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Abstract—Now-a-days, artificial prosthesis is widely used to 

mitigate pain in damaged shoulders and restore their movement 

ability. The process involves a complex surgery that attempts to 

fix an artificial prosthesis into a dead shoulder as a replacement 

for the ball and socket joints of the shoulder. Long after the 

surgical process, the need for revision or reoperation may arise 

due to some problems with the prosthesis. Identification of 

prosthesis manufacturer is a paramount step in the reoperation 

exercise. Traditional approach compares the prosthesis under 

consideration with prosthesis from a vast number of 

manufacturers. This approach is cost-efficient and requires no 

extra training for the physician to identify the prosthesis 

manufacturer. However, the method is time inefficient and is 

prone to mistakes. Systems based on machine learning have the 

potential to reduce human errors and expedite the revision 

process. This paper proposes a shallow 2D convolution neural 

network (CNN) for the classification of shoulder prosthesis to 

speed-up the learning process and improve the performance of 

the deep learning model for implant classification, this paper 

employed three different techniques. Firstly, a generative 

adversarial network (GAN) is applied to the dataset to augment 

the classes with fewer samples to ensure the data imbalance 

problem is eliminated. Secondly, the highly discriminating 

features are extracted using principal component analysis (PCA) 

and used to train the proposed model. Lastly, the model hyper-

parameters are optimised to ensure optimal model performance. 

The model trained with extracted features with a variance of 0.99 

achieved the best accuracy of 99.8%. 

Keywords—Machine learning; deep learning; convolution 

neural network; Adversarial Network (GAN); Principal Component 
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I. INTRODUCTION 

One of the invasive methods used to reduce pain and 
restore movement in injured shoulders is Total Shoulder 
Arthroplasty (TSA) [1]. Shoulder malfunction is generally 
caused by rheumatoid arthritis, abrasion, calcification, 
deterioration of cartilage tissue, and damage to surrounding 
bones [2]. Surgery on the shoulder is required in order to repair 
the damaged shoulder's function. The damaged, non-functional 
joint is surgically removed and replaced with a prosthetic joint 
[3–5]. Different prostheses are currently produced by a number 
of manufacturers. Acumed, Biomet, Cofield, Depuy, Encore, 
Exactec, Tornier, and Zimmer are among the most widely used 
manufacturers [18]. These manufacturers produce prostheses in 
various models according to the patient and case type [6]. In 

order to determine whether prosthesis is compatible with a 
specific issue in the shoulder, x-ray images of the implants are 
used. Presently, x-rays plays crucial role in the diagnosis of 
medical conditions like bone fracture, COVID-19, and many 
more [23]. 

After surgery, the implanted prostheses might require 
repairs for a specific amount of time. In addition, the 
prostheses might require replacement due to damage from 
events like accidents [1]. In this instance, the replacement 
requires knowledge about the prosthesis. The course of 
treatment is slowed down when this information is either 
unavailable or unknown to the patient and the doctor. The 
primary surgical procedure to reduce common complications 
and prevent treatment delays is determining the prosthesis' 
model and manufacturer so that it can be positioned correctly. 
Traditionally, the model and manufacturer are identified by a 
thorough inspection and visual comparison of the prosthesis's 
x-ray images with pictures of the prosthesis that are currently 
available. This method is laborious and prone to mistakes. 

Several deep learning techniques have been proposed to 
reduce errors caused by the conventional approach for the 
identification of the prosthesis manufacturer and model and to 
expedite the treatment process. A deep CNN-based method for 
implant manufacturer classification was presented by the 
authors in study [6]. The model's accuracy cap is set at 80%. In 
order to predict the maker of prostheses, the researcher of [7] 
presents a framework that employs the Squeeze-and-Excitation 
(SE) network and the conventional 50 layer Residual Network 
(ResNet50). The suggested method reaches a 97% accuracy 
level at most. Additional deep learning techniques used are K-
Nearest Neighbour [8], Inception, Random Forest, VGG16 [8], 
ResNet50 [9], and many more. Although these techniques 
demonstrate a high degree of performance, the proposed deep 
CNN model incur huge training time and cannot be generalized 
due to limited number of training samples. On the other hand, 
the pre-trained models have limited flexibility due to their 
specific architecture. Adapting these techniques is highly 
challenging especially when there is need for modification in 
the model to fit other form of prosthesis datasets. For these 
reasons, a more effective and reliable solution is still required. 

To ensure more accurate and reliable implant prediction, 
this paper proposes a shallow 2D convolution neural network 
(CNN) for the classification of shoulder implants. To speed up 
the learning process of the proposed method and improve the 
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performance of the deep learning method for implant 
classification, a generative adversarial network (GAN) is 
applied to the dataset to augment the classes with fewer 
samples to ensure the data imbalance problem is eliminated, 
and the highly discriminate features are extracted using 
principal component analysis (PCA) and used to train the 
proposed model. Also, the model hyper-parameters are 
optimised to ensure optimal model performance. 

