UI is graphical user interface (GUI) because of its visual nature 
which allows direct manipulation of the software. The 
development of GUIs for apps is often a manual and time-
consuming task. Based on a survey [1] conducted among over 
5,700 developers, around 51% reported working on app UI 
design tasks on a daily basis, more than other development 
tasks, which they tended to perform every few days. Another 
study revealed that an average of 45% of the code size of 
software is relevant to the user interface and that the average 

time spent on the user interface portion is nearly 50% during 
the implementation phase [2]. 

A common workflow for building user interfaces is 
mockup-based design [3]. In this approach, a graphic designer 
creates a rough illustration of the anticipated UI design. 
Ideally, design process need to go through several steps. It 
often starts as a digital or sketched wireframe [4]. A wireframe 
is a document which outlines the basic structure of the 
application. A wireframe does not define specific details such 
as colors. After a wireframe is created, it is refined and more 
detail is added i.e. it becomes a higher fidelity mockup [5]. 
After finalizing the design, the implementation of that design 
starts. Finally, that prototype should be evaluated to check its 
usability and to discover design problems. Those steps are 
repeated until the prototype considered satisfactory. With 
continuous changes in the requirements, this whole design 
process becomes monotonous and the GUI code needs to be 
modified accordingly. 

This process of implementing client-side software based on 
a GUI mockup created by designers is the responsibility of 
developers. Implementing and converting a design into GUI 
code is time-consuming for the developer and prevent 
developers from dedicating the majority of their time 
implementing the actual functionality and logic of the software 
and therefore costly. Moreover, considering the complexity of 
UI, generating the GUI code from mockups requires extensive 
experience as extracting visible elements and their relationship, 
selecting proper widgets from diversity of UI components, and 
generating source code are error-prone task. One more problem 
associated with generating front-end code from GUI image is 
that computer languages used to implement such GUIs are 
specific to each target runtime system; thus resulting in tedious 
and repetitive work when the software being built is expected 
to run on multiple platforms using native technologies [10]. 

To cut down these problems, and to invest time in building 
the actual functionality of the application, front-end code 
automation is required. Basically, developers have to visually 
realize UI elements and their spatial layout in the image, and 
then translate this knowledge into proper GUI components and 
their compositions. Automating this visual understanding and 
translation would be beneficial for bootstrapping GUI 
implementation. However, it is a challenging task due to the 
diversity of UI designs and the complexity of GUI code to 
generate. Understanding mockups in the form of images by a 
machine is a problem of Computer Vision since it entails a 
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machine making deductions from mockups, understanding 
them and extracting logical information from them. Computer 
Vision has made surpassing progress since its beginning. Deep 
learning methods may be applicable to this task. Deep Neural 
Networks (DNN) has been extremely popular with the 
introduction of Convolutional Neural Networks (CNN) and has 
shown considerable success over classical techniques when 
applied to other domains, particularly in vision problems [6, 7, 
8]. 

Detection of objects in UI screenshots is an unusual visual 
recognition task that requires a distinct solution. In this 
research paper, a novel approach is introduced for identifying 
UI elements in high fidelity GUI mockups through the 
utilization of Deep Learning, as well as generating code 
automatically. To accomplish this, YOLOv7 [9] object detector 
models are employed in order to detect atomic and container 
elements within a UI screenshot. These detectors are trained 
using a specifically curated dataset of UI mockup images. 
Subsequently, UI representation object and layout hierarchy 
are constructed to assist generating cross platform code. 

This study makes two primary contributions. Firstly, it 
proposes a unique approach that separates atomic and container 
UI elements into distinct models, resulting in enhanced 
detection accuracy. Secondly, it involves the creation of a data 
preprocessing pipeline specifically designed to overcome the 
limitations found in the semantic dataset. This research paper 
sticks to mockups rather than hand-drawn wireframes as there 
is no universally agreed-upon standard for wireframe symbols 
and they may not provide the level of precision and 
consistency required for complex UI designs. 

The rest of the paper is organized as follows. The 
background is illustrated in Section II, followed by the related 
works in Section III. The dataset and data preprocessing 
pipeline are discussed in Section IV, followed by the research 
methodology in Section V. The evaluation is illustrated in 
Section VI. Section VII provides a discussion that compares 
the results with existing studies. Section VIII sketches out the 
future work. Finally, Section IX concludes the paper. 

II. BACKGROUND 

There is a misunderstanding regarding the meanings of 
wireframes, mockups, and how they differ from each other. It 
is important to provide an accurate explanation and distinguish 
these concepts from one another. The design process can be 
divided into three stages sequentially, namely wireframes, 
mockups, and prototypes. While the aforementioned sequence 
is prevalent and commonly used, it is possible for the design 
process not to go through all the stages or have minor 
variations depending on the designer, team, and project. For 
the purpose of this discussion, the focus will be on wireframes 
and mockups. 

A. Wireframes 

A wireframe also known as screen blueprint is a document 
which outlines the basic structure and layout of a page or 
screen when referred to applications that demonstrates what 
interface elements will exist on key pages. A wireframe is 
regarded as a low fidelity design document due to its simplicity 
and lack of visual styles and branding elements. Additionally, 

it does not provide specific details, such as colors, images or 
even right content. Furthermore, its purpose is to offer a basic 
visual understanding of a page at the beginning of a project to 
obtain approval from stakeholders and the team before 
commencing the creative phase. 

Wireframes can be classified into two categories: digital or 
hand-drawn wireframes. Hand-drawn wireframe, also known 
as sketch, is useful for early design stages and rapid iterations. 
It helps designers to quickly visualize rough ideas, create an 
initial model for the overall layout in a basic format. On the 
other hand, digital wireframe is more detailed but yet simple. It 
is usually created using digital wireframing tools. While it still 
does not include specific components like images or full text, it 
provides much more detail than its Hand-drawn counterpart as 
shown in Fig. 1. 

Despite the availability of digital wireframing tools, most 
designers tend to begin by sketching on paper with a pen 
(Hand-drawn wireframe). This is because designers usually 
possess an art background and may feel limited by digital tools. 
Although there is no universally agreed-upon standard, 
wireframe sketches generally use a similar group of symbols 
that have commonly understood meanings. Fig. 2 illustrates 
some of these elements. 

 
Fig. 1. The difference between Hand-drawn wireframe (a) and Digital 

wireframe (b). 

 
Fig. 2. Examples of elements commonly used to represent UI elements in 

wireframes. 
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B. Mockups 

A mockup is a high fidelity design document that is the 
most detailed and closest to the actual end product design and 
similar in nature to an app GUI screenshot. It proposes the final 
look of the design and is usually built between wireframing 
and prototyping. Wireframes are designed to represent the 
structure and functional requirements, which are then featured 
in mockups. Therefore, mockups are essentially wireframes 
with visual design, such as images, colors, and typography. 
Fig. 3 shows the difference between wireframe and mockup. 

Additionally, those mentioned concepts can be classified in 
another way. They can be classified into three different levels: 
(1) low-fidelity, which resembles hand-drawn wireframes and 
outlines the basic structure of a page, (2) mid-fidelity, which 
resembles digital wireframes and is the start of mocking up the 
actual interface, and (3) high-fidelity, essentially mockups with 
high-quality visuals and contents. 

When it comes to wireframes and mockups, designers have 
different practices and preferences, they can: (1) start with 
hand-drawn wireframes and then immediately craft mockups, 
(2) start with digital wireframes and then convert them into 
mockups, or (3) start with hand-drawn wireframes, convert 
them to a digital format and then to mockups. After completing 
the final design document, designers pass their work on to 
front-end developers for implementing it into code. 
Implementing user interfaces involves re-creating in code what 
the designers created graphically in a software. Although 
developers typically prioritize implementing core 
functionalities, they often end up spending a significant amount 
of time coding user interfaces. 