The proposed framework in this paper will remove class 
imbalances in the dataset, which will make the model unbiased. 
Also, the feature extraction significantly reduced the training 
features, thus reducing the model's training time and improving 
its performance. 

The objectives of this paper are as follows: 

 To develop a robust deep learning framework for 
shoulder implant classification with high classification 
accuracy 

 To reduce the processing time and ensure high model 
performance through dimensionality reduction 

 To eliminate data imbalances in the TSA dataset 
through data augmentation 

The remaining portions of this article are organized as 
follows: In Section II, researchers' efforts to categorize and 
identify prosthetics manufacturers are examined. In Section III 
of this paper, the recently built deep learning framework is 
explained in detail. The experiment's specifics and the 
outcomes of the training process and the evaluation of the 
suggested deep learning model are presented in Section IV. 
Section V presents our findings discussion and Section VI 
wraps up this paper by outlining our plans for future research. 

This template, modified in MS Word 2007 and saved as a 
“Word 97-2003Document” for the PC, provides authors with 
most of the formatting specifications needed for preparing 
electronic versions of their papers. All standard paper 
components have been specified for three reasons: (1) ease of 
use when formatting individual papers, (2) automatic 
compliance to electronic requirements that facilitate the 
concurrent or later production of electronic products, and (3) 
conformity of style throughout a conference proceedings. 
Margins, column widths, line spacing, and type styles are built-
in; examples of the type styles are provided throughout this 
document and are identified in italic type, within parentheses, 
following the example. Some components, such as multi-
leveled equations, graphics, and tables are not prescribed, 
although the various table text styles are provided. The 
formatter will need to create these components, incorporating 
the applicable criteria that follow. 

II. RELATED WORK 

To solve the issue of implant manufacturer identification, 
the authors of [1] use conventional Convolution Neural 
Network (CNN) and conventional methods of machine 
learning. The effectiveness of CNN and conventional machine 
learning methods are contrasted by the authors. The CNN 
model was given a fresh perspective on channel selection in 
order to produce filter features. To identify the implant 

manufacturer and model, the authors use both conventional 
machine learning techniques and deep learning techniques. 

In research [6], researchers categorize shoulder implants in 
X-ray photographs using a deep learning methodology. The 
authors assess how well deep learning algorithms perform in 
comparison to other machine learning classification algorithms, 
such as gradient boosting and random forest. The authors' 
findings indicate that Deep Convolutional Neural Network 
(DCNN) outperforms other machine learning classification 
algorithms, particularly when an ImageNet pre-trained model 
is used for classification. While other machine learning 
classification methods reach an optimal accuracy of 56%, the 
deep learning model presented in this work uses 10 fold cross 
validation to achieve an average accuracy of 80%. 

To improve the accuracy of shoulder prostheses prediction 
based on x-ray images on the conventional SIXIC x-ray 
dataset, authors in study [7] proposed the X-Net framework. 
The Residual Network module incorporates the Squeeze and 
Excitation (SE) blocks as part of the suggested model. Through 
the process of weighing every one of the feature maps obtained 
using the Residual Network (ResNet) component the method 
enhances the efficiency of shoulder prosthesis prediction. For 
obtaining more pertinent features from the xray images in the 
dataset, both the ResNet and SE components are used. 
Ultimately, the ResNet and SE modules' fine-grained feature 
extractions are categorised into Cofield, Depur, Tornier, and 
Zimmer categories. 

In research [8] the performance of traditional ML 
techniques like RF and KNN is compared with that of deep 
learning techniques like the 16 layer visual geometric group, 
Vision transformer, the 50 layer conventional residual network 
and Inception. The researchers apply a vast DL and ML 
approaches to the augmented arthroplasty dataset generated by 
authors of [6, 10]. The results reported by the authors indicate 
that data augmentation enhances the accuracy of models and 
lowers the likelihood of over-fitting. 

In order to distinguish between the reverse and the normal 
Total Shoulder Arthroplasty (TSA), as well as between 
different prosthesis models, the authors of [9] proposed a 
binary classifier based on a Residual Network (ResNet) Deep 
Convolution Neural Network (DCNN). For every model, the 
authors employ five different classifiers, and they assess each 
model's performance. For the purpose of differentiating 
between TSA and RTSA and classifying the five distinct 
prosthesis models, the suggested DCNN achieves a higher 
AUC-ROC. 