III. RELATED WORK 

Recently, there has been a growing interest in the use of 
deep learning and computer vision techniques to automatically 
generate UI code, which is a relatively new field of research. 
This section provides a review of the existing techniques and 
approaches that uses deep learning and computer vision to 
classify UI components in mockups presented as images. In 
this section, the attention will be directed towards the relevant 
studies that specifically concentrate on mockups and 
screenshots. 

 
Fig. 3. The difference between Hand-drawn wireframe (a) and Digital 

wireframe (b) and Mockup (c). 

Authors in [10] proposed an application, called Pix2code 
that transforms high-fidelity GUI screenshots created by 
designers into computer code. This application utilizes a Deep 
Learning framework to convert GUI images into their 
corresponding code for three different platforms, namely web-
based, Android and iOS. The pix2code dataset is constructed 
by mapping bootstrap-based websites into Domain-specific 
language (DSL) consisting of 18 vocabulary tokens that 
describe websites layout and components. The dataset 
comprises 3,500 pairs of websites GUI images and their 
corresponding markup which is in DSL code. The main idea 
behind Pix2code is to train a model to learn the mapping 
between a GUI screenshot and the corresponding code that 
generates the GUI. The model relies on two main components. 
First, a Convolutional Neural Network is used to perform 
unsupervised feature learning on the GUI image. Second, a 
Recurrent Neural Network (RNN) is used to perform language 
modeling on the DSL code associated with the input GUI 
image. 

In Pix2code, a three-step approach is required to solve the 
problem. First, a CNN-based image encoder is used to extract 
high-level visual features from GUI screenshot. These features 
are then passed through a fully connected layer to generate a 
fixed-length feature vector, which represents the input image. 
Second, long short-term memory (LSTM) network is used 
which is a type of RNN architecture. The LSTM network is 
trained to perform language modeling on the DSL code 
associated with the input GUI image. As a result of this 
training, the LSTM network gains an understanding of the 
syntax and semantics of the source code, which enables it to 
generate a language-encoded vector. This vector is a sequence 
of one-hot encoded tokens that correspond to the DSL code. 
Third, LSTM-based code decoder is used. Vectors from the 
previous two steps are concatenated and then fed into this 
decoder, which is able to generate high-quality code that 
accurately reflects the layout and components of the input GUI 
image. This LSTM decoder is trained to learn the relationship 
between objects present in the input GUI image and the 
associated tokens present in the DSL code. 

While Pix2code performs well with simple datasets, it 
struggles with complex datasets containing numerous code 
tokens. To address this limitation, a novel front-end code 
generation approach is proposed [11], which utilizes multiple 
heads of attention to examine the feature vectors of GUI 
screenshots. This technique enables the analysis of the feature 
vectors, generation of code tokens, and seamless integration of 
the analysis and generation processes. 

In the cited study [12], the approach is divided into three 
main components: (1) object detection, (2) text recognition, 
and (3) code generation. The process involves inputting a GUI 
image and running parallel modules for image processing, deep 
learning, and text detection and recognition. The GUI elements 
are detected using a fusion of deep neural network and 
traditional image processing techniques, followed by 
integrating the results from the text detection and recognition 
module. The detection results are then used to generate 
corresponding codes using a parser. Another study proposed in 
[13], employed a Deep Learning (DL) approach to design a 
system for generating GUI code for websites. A dataset 
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containing the coordinate, width, height, and type information 
of GUI objects is curated using 7500 webpages. This dataset is 
then utilized in the proposed system to detect objects within 
GUI images and generate DSL mark-up code. 

Nguyen et al. [14] was the first to propose the technology 
of automatic reverse engineering of mobile application user 
interface (REMAUI). By analyzing screenshots of a mobile 
application's user interface, REMAUI detects the presence of 
different components, such as buttons, textboxes, and pictures, 
and generates their corresponding code. Their study was the 
first to utilize computer vision and optical character recognition 
techniques in addition to mobile specific heuristics to enable 
conversion of screen images into code for mobile platforms. 
This method not only translates the structure, but also the style 
(images, colors, fonts) of the designs. The REMAUI method 
works successfully, but its potential is limited by the time-
consuming process needed to adapt techniques for identifying 
new elements. 

Moran et al. [15] proposed ReDraw based on REMAUI. 
ReDraw is an algorithm that takes mockups of mobile 
application screens and generates structured XML code for 
them. The paper outlines a three-stage approach to automate 
the conversion of GUI designs to code, which involves the 
following steps: (1) Detection, (2) Classification, and (3) 
Assembly. The initial stage of their approach involves utilizing 
computer vision techniques to identify the individual 
components of the GUI. In the second stage, the identified 
components are classified based on their functionality, such as 
toggle-button, text-area, etc. This is achieved through the use 
of CNN. In the final stage, the XML code is generated by 
combining the results of the previous stages with the K-nearest 
neighbor (KNN) algorithm, which organizes the code based on 
web programming hierarchy. It is worth noting that the authors 
of this paper have also contributed to the development of a 
dataset. The dataset includes 14,382 GUI images with a total of 
191,300 annotated GUI segments. These segments encompass 
15 different classifications, including RadioButton, 
ProgressBar, Switch, Button, and Checkbox. The 
aforementioned CNN model relies on this dataset for training 
and evaluation purposes. 

A framework proposed in [16] takes UI pages as input and 
generates the corresponding GUI code for Android or iOS as 
output. The authors first utilize traditional image processing 
techniques, such as edge detection, to identify the location of 
UI elements. They then employ CNN-based classification to 
determine the semantics of the UI elements, such as their type. 
The proposed framework consists of three phases, namely 
component identification, component type mapping, and GUI 
code generation. Component identification involves extracting 
components from the UI pages using image processing 
techniques, followed by identifying the component types (such 
as Button or TextView) using a deep learning algorithm based 
on CNN classification. Component type mapping maps the 
identified component types to their corresponding components 
in the target platform. GUI code generation generates the final 
GUI implementation code based on the component types and 
their attributes obtained from the previous two phases. The 
critical phase in this framework is the component type 

mapping, which employs a large map to generate the final code 
based on heuristic rules. 

UIED is a GUI element detection toolkit [17] that was 
introduced in 2020. Using an image-based approach, it 
provides users with a platform for detecting GUI elements. The 
toolkit offers a web interface that enables users to upload their 
GUIs, and the system automatically detects and identifies the 
elements within them. In the approach proposed by [17], the 
detection task is split into two parts: (1) non-text element 
detection and (2) text detection. To extract non-text regions, 
traditional computer vision algorithms are utilized, while deep 
learning models are employed for classification and text 
detection. To detect non-text elements, the approach utilizes 
the Flood-Fill and Sklansky algorithms to identify potential 
layout blocks. The image is then subjected to edge detection 
and converted into a binary map form. The binary map is 
segmented into block segments based on the previously 
detected blocks, and the connected component labelling 
algorithm is used to detect GUI elements within each block. 
The detected elements are then classified using a ResNet-50, 
which was trained on a dataset of 90,000 GUI elements divided 
into 15 classes.  To detect text, the approach utilizes the 
advanced EAST OCR, which is a deep learning-based scene 
text detector that can accurately identify text within the 
screenshot image. 

Screen Recognition [18] is a system that generates 
metadata describing UI components from a single GUI image. 
This metadata is then forwarded to iOS VoiceOver, which 
enhances accessibility. The system is optimized for mobile 
devices, ensuring that it is both memory-efficient and fast. To 
achieve this, it utilizes deep learning techniques trained on an 
iPhone application dataset. The authors created a dataset of 
GUIs from thousands of iPhone applications by manually 
downloading the top 200 most popular applications from each 
of the 23 categories (excluding games). They then gathered 
screenshots of visited UIs and their metadata (tree structure, 
properties of UI elements), but the data was incomplete, so 
manual annotation was required. Ultimately, 40 individuals 
annotated all UI elements in the collected screenshots using 
bounding boxes and identifiers, resulting in a dataset of 77,637 
annotated UI screens. The UI detection model is designed to 
extract elements from a GUI and classify them accordingly. To 
achieve this, the solution employs an SSD model with a 
MobileNetV1 backbone. After the inference, the output is post-
processed to eliminate extraneous detections, and the built-in 
OCR service is utilized to identify any missing elements. 
However, since the detector generates separate bounding boxes 
for each element, the UI elements need to be grouped. This is 
accomplished using hard-coded heuristics that were 
empirically acquired from 300 randomly selected samples. 

IV. DATA PREPROCESSING PIPELINE 

Before presenting the proposed methodology and exploring 
it in details, a dataset is established that comprises clean UI 
annotations based on an existing mobile UI corpus. This 
section introduces a data preprocessing pipeline specifically 
designed to overcome challenges and problems associated with 
the UI corpus in order to produce a polished and clean dataset. 
This pipeline not only helps overcome UI corpus challenges 
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but also plays a crucial role in converting raw data instance 
within the dataset into a format that is compatible with the 
proposed methodology. In this section, a detailed description is 
provided of the dataset creation process and outlines the steps 
involved in the data preprocessing pipeline. 

A. Mobile UI Corpus 

The research experimental dataset is constructed by 
leveraging the open sourced Rico [19] dataset. The Rico 
dataset stands out as the most extensive public collection of 
mobile GUIs. It comprises 66,261 distinct GUI screens 
obtained from over 9.7k free Android applications spanning 27 
diverse categories. Each example within this large-scale dataset 
consists of a screenshot and its corresponding view hierarchy 
metadata. A view hierarchy represents a tree structure of the UI 
layout wherein each node corresponds to an element within the 
UI. Each node encompasses a range of properties, including the 
UI element's position, its Android class, and various attributes 
that define the element. 

Although the view hierarchy metadata provides 
specification for UI elements and their layout, a notable issue 
arises from the fact that the captured view hierarchies often 
contain enormous number of different element types. This 
abundance of different types poses challenges for training deep 
learning models and can potentially adversely affect their 
performance. Additionally, the view hierarchy metadata may 
include elements with overly generic types like View, 
WebView, as well as elements with custom types such as 
custom views or views from third-party packages. 
Consequently, this lack of specificity in element types hampers 
the conveyance of meaningful semantic information about the 
UI components displayed on the screen. 

To address this, Liu et al. [20] suggest a method for 
generating semantic annotations where semantic types are 
assigned to the UI elements of the Rico view hierarchies. These 
annotations are applied on each screenshot in Rico dataset, 
enabling the identification of elements present in the UI along 
with their associated view hierarchy as a tree. 25 types of UI 
elements are defined in these sematic annotations, including 
TEXT, IMAGE, DRAWER, BUTTON, and more. However, 
the generated annotations are still noisy and not suitable for the 
purpose of comprehending GUIs. In this paper, these semantic 
annotations, which is in JSON format, and its corresponding 
screenshots obtained from the Rico dataset are referred to as 
the semantic dataset. 

B. Semantic Dataset Limitations 

In this section, the objective is to highlight the limitations 
identified in the semantic dataset, with the aim of obtaining a 
clean UI dataset that improves the performance of the proposed 
model. The primary concern lies within the UI elements 
themselves. One issue arises when the JSON annotation 
contains bounding boxes of an element that do not have visual 
correspondences on the corresponding screenshot. Another 
issue involves misaligned elements where bounding boxes 
partially cover other elements. An additional issue arises with 
elements that are extremely small, resulting in a zero area due 
to the element's boundary box having zero values for both 
width and height. 

Another primary concern revolves around the incorrect 
semantic annotations assigned to UI elements. For instance, an 
ON-OFF SWITCH element being mistakenly labeled as an 
INPUT element. In addition to incorrect labeling of certain UI 
elements in the screenshots, there are cases where entire 
screenshots are inaccurately labeled, as if the annotations 
belong to an entirely different screenshot as shown in Fig. 4. 
Another significant concern emerges when the annotation 
JSON contains different semantic types that share the same 
bounding boxes. This creates a problem in determining which 
type among them is the correct one to consider for that 
particular boundary box. 

Another observed issue is the presence of elements that are 
repeated multiple times in a screenshot, following a pattern 
such as items in a list or grid. While these elements may have 
similar shapes and structures, they are assigned different 
semantic types. For instance, in a list arrangement, some 
elements are labeled as ICON type while others are labeled as 
IMAGE type, despite all of them having the same shape. There 
is an additional concern regarding DRAWER and MODAL 
types, which are regarded as containers. The problem revolves 
around identifying UI elements that are contained within these 
types, as well as distinguishing elements that are not part of 
them, even if their boundary boxes overlap with both. 

The most recent and significant issue observed is that 
certain UI elements are semantically labeled based on their 
functionality. However, visually, these elements should be 
categorized under a different UI type due to their shape and 
resemblance to that type. For instance, there are UI elements 
labeled as RADIO_BUTTON based on their functionality, but 
visually, they closely resemble the BUTTON type on the 
screenshot as shown in Fig. 5. This issue has the potential to 
significantly challenge the model and impact its performance. 
In order to construct the experimental dataset, limitations and 
issues highlighted above with the semantic dataset should be 
addressed through a data preprocessing pipeline. 

 

Fig. 4. Entire screenshot (a) are inaccurately labeled in semantic dataset (b). 
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Fig. 5. Radio buttons that closely resemble the Button type. 

C. Data Preprocessing Pipeline 

The data preprocessing pipeline comprises four phases, as 
shown in Fig. 6: (1) neglecting phase, (2) extraction phase, (3) 
selection phase, and (4) formatting phase. In the initial stage, 
known as the neglecting phase, any incorrect data instances in 
the dataset are discarded. Data instances in the dataset are 
neglected if the entire screenshots have incorrect labels. 
Additionally, data instances are neglected if the screenshots do 
not come from an application and only consist of an Android 
launcher. 

During the second phase, the objective is to extract all UI 
elements that are presented in the annotation JSON for each 
screenshot. To accomplish this, a Depth-First Search (DFS) 
algorithm is employed using recursion to traverse the 
annotation’s tree for each screen. The outcome of this phase is 
the generation of a file for each screenshot, where each file 
contains a Python dictionary comprising all the extracted final 
UI elements. While executing this phase, UI elements with 
zero area are disregarded. In cases where multiple UI elements 
share the same boundary box, the last UI element visited 
during the pre-order traversal is retained and its semantic type 
is considered as the appropriate choice for that boundary box 
neglecting other elements that share the same boundary box. 

During execution and when encountering a node in the 
JSON tree with the DRAWER or MODAL types, these types 
are treated as the parent node and added to a STACK. This 
signifies that all the visited children (UI elements), until 
reaching the parent node again, are contained within this type. 
Subsequently, the parent node's type is removed from the stack. 
All these UI elements associated with the parent node are 
stored in a separate list. Next, a check is performed to 
determine if there is any overlay (IOU) between any other UI 
element found in the annotation JSON and the parent type 
(DRAWER or MODAL). If the overlay exceeds 20%, the 
element is removed as it is considered to be hidden under the 
parent type (DRAWER or MODAL), as observed through 
Trial and error. 

 

Fig. 6. Data preprocessing pipeline. 