A classification tool was proposed by the authors of [10] to 
identify the manufacturer of shoulder prostheses. The authors 
sought to remove the obstacles that medical professionals 
encountered when trying to determine the prosthesis' 
manufacturer through visual inspection of xray images. After 
locating the implant using the Hough transform for circles, the 
authors segment the implant using the seeded region growing 
method. The results of the suggested software solution in this 
work were verified visually and by comparing the outcomes of 
classification with the manually segmented real-world images. 
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The methods proposed in the literature have achieved 
promising performance. However, the methods fail to address 
the issue of class imbalance in the dataset, which tends to learn 
more about the classes with large samples. These make the 
model bias towards the class with the larger samples. Also, the 
methods take longer training time due to the size of features to 
be used for training and the number of layers in the models. 
Other models used in the literature are pre-trained models with 
limited flexibility.  Employing these models is highly 
challenging especially when there is need for modification in 
the model to fit other form of prosthesis datasets. In this paper, 
the limitations in the state-of-the-art methods are addressed by 
eliminating class imbalance using GAN network to generate 
artificial dataset, which eliminate model bias. The PCA is used 
to reduce the number of training features, which results in a 

model with fewer layers, training time and greater 
performance. 

III. MATERIALS AND METHODS 

The main motivation behind the development of the 
proposed deep learning framework is to automatically identify 
the manufacturer of shoulder implants before the replacement 
of problematic prostheses in an arthroplasty patient. The 
workflow of the proposed DL framework for detection and 
classification of implant manufacturers using X-ray 
radiographs is depicted in Fig. 1. The workflow consists of the 
following steps: dataset collection, data preprocessing phase, 
building and training of various transfer learning models 
(DenseNet201, Inseption-V3, MobileNet, and ResNet50), and 
the proposed 2D Convolution Neural Network (2DCNN). 

 

Fig. 1. Workflow of the proposed automated implant manufacturer classification method using X-ray radiograph. 

A. Dataset 

The dataset used in this research was collected from various 
sources by the authors of [6, 10]. The initial sample collection 
includes 605 x-ray radiographs in the Joint Photographic 
Expert Group (jpeg) format with an 8-bit grey scale and 
variable sizes. Duplicate images from similar patients were 
removed from the collection, resulting in a new total of 597 
samples spanning four manufacturers: Cofield with 83 sample 
images, Depuy with 294 sample images, Tornier with 71 
sample images, and Zimmer with 149 sample images. The 
sources of the samples include the Feeley Lab and BIDAL lab 
at the Californian University and San Francisco state 
University. Other sources include the various websites of the 
implant manufacturers and the Common US Shoulder 
Prosthesis. Table I below shows the initial sample size and the 
augmented sample size used for training and validation of the 
pre-trained models and the proposed shallow 2D CNN model. 

Fig. 2 shows samples of the respective classes of the 
dataset, which include Cofield, Depuy, Tornier and Zimmer 
implants. 

TABLE I. DISTRIBUTION OF DATASET 

Implant Class 
Initial Samples 

Size 

Augmented 

Samples Size 
Total Samples 

Cofield 83 217 300 

Depuy 294 6 300 

Tornier 71 229 300 

Zimmer 149 151 300 

 
(a). Cofield                                      (b). Depuy 
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(c). Tornier                                   (d). Zimmer 

Fig. 2. Samples of x-ray implant images used for training and validation of 

the proposed framework. 

B. Data Preprocessing 

This phase is one of the crucial steps in the proposed 
workflow. It helps improve the performance of the model, 
reduce the training time of the model, and prevent model 
overfitting. The preprocessing steps in the workflow include 
data augmentation, shuffling, resizing, and feature selection. 

1) Data augmentation: The dataset used in this work 

consists of a few X-ray images with some imbalance among 

the classes. To improve the downstream performance of the 

proposed model and avoid poor approximation, we augment 

the X-ray images to create a bigger dataset for more 

generalization. To eliminate the class imbalance problem, a 

generative adversarial network (GAN) is used. GAN is one of 

the common approaches used by image generation functions 

to create artificial image data with similar characteristics to 

real image data. GAN is a multi-layer perceptron neural 

network consisting of generator (G) and discriminator (D) 

elements. The generator element generates data similar to the 

original data during the training, while the discriminator 

distinguishes between the generated and actual data. The 

generator element G takes in as input a random noise vector z 

and generates synthetic data G(z); the discriminator element D 

takes G(z) as input and outputs a probability D(G(z)) to 

distinguish between synthetic data and true data from the 

distribution. To train the generator and discriminator, a two-

player min-max game is formed where the generator attempts 

to generate realistic data to fool the discriminator, whereas the 

discriminator attempts to distinguish between synthetic and 

real data. The objective function to be optimised is given as 

follows: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) =  𝐸X~P𝑑𝑎𝑡𝑎(𝑋)
[log 𝐷(𝑋)] + 

𝐸Z~P𝑍(𝑍)
[log (1 − 𝐷(𝐺(𝑍)))]  (1) 

To prevent the discriminator D from rejecting samples from 
the generator G with a close confidence of 1, we trained the 
generator G to maximiseD(G(Z)) so that the discriminator 
should not be able to distinguish between the synthetic and real 
data. To achieve the data augmentation, both horizontal and 
vertical shifts and random r were used. 