In the selection phase, the goal is to discern and filter the 
most suitable UI images for each semantic type, while 
excluding the incorrect ones. For every semantic type such as 
TOOLBAR, DRAWER, and others, a corresponding folder is 
generated to store all the images related to that semantic type. 
To accomplish this, the output of the preceding phase is 
utilized, which includes a generated file for each screenshot 
containing the extracted UI elements. For each file, each UI 
element is extracted based on its boundary box by cropping it 
from the image, and then place it in the folder that corresponds 
to its semantic type. The outcome is a set of folders, each 
named after one of the semantic types, and each folder contains 
images of UI element specific to that semantic type. 

Two checks on the images are performed within each 
folder. Firstly, any image that has been labeled incorrectly is 
identified and should actually belong to a different type. 
Secondly, we prioritize retaining the standard shapes 
associated with each type, while eliminating UI elements that 
might have similar functionality but visually belong to a 
different semantic type. Based on these checks, all false images 
are eliminated/deleted, resulting in filtered folders that 
exclusively contain the visually best images of their respective 
UI elements. 

The final phase is the formatting phase, where the boundary 
boxes of the UI elements are normalized. Moreover, each UI 
type is encoded with a predefined number to ensure 
compatibility with the YOLO format. The purpose of the 
formatting phase is to prepare the dataset in a suitable format to 
be used as input for the proposed model. To achieve this, the 
generated files obtained from the extraction phase are utilized. 
We iterate through each UI element in each file and verify if it 
is still present in the corresponding folder of its semantic type. 
If it is, the UI element is considered valid. Its boundary box, 
alongside its corresponding UI type, is saved in a text file using 
the YOLO format. Conversely, if the UI element is not found 
in the designated folder, it is neglected and excluded from 
further processing. 

By employing the YOLO labeling format, this phase yields 
the creation of a text file for each screenshot, mirroring their 
respective names. Each text file contains separate lines, with 
each line presenting the details of a single UI element, 
including its boundary box and type. The boundary box and 
type for each UI element are described using specific 
representations. The bounding box is denoted by four values: 
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x_center, y_center, width, and height. The x_center and 
y_center represent the normalized coordinates of the bounding 
box's center. To achieve normalization, the pixel values of x 
and y, corresponding to the center of the bounding box on the 
x- and y-axis, are divided by the width and height of the image, 
respectively. The width and height values indicate the 
dimensions of the bounding box, and they are also normalized. 
In relation to the UI type, all semantic types are assigned 
numerical encodings. Each number corresponds to a specific 
UI type. 

Finally, each UI element is represented in the YOLO 
format as a line, consisting of the encoded UI type known as 
class, normalized x_center, normalized y_center, normalized 
width, and normalized height. The outcome of this phase is our 
custom dataset in which each data instance includes a UI 
screenshot along with its corresponding text file, providing 
descriptions of the UI objects present in the screenshot in 
YOLO format. 

D. Semantic Types 

In this research, the primary emphasis lies on specific 20 
semantic types, from those outlined by Liu et al. [20] in their 
semantic dataset. However, modifications are made by 
introducing new semantic types that are described below. The 
intention behind introducing these new types is to prioritize the 
visual aspects of the elements, enabling us to accurately 
translate these UI elements into corresponding code widgets. 

Before introducing new semantic types, the WEB VIEW 
type is excluded because it does not qualify as a standalone 
semantic type. WEB VIEW refers to web content that is 
displayed within a mobile application, encompassing various 
UI elements that are not individually labeled. This research 
opted to exclude the VIDEO type and instead categorized them 
as IMAGE type since we consider them to be indistinguishable 
on static screenshots. Additionally, based on the same 
rationale, the ADVERTISEMENT type is excluded and 
classified as an IMAGE type. This decision is supported by the 
fact that in the code, the same image cannot be selected to be 
displayed as an advertisement, as it is a real-time process. We 
differentiate between the IMAGE and ICON types. IMAGE is 
reserved for real images that depict tangible objects, which can 
be captured by sensors. On the other hand, ICON is used to 
represent vector graphics images and logos. 

In contrast, additional UI types are also introduced, 
including BOTTOM_SHEET, SPINNER, and 
PROGRESS_BAR. Within the RICO dataset, there are 
numerous screenshots that feature progress bars, even though 
they are not specifically classified as a type in the semantic 
dataset. To address this, an analysis was conducted by 
inspecting the nodes in the view hierarchy that contained an 
Android class named ProgressBar. In relation to 
BOTTOM_SHEET, the investigation of the DRAWER type 
revealed that bottom sheets are classified along with drawers. 
Drawers are side-bar menus that display an application's 
primary navigation options and can be toggled to open or close. 
On the other hand, bottom sheets are surfaces that contain 
supplementary content and are anchored to the bottom of the 
screen. We decided to categorize them separately because we 
perceived significant visual distinctions that warranted the 

creation of new class. Moreover, from a coding perspective, 
these elements require the implementation of entirely different 
widgets. Similarly, a similar situation was encountered with the 
SPINNER type. Initially, it was grouped under the MODAL 
type. However, as modals represent pop-up windows or 
dialogs, and spinners are drop-down menus, we decided to 
separate them due to the same rationale applied to the 
DRAWER and BOTTOM_SHEET types. 

In total, a set of 23 semantic types has been established, 
encompassing BOTTOM_NAVIGATION, BUTTON_BAR, 
CARD, CHECKBOX, DATE_PICKER, DRAWER, ICON, 
IMAGE, INPUT, LIST_ITEM, MAP_VIEW, MODAL, 
MULTI-TAB, ON/OFF_SWITCH, PAGER_INDICATOR, 
RADIO_BUTTON, SLIDER, TEXT, BUTTON, TOOLBAR, 
SPINNER, PROGRESS_BAR, and BOTTOM_SHEET. 

V. RESEARCH METHODOLOGY 

Our methodology involves a five-phase pipeline that takes 
a high fidelity mockup image as input and generates a cross-
platform application in real-time as the output. There are five 
phases involved in our methodology: (1) Model preparation, 
(2) Object detection, (3) Element post-processing, 
(4) Construction of the layout hierarchy, and (5) Code 
generation. The overall architecture of the proposed 
methodology is illustrated in Fig. 7. As depicted, the process 
utilizes pre-trained models to expedite training and enhance 
overall performance. Subsequently, our custom datasets are 
employed to fine-tune the pre-trained models and tailor them 
specifically to the desired domain. The training process for 
these custom models is a one-time occurrence. Once the 
custom models have been trained, they are employed solely for 
the purpose of detecting UI elements in the input mockup 
image. 

This paper adopts a DNN approach for object detection. 
Object detection involves the classification and localization of 
various objects within an image. It encompasses the 
assignment of appropriate labels to each object and the creation 
of bounding boxes around them to enhance recognition. Object 
detection not only informs us about the presence of specific 
objects in an image, but also provides information about their 
spatial location. To locate the UI elements within the mockup 
images, the YOLOv7 real-time object detection model was 
utilized. YOLO, also known as You Only Look Once, is a deep 
learning model that has undergone several iterations to become 
a powerful solution for real-time object detection and 
localization. It falls under the category of one-stage detectors, 
offering fast inference speeds. In this section, the research 
paper will delve into the five-phase pipeline, providing a 
comprehensive and detailed explanation. 

A. Model Preparation 

To enhance the efficiency of YOLOv7, two aspects need to 
be tackled: (1) dataset-related concerns and 
(2) hyperparameters of the YOLO model. The first aspect 
involves addressing two areas: (1) balancing the dataset, and 
(2) improving dataset quality. The second aspect focuses on the 
selection of anchor boxes. 

Starting with the first aspect, balancing a dataset is crucial 
because imbalanced datasets pose challenges for predictive 
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modeling. By achieving balance, we ensure that the model does 
not exhibit bias towards a particular class. To illustrate this 
point, let's consider the outcome of the selection phase. If the 
number of UI images in the TEXT folder is compared to the 
number in the DATE_PICKER folder, a significant class 
imbalance is observed, with a ratio of 1:1455. This stark 
contrast in the number of instances for each class highlights the 
pronounced imbalance within the semantic dataset. 

 

Fig. 7. The overall architecture of the proposed methodology. 

In order to address this concern and achieve a balanced 
dataset, a technique that involves selecting a portion of our 
custom dataset has been applied in a manner that ensures a 
more even distribution of instances among all the classes. In 
this technique, a consistent quantity of screenshots will be 
allocated to each class (semantic type) in order to ensure that 
each class is represented in the dataset, particularly for classes 
with a small number of instances. It is essential that the 
screenshots selected for a specific class encompass instances 
that pertain to that class. Assigning a consistent number of 
screenshots to each class does not guarantee an equal number 
of instances, as a single screenshot may contain multiple 
instances of the same class and instances from other classes as 
well. By adopting this approach, we are able to regulate the 
quantity of screenshots chosen for each class and consequently 
the overall number of screenshots. This not only guarantees a 
minimum number of instances for each class but also sets an 
upper limit for classes with a large number of instances. As a 
result, it promotes a more balanced distribution of instances 
across the classes. This technique is utilized to create all the 
future datasets from the custom dataset specified in Section IV, 
which will subsequently be employed with YOLO models. 

Furthermore, the utilization of class weights is a prevalent 
technique employed to tackle class imbalance within a dataset. 
These weights determine the relative significance of each class 
during the training process. In this proposed approach, we have 
incorporated YOLOv7's inverse class frequency weighting, 
which assigns higher weights to underrepresented classes and 
lower weights to overrepresented classes based on their inverse 
frequency within the dataset. As a result, this approach 
amplifies the importance of less prevalent classes during the 
training process. 

Improving dataset quality is also a crucial concern in the 
process of training a YOLO model. One recurring issue 
observed in both the Rico dataset and the semantic dataset is 
the incomplete labeling of all visual elements present in the 

screenshot. For instance, while a button may be correctly 
annotated with the semantic type BUTTON, the accompanying 
text or icon within the button may not be labeled as shown in 
Fig. 8. 

 
Fig. 8. Incomplete labeling of all visual elements present in the screenshot. 

The buttons lack proper labeling for their text. 

Incomplete labeling for certain classes within the dataset 
may cause the proposed model to produce false negatives, 
leading to biased or suboptimal model performance, 
particularly for the classes with incomplete labeling. The 
model may struggle to accurately detect and classify instances 
of these classes resulting in reduced accuracy. In addition, 
incomplete labeling can lead to a problem in training models 
because the model might learn incorrect associations from the 
unlabeled instances of the class. This can result in poor 
performance when the model is used for prediction on new, 
unseen data. In order to mitigate this issue, ensuring complete 
labeling for all classes in the training dataset is essential. 
Consequently, the necessary step of manually verifying and 
adding annotations to the unlabeled objects in the screenshots 
was taken. To accomplish this, Labelimg [21] was utilized, a 
free, open-source software program written in Python for 
labeling images that enabled us to thoroughly check and 
annotate the previously unlabeled objects. 

When it comes to the second aspect, which involves 
adjusting the hyperparameters of the YOLO model, the 
selection of anchor boxes can significantly enhance efficiency. 
YOLOv7 is categorized as an anchor-based model. Anchor 
boxes are predetermined bounding boxes with specific 
dimensions in terms of height and width. These boxes should 
be specifically designed to capture the object classes with the 
scale and aspect ratio that you aim to detect. The general idea 
is to generate numerous possible bounding boxes initially and 
then choose the most suitable ones to match the target objects. 
These selected boxes are then slightly adjusted in terms of 
position and size to achieve the optimal fit. 

The choice of anchor boxes is crucial as YOLO predicts 
bounding boxes as offsets from these predefined anchors. By 
selecting optimal anchor boxes, the neural network's workload 
is reduced, resulting in higher model accuracy. To illustrate the 
optimal choice of anchor boxes, it is advisable to select anchor 
boxes that encompass a range of scales and aspect ratios. This 
ensures a better alignment with the size and shape of the 
objects being detected. Typically, anchor boxes are selected 
based on the object sizes found within your training datasets. 
To achieve this, K-Mean++ clustering algorithm is employed 
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to generate anchor boxes. This involves grouping the ground 
truth bounding boxes of UI elements in the training dataset into 
clusters and utilizing the centroids of these clusters as the 
anchor boxes, based on the number of anchor sizes that is 
needed. Fig. 9 illustrates the result of grouping boundary boxes 
of atomic elements into nine clusters based on their scale, 
where the centroids of these clusters act as anchor boxes. 

 
Fig. 9. The anchor boxes are represented by the centroids of atomic elements 

clusters. 

B. Object Detection 

Detecting GUI elements in the input mockup image is the 
essential phase of the proposed methodology. This particular 
phase consists of two modules, each with its own responsibility 
for detecting various elements in the mockup. The first module 
is designed to detect individual atomic elements, while the 
second module focuses on detecting container elements. Both 
modules take the mockup image as input and return the 
detected elements. Atomic elements are fundamental UI 
components that cannot be further divided and serve as the 
basic building blocks of an interface, such as checkbox or text 
elements. On the other hand, container elements are UI 
components that encompass and contain other UI elements, 
like toolbars and drawers. They act as visual boundaries or 
enclosures that primarily group and include atomic UI 
elements. Fig. 10 provides examples of both atomic and 
container elements. 

 
Fig. 10. Examples of both atomic and container elements. 

The research paper has separated these types of UI 
elements into two modules for two reasons. Firstly, it is to 

address the challenge of handling different object scales. 
Object detection can be difficult when dealing with objects of 
varying sizes. One YOLO model may struggle with detecting 
small objects while performing well on larger ones, and vice 
versa. By utilizing two YOLO models specifically trained for 
different object scales, you can enhance the accuracy and 
reliability of detection. Secondly, by having separate models, 
you can ensure that training a new class in one model does not 
interfere with the previously learned classes in the other model. 
This approach allows you to expand the system's capabilities 
by adding new classes or new instances for a specific class 
without affecting the performance of the other model. 

To detect atomic and container elements, a separate YOLO 
model was employed for each module. Each model was trained 
individually using distinct dataset derived from the custom 
dataset mentioned in Section IV. The previously mentioned 
dataset balancing technique was also applied to ensure the 
datasets were well-distributed. Both atomic and container 
models were trained for 400 epochs. For each module, the 
dataset is structured in the YOLO format. This includes a 
mockup image accompanied by a corresponding text file that 
describes the UI elements present in the mockup image. The 
text file contains information such as the object class, object 
coordinates, height, and width for each UI element. However, 
only the UI elements relevant to that specific module are 
retained in the dataset, while the other classes are removed. 
Initially, pre-trained YOLOv7 models were utilized that 
underwent training on the COCO dataset. Subsequently, for 
each module, fine-tuning on the YOLOv7 model was 
performed using its respective dataset. 

In the atomic module, the dataset consists of a total of 
1,400 examples. These examples are divided into training and 
validation sets, with 1,120 examples allocated for training and 
280 examples for validation. Similarly, in the container 
module, the dataset also contains 1,200 examples. These 
examples are split into 960 for training and 240 for validation. 
The output of each module is a generated list that contains the 
detected elements found in mockup image, providing 
information such as their class labels and corresponding 
bounding boxes. Finally, the outputs of both modules are 
combined by concatenating them. 

C. Element Post-processing 

In order to convert the mockup to code, it is necessary to 
detect the visual properties of the UI elements such as their 
sizes, main colors, and more. The previous phase has generated 
a list of detected UI elements, but this additional phase is 
required to accurately identify and extract these visual 
properties. In addition to capturing the visual properties related 
to style, it is also important to capture the current state of 
certain UI elements including aspects such as the content 
displayed, the selection state (e.g., whether an element is 
selected or not), or the percentage state (e.g., progress or 
completion percentage). 