2) Data shuffling: In this phase of preprocessing, the X-

ray images from the various manufacturers were shuffled to 

ensure that each class of the manufacturer was represented in 

every batch. It helps the proposed model learn the various 

patterns in each epoch and increase the speed at which the 

model converges. 

3) Resizing and normalization: In this stage of 

preprocessing, the images of prostheses belonging to various 

manufacturers were resized to a common dimension to fit the 

input of the model. Since the work employs various types of 

CNN with different input dimension requirements, the 

dimension of the training set was resized to 224 by 224 by 3 to 

accommodate the common dimensions of the variants of 

CNN. To assist in stabilising the problem of gradient 

propagation and speed up the training of the model, the image 

pixels are normalised to the range of 0 and 1. 

4) Feature selection: To obtain highly discriminative 

features from the shoulder x-ray images with the potential to 

enhance the performance of the proposed 2D CNN model, 

principal component analysis (PCA) was used to reduce the 

dimension of the features. The choice of the PCA was 

attributed to its simplicity, efficiency, and well-known 

multivariate approach to feature extraction. PCA is a statistical 

approach that employs orthogonal transformation to transform 

observations of correlated features into a group of linearly 

uncorrelated features with the highest variance, called 

principal components. PCA generally attempts to determine 

lower-dimensional surfaces in order to project higher-

dimensional data. In PCA, the principal component is directly 

connected to the size of the information to be retained. 

Therefore, to reduce data dimensionality using PCA, an 

appropriate number of principal components should be 

selected. 
The PCA algorithm reduces a 2D matrix of image pixel 

values M with dimension A x B to another smaller matrix N 
with dimension A x P using a linear transformation U of 
dimension B x P. During the linear transformation process, 
information from the image data is retained. The 
transformation process is presented in Eq. (2) below. 

𝑁 = 𝑈𝑇𝑀   (2) 

where, A, B and P represents total pixels after masking, 
number of instances and the number of pixels such that A, P < 
B.The covariance CN of the output of the transformation 
process N is determined as follows: 

𝐶𝑁 =  
1

𝐴
𝑁𝑇𝑁   (3) 

where CN is a matrix with dimension of P x P 

The obtained covariance, CN is maximised to obtain an 
eigenvector with Lagrange multiplier λ , which is broken down 
into three matrices using matrix diagonalization. The 
decomposition process yields another matrix C, which is a 
product of the three matrices. 

𝐶 = 𝑋𝐷𝑋−1   (4) 

where, X and D represents the matrix of eigenvector and 
diagonal matrix consisting of Eigen values. 
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The overall variance of the transformation is therefore 
represented as the sum of the eigenvalues in Eq. (5) below: 

𝑁𝑇𝑜𝑡𝑎𝑙 = ∑ 𝜆𝑖
𝐵
𝑖=1    (5) 

The percentage information retained by the PCA is 
calculated as follows: 

𝐼𝑅 =
∑ 𝜆𝑖

𝑃
𝑖=1

∑ 𝜆𝑖
𝐵
𝑖=1

   (6) 

where, ∑ 𝜆𝑖
𝑃
𝑖=1  represent the variance retained as the top P 

eigenvectors data from the subsets of the B vectors 

C. Data Sampling 

At this phase, the x-ray datasets collected from sources are 
divided into train and test split. 20% of the dataset is made up 
of the test set, while 80% is made up of the training set. The 
models are trained using the training split, and they are 
validated using the validation split. The train and validation 
split is used to train and validate each of the pre-trained models 
and the proposed 2D CNN. The performance of the pre-trained 
models and the 2D CNN model is then evaluated using the test 
set. 

D. Pre-trained Models 

In this phase, we trained different transfer learning models 
that are already pre-trained on very large datasets. Pre-trained 
models have been widely used to address numerous deep 
learning problems caused by inadequate labelled training data, 
improve the performance of Deep Neural Network and address 
problems in computer vision. The pre-trained models used in 
this paper include DenseNet201, InceptionV3, MobileNet, 
NasNet, ResNet50 and Xception. 

1) DenseNet201: DenseNet [11] is a CNN that employs 

dense connections between the layers of the structure to 

reduce layer interdependencies by reusing feature maps from 

various layers. The shortcut connections of variable lengths 

between layers provide dense and differentiated input features 

that minimise the gradient disappearance problem in the deep 

networks [12]. The features from all the layers of DenseNet 

are finally used to make predictions on a standard dataset with 

better performance using small-size models with less 

computation effort. DenseNet has four different variants based 

on the depth of the layers. In this paper, the DenseNet201 

variant, consisting of 201 densely connected layers, is used. 