By employing classical computer vision techniques, 
essential styling properties can be extracted for each UI 
element, such as width, height, main color, and background 
color. Additionally, for some UI elements, there would be 
other specific properties for them like border-radius for 
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buttons, number of page indicator circles, and whether a slider 
is 2-way slider or not and its selected range color. Furthermore, 
certain UI elements contain dynamic content such as TEXT 
elements. To extract text from these elements, Optical 
Character Recognition (OCR) techniques are employed. 
Specifically, we utilize the open-source Tesseract [22] OCR 
engine, accessed through the Pytesseract wrapper, which is 
implemented in Python. This allows us to recognize and extract 
textual values from regions identified as text by the YOLO 
model in the mockup image. 

On the other hand, there are several UI types that have 
selection states, such as RADIO_BUTTON, CHECKBOX, 
PAGE_INDICATOR, and ON/OFF_SWITCH. The proposed 
dataset, which is used to train the UI detection YOLO model, 
includes examples of these UI types with their selection states. 
Some of these types, like radio buttons, checkboxes, and on/off 
switches, have a true or false selection state. The visual 
information of these UI elements is utilized to determine 
whether they are selected or not. The most common visual 
indicators include the color and the position of certain parts 
within the UI element itself. For instance, the selection state of 
a switch can be detected by analyzing the direction of its 
toggle. The other UI types such as MULTI-TAB, 
BOTTOM_NAVIGATION, and PAGER_INDICATOR have 
multiple selection states. Their visual information is utilized to 
identify the specific item that is selected. The most common 
visual indicators in this case are the color and size. For 
example, the selected tab is highlighted with a different color 
while the other tabs remain unhighlighted. Finally, when there 
is only one selection, "selected" property is assigned as true if 
the detected state is selected, otherwise false. In the case of 
multiple selections, we only record the index of the selected 
item. 

There is another category of UI elements that exhibit a 
distinct behavior, which is the percentage state. Certain UI 
types, such as PROGRESS_BAR and SLIDER, always have a 
selected range. In this case, we have observed that the primary 
color and length serve as the most prevalent visual indicators. 
By analyzing the width of the detected element in relation to 
the length of the selected range, the percentage of the range 
that is selected can be determined. 

Lastly, after completing the post-processing phase, all the 
determined outcome properties for each UI element are 
consolidated into a platform-independent UI representation 
object. This UI representation object is essentially a dictionary 
consisting of key-value pairs, which effectively represents the 
recognized UI elements along with their respective properties. 

D. Constructing Layout Hierarchy 

This phase holds great importance as its objective is to 
construct the UI layout by aligning the UI elements in a 
manner similar to the mockup. A novel approach was 
implemented and is referred to as "UI element grouping". In 
this approach, once the list of detected UI elements has been 
obtained from both atomic and container models during the 
object detection phase, we proceed to conduct an intersection 
test. This test involves comparing each atomic element with the 
container elements. If the intersection area between an atomic 

element and a container element exceeds 90%, the atomic 
element is considered to be inside the container element. 

To initiate the UI element grouping approach, the atomic 
list and container list obtained from the atomic and container 
models are utilized as our input. Each UI element within these 
lists comprises attributes such as class_type_index, area, 
polygon, boundary_box [XLeft, YTop, XRight, YBottom], and 
visual properties from the UI representation object. As a result 
of the UI element grouping, an output in the form of a list is 
generated representing the layout hierarchy of the mockup. 
This hierarchy arranges the elements vertically, and we 
determine whether an element is displayed individually in a 
row or if it has neighboring elements arranged horizontally 
within the same row. 

To identify the layout structure and determine the 
positioning of elements relative to each other, a well-defined 
sequence of steps is followed as outlined in Algorithms 1-5. At 
first, the YOLO models assign a unique index to each element 
class, starting from zero and going up to the number of classes 
minus one, for both atomic and container elements. To prevent 
any numbering conflicts between the models results, the 
indexes of atomic elements were adjusted to begin after the 
indexes of container elements. Subsequently, any inner 
elements were eliminated, whether they are atomic or container 
elements. Only the outer elements, which are not contained 
within any other element, will remain. 

Algorithm 1: Adjust Indexes 

Input: 
List of detected UI elements from the atomic model (a_list) 

List of detected UI elements from the container model (c_list)  

Output: 
Indexes of a_list elements will begin after the indexes of c_list 

elements to avoid numbering conflict 

1 procedure adjust_ indexes(a_list, c_list) 

2  for each element in a_list do 

3   class_type_index = class_type_index  + c_list length 

4  end for 

5  return a_list, c_list 

6 end procedure 
 

Algorithm 2: Eliminate Inner Elements 

Input: Output of Alg. 1 (a_list, c_list) 

Output: List comprises outer elements only 

1 procedure eliminate_inner_elements(a_list, c_list) 

2  outer_elements_list = a_list + c_list 

3  for each element (A) in outer_elements_list do 

4   for each other element (B) in outer_elements_list do 

5    if area of A > area of B then 

6     if A polygon intersects B polygon > 90% then 

7      remove element B from outer_elements_list 

8     end if 

9    end if 

10    if area of B > area of A then 

11     if B polygon intersects A polygon > 90% then 

12      Remove element A from outer_elements_list 

13     end if 

14    end if 

15   end for 

16  end for 
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Algorithm 2: Eliminate Inner Elements 

17  return outer_elements_list 

18 end procedure 
 

Algorithm 3: Sort Element List 

Input: Output of Alg. 2 (outer_elements_list) 

Output: Sorted list (outer_elements_list) 

1 procedure sort_list(outer_elements_list) 

2  sort outer_elements_list by boundary_box[YTop] 

3  return outer_elements_list 

4 end procedure 
 

Algorithm 4: Element Alignment 

Input: Output of Alg. 3 (outer_elements_list) 

Output: 

List comprises inner lists, with each inner list representing an 

element and indicating whether or not it has neighboring 
elements arranged horizontally within the same row. 

1 procedure element_alignment(outer_elements_list) 

2  let all_elements_adjacents_list as list 

3  for each element (A) in outer_elements_list do 

4   let adjacents_list as list for element (A) 

5   for each other element (B) in outer_elements_list do 

6    if element B is adjacent to element A (Alg. 6) then 

7     add element A and B to adjacents_list if not exist 

8    end if 

9   end for 

10   add adjacents_list to all_elements_adjacents_list 

11  end for 

12  return all_elements_adjacents_list 

13 end procedure 
 

Algorithm 5: Remove Duplicates 
Input: Output of Alg. 4 (all_elements_adjacents_list) 

Output: 

If an element has no neighboring elements, its element_list will 

be empty. If it does have neighboring elements, each of those 

elements will also have their own element_list with the same 
elements. To avoid redundancy, duplicate lists are removed. 

1 procedure remove_duplicates (all_elements_adjacents_list) 

2  for each element_list in all_elements_adjacents_list do 

3   if element_list is empty then 

4    This element has no adjacent elements 

5    Add only this element to element_list 

6   end if 

7   if element_list has elements (adjacent elements) then 

8    Each adjacent element have list with the same elements 

9    Remove those duplicate lists to that element_list 

10   end if 

11  end for 

12  return all_elements_adjacents_list 

13 end procedure 

Afterward, the list of remaining elements, which includes 
both containers and atomic elements, is sorted in a top-to-
bottom manner based on the Y-top point of each element. The 
YOLO detection boundary boxes do not ensure that the 
elements adjacent to each other will have their boundaries 
starting at the same horizontal line. Therefore, the purpose of 
sorting is not to arrange all elements vertically beneath each 
other. It is primarily aimed at detecting horizontal alignment by 

ordering the elements in a way that elements adjacent to each 
other appear consecutively in the list. 

Afterwards, the alignment algorithm is utilized to identify 
elements that are positioned next to each other. In this 
alignment algorithm, every element in the list is compared to 
all other elements. The outcome is a separate list for each 
element, which includes any adjacent elements found for that 
specific element. We accomplish this by creating vertical lines 
from the y-top point to the y-bottom point for each element, 
and then comparing these lines with those of all other elements. 
If the alignment is approximately 90% horizontally, the 
elements are deemed to be in the same row and adjacent to 
each other, as illustrated in Algorithm 6. Following this 
criterion, if an element is compared to others and adjacent 
elements are found, its list will include these adjacent elements. 
Conversely, if an element is compared to others and no 
adjacent elements are found, its list will be empty, indicating 
that it is the sole element in that particular row. 

As the final step of the algorithm, the list for each element 
is examined. If the list is empty, it indicates that the element 
has no adjacent elements. If there are adjacent elements 
present, each element's list will include the other elements. To 
avoid duplication, we remove any repeated elements, resulting 
in a single list that contains all the adjacent elements. These 
processes are repeated for every container element that 
contains atomic elements. This allows us to identify the 
structure of each container, even if it is an inner container. As a 
result, we are able to detect the hierarchical layout for the 
entire mockup.  

E. Code Generation 

The code generation phase is the final step in which the UI 
representation object, along with the layout hierarchy, is 
utilized to generate code that can be used across multiple 
platforms, including Android and iOS. Nowadays, there are 
several cross-platform solutions like Flutter and React Native, 
which aim to develop code once and run it seamlessly on both 
Android and iOS mobile systems. To generate cross-platform 
code, we made use of Flutter, an open-source UI software 
development kit developed by Google. We opted for Flutter 
over other alternatives because it eliminates the use of Platform 
Primitives. This ensures that the app visually appears almost 
identical across all platforms, without relying on native look 
components that may have variations. Algorithm 7 
demonstrates the methodology employed for generating code. 

Algorithm 6: Checking Alignment between UI Elements 

Input: 
Element (A) boundary_box [XLeft, YTop, XRight, YBottom] 

Element (B) boundary_box [XLeft, YTop, XRight, YBottom] 

Output: 
If the two elements are adjacent, the function returns true; 
otherwise, it returns false. 

1 procedure calculate_vertical_overlap (box_A, box_B) 

2  y1 = max(box_A[YTop], box_B[YTop]) 

3  y2 = min(box_A[YBottom], box_B[YBottom]) 

4  overlap = y2 - y1 

5  return overlap 

6 end procedure 

7 procedure is_side_by_side(box_A, box_B): 

8  overlap = calculate_vertical_overlap(box_A, box_B) 
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Algorithm 6: Checking Alignment between UI Elements 

9  height1 = box_A[YBottom] – box_A[YTop] 

10  height2 = box_B[YBottom] – box_B[YTop] 

11  return overlap >= 0.9 * min(height1, height2) 

12 end procedure 
 

Algorithm 7: Generating cross-platform code 

Input: 

Output of Alg. 5 (all_elements_adjacents_list). Each inner list 
(element_list) in all_elements_adjacents_list represents whether 

the current element has neighboring elements or not 

Create: 
Statefull widget class for each UI element type that receives 

visual properties as parameters. Each widget in a separate file. 

Output: Return generated front-end cross-platform code 

1 procedure generate_code(all_elements_adjacents_list) 

2  let column_widget_list as list 

3  for each element_list in all_elements_adjacents_list do 

4   if element_list length equals 1 then 

5    Check element type and call its widget file 

6    Send element’s visual properties as parameters 

7    Add element’s widget to column_widget_list 

8   end if 

9   if element_list length >1 then 

10    let row_widget_list as list 

11    for each element in element_list do 

12     Check element type and call its widget file 

13     Send element’s visual properties as parameters 

14     Add element widget to row_widget_list 

15    end for 

16    Add row_widget_list to column_widget_list 

17   end if 

18  end for 

19  return column_widget_list 

20 end procedure 

There are two primary concerns that require attention: (1) 
ensuring code readability and (2) implementing effective error 
handling. Ensuring code readability is a top priority for us. To 
achieve this, we embrace the concept of reusable components, 
similar to writing a function once and utilizing it multiple 
times. Each UI element is represented as a custom widget, 
which accepts parameters to describe its visual properties as 
described in the UI representation object. Each widget is 
organized into its own separate file. Eventually, the generated 
code files need to be compiled to run on the desired platform. 
Finally, a mechanism is implemented to handle errors that may 
appear in Flutter. Unlike HTML markup language, where 
errors may not disrupt the entire process, Dart (programming 
language used in Flutter) needs to be successfully compiled in 
order to run. 

VI. EVALUATION AND RESULTS 

A diverse set of evaluation metrics and criteria are utilized 
in this type of research, indicating a lack of a clear standard for 
evaluation. To address this issue within this research, we aim to 
establish a clear standard for evaluation. The evaluation 
focuses on two main aspects: (1) the accuracy of object 
detection models and (2) the degree of similarity in user 
interfaces between the screens of the mockup and the screens 

generated from code. Furthermore, a comparison with existing 
systems was conducted. 

The first aspect is to evaluate the accuracy of object 
detection models, commonly used evaluation metrics are 
utilized including Accuracy, Precision, and Recall, and others 
which are widely used in the field of object detection. 

 Accuracy =
TP+ TN

Total Predictions
 

Object detection models are commonly evaluated based on 
a metric called Intersection Over Union (IOU). This metric 
assesses the extent of overlap between two bounding boxes: the 
predicted bounding box and the ground truth bounding box. 
During the training stage, a target IOU threshold of 0.5 is 
typically sought, meaning that if the model predicts an object 
with a bounding box that overlaps the ground truth box by at 
least 50%, it is considered a valid prediction. Adjusting the 
IOU threshold can impact the values in the confusion matrix. 
This adjustment influences the number of true positives (TP), 
false positives (FP), and false negatives (FN), thereby 
impacting the overall performance metrics derived from the 
confusion matrix including precision, recall, and F1 score. 

In order to demonstrate the efficacy of our proposed models 
in classifying UI components, three metrics measures were 
utilized: precision, recall, and F1 score. The calculation of 
these measurements is as follows: 

 Precision =
TP

TP+FP
 

 Recall =
TP

TP+FN
 

 F1 score =
2 𝑥 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

These metrics were assessed on the validation set for both 
atomic (A) and container (C) models. The measured metrics 
for each UI element are presented in Table I, showing the 
interesting results achieved by both trained models. Despite the 
presence of various styles within each component, it can 
accurately identify almost all of them. Fig. 11 shows sample of 
detection results by YOLOv7 on the validation set of both 
atomic and container models. In the realm of object detection, 
Average Precision (AP) and Mean Average Precision (mAP) 
have gained widespread popularity as the primary evaluation 
metrics in recent years. AP is a way to summarize the 
precision-recall curve into a single value representing the 
precision at different levels of recall. The average precision is 
computed by taking the mean of these precision values across 
all recall levels. A high average precision signifies strong 
performance in terms of both precision and recall, while a low 
average precision indicates lower values for either or both 
metrics. Typically, average precision is calculated separately 
for each class according to this equation: 

 Average Precision (AP) = ∫ p(r)dr
1

r=0
 

To evaluate the performance of object detection model 
across the different classes, the mAP is calculated by taking the 
average of the AP values for all the classes being considered as 
shown in this equation: 
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 Mean Average Precision (mAP) =
1

𝑘
∑ 𝐴𝑃𝑖

𝑘
𝑖  

The emphasis was placed on evaluating the overall 
performance of both YOLO models by prioritizing the 
measurement of mAP. Notably, the atomic model achieved an 
outstanding mAP score of 91.37%, while the container model 
achieved a respectable score of 87.40%. These results indicate 
a strong capability for detecting elements in both models, 
reflecting their strong performance in this regard. We selected 
mAP as our primary evaluation metric because it signifies a 
model's stability and consistency across different confidence 
thresholds. A high mAP suggests that the model performs well 
at various levels of confidence in its predictions. On the other 
hand, Precision, Recall, and F1 score are metrics used to assess 
the model's performance at a specific confidence threshold. 
When the mAP is good, it indicates that the model consistently 
achieves high precision, recall, and F1 score across different 
confidence thresholds. This consistency implies the model's 
stability and reliability in making accurate predictions. 