2) InceptionV3: Inception-V3 is a CNN architecture from 

the Inception family that employs a number of techniques to 

optimise the earlier versions of the architecture. The initial 

version of Inception (GoogleNet) employs multiple filters of 

varying sizes at the same level, thus reducing the size of the 

deep layer to parallel layers. Inception V1 was later refined by 

introducing batch normalisation for Inception V2 [13]. A 

number of factorizations were introduced in Inception V2 to 

form Inception V3. Inception V3 employs level smoothing, 

factorised convolutions, and an auxiliary classifier to 

communicate the class information to other layers of the 

network [14]. 

3) MobileNet V3: MobileNet V3 is a CNN architecture 

from the MobileNet family that employs a number of 

techniques to optimise the earlier versions of the architecture. 

The initial version of MobileNet reduced the number of 

parameters by using dept-wise convolution. In the second 

version of MobileNet, an expansion layer was introduced to 

obtain expansion filtering compression. MobileNet V3 

introduces a squeeze and excitation layer to the initial building 

block of MobileNet V2, which later goes for further treatment. 

The squeeze and excitation layers result in unequal weights 

for the various channels from the input when generating the 

output feature maps. 

4) ResNet50: The ResNet50 model is a deep convolution 

neural network consisting of 50 convolution layers, introduced 

by Microsoft in 2015 [15]. The ResNet50 model consists of 

approximately 26 million parameters, with the input of the ith 

layer directly connected to the (i+j)th layer. The ResNet50 

model establishes its deep network by stacking additional 

layers on the input layer. In the residual network, residuals, 

which are the subtraction of features learned from the input, 

are learned rather than learning the features [16, 17]. 

E. 2D CNN Model  

Two-dimensional convolutional neural networks, or 2D 
CNNs, are a class of neural network architecture intended for 
the processing and analysis of two-dimensional structured data. 
Tasks involving grid-like data structures, like images, are 
especially well-suited for it. Image classification, object 
detection, and image segmentation are just a few of the 
computer vision tasks in which CNNs have demonstrated 
remarkable success. A 2D CNN uses convolutional and 
pooling layers to learn hierarchical features from input data 
(like images), then fully connected layers to make predictions. 
The architecture works well for tasks involving spatial 
relationships and patterns, especially in images, because it is 
made to automatically learn and extract pertinent features from 
the input. 

The convolution operation is the main function of a 2D 
CNN. Convolutional layers are made up of filters, sometimes 
referred to as kernels, which move over the input data, such as 
an image, and multiply local regions element-wise to create 
feature maps. 

Different characteristics or patterns found in the input data 
are captured by filters. For instance, deeper layers may capture 
complex patterns or high-level features, while earlier layers 
may learn basic features like edges or textures. A number of 
kernels are used in each convolution layer to determine the 
feature map tensor. Equation 7 below describes the operation 
of the convolution layer. 

𝑦𝑡 = k(𝑥𝑡 ∗  𝑤𝑡 + 𝑏𝑡)   (7) 

where, yt, k,  xt, wt, and bt represents the output of the 
convolution layer operation, the activation function, the input 
vector, the layer weight and the bias of the filter or kernel. By 
using the activation function, the feature maps become more 
nonlinear. The Rectified Linear Unit (ReLU), which keeps the 
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threshold input at zero, is a commonly used tool for activation 
computation. The operation is described as follows: 

𝑓(𝑥) = max (0, 𝑥)   (8) 

The features that the convolution layer extracts have 
enormous dimensions. A pooling layer is added to reduce the 
cost of network training and solve the dimensionality issue in 
the convolution layer.  To down sample the parameter sizes, 
the pooling layer uses the output of the previous convolution 
layer. 

 

Fig. 3. Architecture of CNN [18]. 

The proposed 2D CNN used in the classification of 
implants consists of four (4) convolution layers consisting of 
the ReLu activation function, four (4) max pooling layers, one 
(1) flattening layer, a fully connected layer, and an output layer 
that uses Softmax as the activation function. The architecture 
and network topology of the proposed 2D CNN are presented 
in Fig. 4 and Table II, respectively. 

TABLE II. NETWORK TOPOLOGY OF THE PROPOSED 2D CNN 

Layer Type 
Kernel 

Size 
Stride 

Activation 

Function 
Dropout 

Convolution 

Layer 
Conv2D 3 x 3 1 ReLu 0 

Convolution 

Layer 
Conv2D 3 x 3 1 ReLu 0.25 

Pooling 

Layer 

Max 

Pooling 
2 x 2 2 - - 

Convolution 

Layer 
Conv2D 5 x 5 1 ReLu 0 

Convolution 

Layer 
Conv2D 5 x 5 1 ReLu 0.5 

Pooling 

Layer 

Max 

Pooling 
2 x 2 2 - - 

Fully 

Connected 

Layer 

- - - - - 

Output Layer - - - Softmax - 

 

Fig. 4. Architecture of the proposed 2D CNN. 

Fig. 4 shows the architecture of the proposed 2D 
Convolution Neural Network (CNN), consisting of the input 
image of a shoulder implant, the convolution layers, the 
pooling layers, the flattening layer, the fully connected layer, 
and the output layer, which classifies the implant based on the 
output obtained from the layers that precede it. 

F. Performance Evaluation Metrics 

The performance indicators of the proposed 2D CNN and 
the pre-trained models are presented in equation 9 through 12 
below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝑇𝑁
  (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
   (11) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (12) 

IV. EXPERIMENTAL RESULTS ANALYSIS 

In this section, the experimental details and the results 
obtained are presented and discussed. 

A. Experimental Setup 

In the experiment, the Total Shoulder Arthroplasty (TSA) 
dataset was split into training and testing sets in the ratio of 
80:20. The proposed 2D Convolution Neural Network (CNN) 
consists of four (4) convolution layers with pooling layers, as 
described in Fig. 3 and Fig. 2, respectively. The 2D CNN 
network was implemented using Python version 3.10 and the 
Keras version 3.0.2 library with Tensorflow version 2.15 on a 
machine with an Intel (R) processor (Core (TM) i7 CPU @ 
2.30 GHz) and 16GB of RAM. In addition, the proposed 2D 
CNN model was built using Jupyter Notebook and trained 
using the Graphic Processing Unit (GPU) of the Intel GTX 
1050 Ti. 

At the initial phase of the implementation, a Generative 
Adversarial Network (GAN) was built to augment the Total 
Shoulder Arthroplasty (TSA) dataset. The GAN augmentation 
approach is used to create artificial image data with similar 
characteristics to the real image data that resolve the data 
imbalance in the dataset. The parameter settings of the GAN 
model are presented in Table III. 

TABLE III. PARAMETER SETTINGS FOR GAN NETWORK 

Parameter Parameter Value 

Convolution Layer 2 

Filter Size 5 x 5 

Activation Function ReLu 

Learning Rate 0.0001 

Dropout 0.25 

Optimizer Adam 

Loss Function Binary Cross-entropy 

Batch Size 4 
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The real image data and the augmented data are combined 
to form a total of 1200 images belonging to 4 classes. To 
enhance the performance of the proposed 2D CNN, the 
Principal Components Analysis (PCA) method is applied to the 
compiled dataset. The PCA method extracts the features with 
the most important information that the model learns. At this 
stage, top features with a variance between 1 and 0.95 are 
considered for training the proposed 2D CNN. 

The features extracted from the PCA are used to 
individually train the proposed 2D CNN and the pre-trained 
model, and the performance of the models is monitored for 
each feature. For each feature used to train the 2D CNN and 
the pre-trained model, different values were used for the hyper-
parameters, and the optimal values were chosen. Table IV 
shows the various hyper-parameter configurations used and the 
chosen values. 

TABLE IV. HYPER-PARAMETER CONFIGURATIONS 

Parameter Options Chosen 

Input Shape 64, 128, 224, 512 224 

Batch Size 16, 32, 64, 128 64 

Learning Rate 0.1, 0.01, 0.001, 0.0001 0.001 

Optimizers SDG, RMSprop, Adam Adam 

Epoch 10, 25, 50, 100 50 

Activation function Sigmoid, Softmax, tanh Softmax 

Based on the performance portrayed by the model using 
different hyper-parameter values, the final model was trained 
with an input shape of 224x224x3, a batch size of 64, a 
learning rate of 0.0001, and an Adam optimizer for 50 epochs. 

B. Results Analysis 

Tables V through VII show the performance of the 
proposed 2D Convolution Neural Network (CNN) for 
individual classes corresponding to the various PCA sets. 
Based on the results in Tables V to VII, it can be observed that 
training the proposed 2D CNN with a dataset of the extracted 
features with a variance of 0.99 achieves greater performance 
than other features with a different variance. The model trained 
with extracted features with a variance of 0.99 achieved overall 
precision, recall, and a f measure of 99.2%. 

Based on the performance results in Tables V, VI, and VII, 
the model trained with extracted features with a variance of 
0.99 is better than models trained with extracted features with a 
variance of 0.95, 0.96, 0.97, 0.98, and 1, thus the model is 
considered for comparison with pre-trained models trained 
with extracted features with a variance of 0.99. 