The second aspect is to measure the similarity of images 
between the mockups and those produced by the generated 
code. Three commonly employed image similarity metrics, 
namely mean squared error (MSE), mean absolute error 
(MAE), and Structural Similarity Index (SSIM), are utilized to 
measure the similarity. The Mean Square Error calculates the 
average of the squared differences between the predicted and 
actual values. It serves as a metric to measure the disparity 
between the two images, where higher values signify a larger 
dissimilarity. On the other hand, the Mean Absolute Error 
calculates the average absolute difference between the 
predicted and actual values. Similar to MSE, a lower MAE 
indicates better model performance, as it means that, on 
average, the predictions are closer to the actual values. 

TABLE I.  PERFORMANCE OF THE TRAINED MODELS 

UI Element Precision Recall F1 score 

Checkbox (A) 0.93 0.95 0.94 

Date Picker (A) 0.95 0.97 0.96 

Icon (A) 0.91 0.87 0.89 

Image (A) 0.81 0.86 0.83 

Input (A) 0.83 0.8 0.81 

Map View (A) 0.89 0.82 0.85 

On-Off Switch (A) 0.93 0.96 0.94 

Page Indicator (A) 0.94 0.88 0.9 

Radio Button (A) 0.86 0.93 0.89 

Slider (A) 0.9 0.83 0.86 

Text (A) 0.91 0.97 0.93 

Progress Bar (A) 0.84 0.78 0.8 

Button (C) 0.79 0.82 0.8 

List Item (C) 0.92 0.86 0.89 

Card (C) 0.78 0.76 0.77 

Drawer (C) 0.89 0.94 0.91 

Modal (C) 0.9 0.86 0.88 

Multi-Tab (C) 0.88 0.86 0.87 

Toolbar (C) 0.91 0.87 0.89 

Bottom Sheet (C) 0.83 0.86 0.84 

Spinner (C) 0.78 0.8 0.79 

Button Bar (C) 0.91 0.93 0.92 

Bottom Navigation (C) 0.81 0.82 0.81 

Structural Similarity Index is a widely used metric in image 
processing that quantifies the structural similarity between two 
images. It takes into account three components: luminance, 
contrast, and structure. By comparing the SSIM index between 
the mockup image and the generated code image, we can 
assess how closely they resemble each other in terms of their 
structural characteristics. A higher SSIM index indicates a 
higher similarity between the two images. When evaluating on 
a testing set of 50 images, our results for MSE, MAE, and 
SSIM were 30%, 25.7%, and 83.3%, respectively. 

Inference time is an important performance metric, as it 
refers to the measurement of the time it takes for a machine or 
deep learning model to make predictions or inferences on new 
data. In order to determine the inference time of YOLO 
models, the average time it took for inference on a testing set 
consisting of 50 images was calculated. The inference time 
varied between 45.6 ms and 85.0 ms, and we observed that as 
the number of elements in an image mockup increased, the 
inference time also increased as illustrated in Table II. 

 
Fig. 11. Sample of detection results by YOLOv7 on the validation set of both 

atomic and container models. 

TABLE II.  INFERENCE TIME FOR ATOMIC MODEL 

Number of UI elements detected Inference time 

4 Elements 46.9 ms 

32 Elements 65.0 ms 
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VII. DISCUSSION 

To validate the significance of the proposed approach, a 
comparative analysis was performed between the proposed 
system and other systems that specifically target high fidelity 
mockups using deep learning methods. Table III presents a 
comprehensive comparison encompassing multiple 
dimensions, such as system architecture, performance metrics, 
and the count of detected UI elements. It is important to 
highlight that each system utilizes a subset of metrics, and 
therefore, each metric will be compared with its corresponding 
counterpart in our set of metrics. 

Table III presents three distinct categories of techniques: 
(1) end-to-end, (2) hybrid, and (3) object detection. The end-to-
end approach (E) utilizes a comprehensive deep learning model 
to process mockups or wireframes and generate source code, 
which can then be transformed into a user interface. Hybrid 
techniques (H) typically employ traditional computer vision 
methods to extract the spatial information of UI elements, 
followed by CNN-based classification to determine their 
respective types or classes. Object detection (O) involves the 
identification, labelling, and precise delineation of objects 
within an image to improve their recognition. Based on this 
comparison, it is evident that the proposed approach exhibits 
an improvement in recognizing GUI mockup elements 
compared to the other systems, although it detects a larger 
number of elements. It is crucial to emphasize that a 
comprehensive study was conducted comparing an earlier 
version that encompassed all UI elements in a single YOLOv7 
model. However, the performance of this one YOLOv7 model 
was not comparable to the two-model approach (atomic and 
container) due to challenges posed by the visual similarity 
between certain classes, such as CARD and BUTTON, and 
DATE_PICKER and MODAL. 

TABLE III.  COMPARISON BETWEEN THE PROPOSED APPROACH AND 

OTHER SYSTEMS 

Criteria [10] [15] [16] [17] [18] Proposed 

Number of 

UI 
elements 

NAa 15 NA 15 12 23 

Technique 

utilized 
E H H H O O 

Text 
recognition 

(OCR) 

No Yes NA Yes Yes Yes 

Training 
dataset 

Custom Custom Custom Rico 
Custom 
(iOS) 

Rico 

Accuracy 77% NA 85% NA NA 88.2% 

F1 Score NA NA NA 52% NA 86.8% 

Precision NA 91.1% NA NA NA 87.3% 

mAP NA NA NA NA 87.5% 

91.37%, 

87.4% for 
(A), (C) 

a. NA stands for Not Available 

VIII. CONCLUSION 

Converting mockup design images into front-end code 
presents a formidable challenge, as it necessitates a visual 
understanding of the images to detect the UI elements and their 
hierarchical structure. This paper introduces a novel approach 

that generates cross-platform front-end code from high fidelity 
mockup images. At the core of the proposed pipeline, 
YOLOv7 is utilized for the object detection phase. The 
approach utilizes YOLOv7 to accurately detect atomic and 
container UI elements, capturing their spatial location, and 
subsequently leverages this information to construct a 
comprehensive UI representation object that encompasses the 
layout hierarchy of elements within the mockup, showcasing 
its ability to effectively identify UI elements in mockups. Our 
second contribution entails the development of a data 
preprocessing pipeline aimed at addressing the limitations 
present in the semantic dataset. This pipeline enables us to 
construct custom datasets specifically tailored to the atomic 
and container models. The conducted technical evaluation 
showcases the promising nature of this approach and 
encompasses a broad spectrum of evaluation metrics, providing 
a foundation for future studies. This study ensures that deep 
learning techniques are well-suited for visual recognition tasks 
involving various types of GUI components. 

IX. FUTURE WORK 

Despite the comparatively small training datasets used, 
remarkable results are achieved. As a future work, it is 
imperative to augment the dataset by incorporating additional 
instances of elements and meticulously annotating them, 
thereby providing the models with a more diverse and 
comprehensive set of training data. Furthermore, there is a 
need for more extensive coverage of certain cases in the UI 
element grouping approach. This is particularly important 
when dealing with scenarios where multiple vertically arranged 
cards are aligned next to only one card. 
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