TABLE V. PRECISION OF PROPOSED FRAMEWORK WITH VARIANCE 

BETWEEN 0.95 AND 1.0 

Variance Cofield Depuy Tornier Zimmer Overall 

1.0 0.987 0.972 0.978 0.977 0.979 

0.99 0.992 0.992 0.992 0.992 0.992 

0.98 0.987 0.972 0.978 0.977 0.979 

0.97 0.987 0.972 0.978 0.977 0.979 

0.96 0.987 0.972 0.978 0.977 0.979 

0.95 0.987 0.972 0.978 0.977 0.979 

TABLE VI. RECALL OF PROPOSED FRAMEWORK WITH VARIANCE 

BETWEEN 0.95 AND 1.0 

Variance Cofield Depuy Tornier Zimmer Overall 

1.0 0.984 0.975 0.981 0.979 0.980 

0.99 0.992 0.992 0.992 0.992 0.992 

0.98 0.984 0.975 0.981 0.979 0.980 

0.97 0.984 0.975 0.981 0.979 0.980 

0.96 0.984 0.975 0.981 0.979 0.980 

0.95 0.984 0.975 0.981 0.979 0.980 

TABLE VII. F MEASURE OF PROPOSED FRAMEWORK WITH VARIANCE 

BETWEEN 0.95 AND 1.0 

Variance Cofield Depuy Tornier Zimmer Overall 

1.0 0.989 0.975 0.980 0.982 0.982 

0.99 0.992 0.992 0.992 0.992 0.992 

0.98 0.989 0.975 0.980 0.982 0.982 

0.97 0.989 0.975 0.980 0.982 0.982 

0.96 0.989 0.975 0.980 0.982 0.982 

0.95 0.989 0.975 0.980 0.982 0.982 

 
(a). Accuracy for the proposed 2D CNN 

 
(b). Loss for the proposed 2D CNN 

Fig. 5. Accuracy and loss for the proposed 2D CNN trained with extracted 

features with variance 0.99. 

Fig. 5 shows the training and validation accuracies and 
training and validation loss of the proposed 2D CNN trained 
with extracted features with a variance of 0.99. 
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Table VIII shows the performance of the proposed 2D 
CNN and the pre-trained models trained with extracted features 
of variance 0.99. Based on the performance results in the table, 
the proposed 2D CNN achieved a 99.79% recall and F1 score 
and 99.8% accuracy and precision. When compared with the 
pre-trained models, the 2D CNN recorded the best performance 
in terms of precision, recall, f1 score, and accuracy when 
trained with extracted features with a variance of 0.99 for 50 
epochs. 

TABLE VIII. PERFORMANCE COMPARISON OF PRE-TRAINED MODELS AND 

PROPOSED 2D CNN TRAINED WITH EXTRACTED FEATURES OF VARIANCE 

0.99 

Metrics 
DenseNe

t-201 

Inceptio

n-V3 

MobileN

et-V3 

ResNe

t50 

Proposed 

2D CNN 

Precision 97.96 98.1 98.2 91.2 99.8 

Recall 97.99 97.9 97.2 91.4 99.79 

F Meassure 97.65 98.1 98.2 91.2 99.79 

Accuracy 97.4 97.8 98.2 92 99.8 

Training 

time (E-4) 
53.6 25.2 22.1 38.7 16 

Model Size 
(MB) 

80 92 15.3 98 4 

Fig. 6 shows the graphical representation of the 
performance of the proposed 2D CNN and the pre-trained 
models trained using extracted features with a variance of 0.99. 
According to the performance comparison, it can be seen that 
the proposed 2D CNN recorded the minimum training time and 
memory size as compared to the pre-trained models. The 2D 
CNN achieves this due to the limited number of convolution 
layers in the model. On the contrary, the pre-train models have 
more depth than the 2D CNN, which results in large feature 
extraction activity at the convolution layers and more memory 
space to store the model. 

Fig. 7(a) through e show the confusion matrix for the 
proposed 2D CNNs, MobileNetV3, InceptionV3, 
DenseNet201, and ResNet50, trained with extracted features 
with a variance of 0.99. Based on the figures, the 2D CNN 
recorded the least misclassification, with two images belonging 
to Zimmer misclassified as Tornier and another 2 misclassified 
as Depuy. Also, one image belonging to Cofield is 
misclassified as Zimmer, while all test samples belonging to 
Depuy and Tornier are correctly classified. MobileNetV3 
became the second to the proposed 2D CNN, with 7 images 
belonging to Cofield and Zimmer misclassified as Tornier and 
Depuy. Also, InceptionV3, which achieves an overall accuracy 
close to MobileNetV3, recorded seven misclassifications for 
the Cofield, Tornier, and Zimmer classes, while all test 
samples from Depuy were correctly classified. The 
DenseNet201 model recorded 8 misclassifications, with 4 
samples from Cofield misclassified as Depuy, Tornier, and 
Zimmer and the other 4 samples from Zimmer misclassified as 
Cofield. ResNet50 recorded a total of 9 misclassifications, with 
4 images from Zimmer misclassified as Tornier, 2 from 
Tornier misclassified as Depuy, and 3 from Cofield 
misclassified as Depuy and Zimmer. 

Table IX shows the performance comparison of the 
proposed 2D CNN with the state-of-the-art methods. 

 

Fig. 6. Graphical representation of the performance of 2D CNN and pre-

trained models. 

TABLE IX. COMPARISON OF PROPOSED 2D CNN WITH STATE-OF-THE-
ART METHODS 

Authors Method 
No of 

Images 
Accuracy (%) 

Proposed 2D CNN 900 99.8 

Yılmaz, A. 

[1] 
CNN with channel selection 597 97.2 

Sivari, E. et 
al. [19] 

Hybrid DL & ML based on 

DenseNet201+Logistic 

Regression 

597 95.07 

Geng, E. et 
al [20] 

CNN 696 93.9 

Sultan, H. et 

al [21] 
DRE-Net 597 85.92 

Uysal, F. et 

al [22] 

Ensemble Learning Models 

(E1 & E2) based on ResNet, 

ResNeXt, DenseNet, VGG, 
Inception, MobileNet 

8942 85 

Vo, M. T et 

al. [7] 

X-Net (ResNet + Squeeze & 

Excitation(SE) block) 
597 82 

Yi, P. H. et 
al. [9] 

DCNN 482 - 

Urban, G. et. 

Al [6] 
Custom CNN 597 80 

Zhou, M. et 

al [8] 

Random Forest, KNN, 
VGG16, ResNet50, 

InceptionV3, Vision 

Transformer 

597 77 (ResNet50) 

 
 (a) 
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 (b) 

 
 (c) 

 
 (d) 

 
 (e) 

Fig. 7. Confusion matrices for proposed 2D CNN and pre-trained models 

trained with extracted features with variance of 0.99. 

V. DISCUSSION 

By analysing the results obtained, it is demonstrated that 
feature extraction and data augmentation have a significant 
effect on the performance of the proposed model. The 
performance of the proposed model varies with variations in 
the extracted feature variance. This indicates that features with 
high information can be selected for model training to obtain 
the best performance. Aside from the increase in performance 
of the model when features with high information are used, the 
model has a lower training time and occupies less memory 
space as compared to the pre-trained models. This occurs as a 
result of the few network layers present in the proposed model, 
which is attributed to the reduced training time and memory 
space. Based on the performance presented in the result 
analysis section, the proposed system could differentiate 
between the manufacturers of the four shoulder implants with 
high accuracy. A comparison between the proposed 2D CNN 
and the state-of-the-art methods in terms of accuracy is shown 
in Table IX. From Table IX, it can be seen that some of the 
state-of-the-art methods [14–16, 18, 19] obtain slightly lower 
accuracy compared to the methods in [11–13] and the proposed 
method. Despite the promising performance displayed by these 
methods, the proposed 2D CNN recorded a significant 
improvement over the state-of-the-art methods, as depicted in 
Table V. 

VI. CONCLUSION 

The number of shoulder replacements performed has 
spiked dramatically over the last few decades. Replacement 
surgery is typically required if an implanted prosthesis is 
inadvertently damaged or if specific problems arise with the 
operating shoulder. Knowledge about the prosthesis is 
necessary for its replacement process. In many instances, the 
surgeon closely inspects the prosthesis' x-ray image and 
visually compares it to existing images of prostheses from 
various manufacturers in order to determine the prosthesis' 
manufacturer. This method takes a lot of time and is highly 
susceptible to errors. This work proposes a shallow 2D 
Convolution Neural Network (CNN) for implant classification 
in order to prevent delays, lessen errors and complications in 
the conventional method, and guarantee robust, dependable, 
and time-efficient implant classification. To address the class 
imbalance in the dataset and improve the performance of the 
proposed 2D CNN, a generative adversarial network (GAN) is 
used to augment the implant images in the classes with low 
samples. Principal Component Analysis (PCA) is then applied 
to the initial and augmented datasets to extract highly 
discriminating features for model training. The GAN 
augmentation and PCA feature extraction have a significant 
impact on the model performance and training speed, as 
presented in the results section. The proposed 2D CNN 
recorded an overall accuracy of 99.8%, a training time of 
16x104ms and 4MB of memory space, which outperformed the 
pre-trained models and other state-of-the-art deep learning 
models. The model in this work is limited to only four classes 
of prosthesis manufacturers, therefore cannot be generalized. In 
this feature, the model generalisation will be tested when more 
datasets are available and the results be compared with that of 
experts. 
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