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Abstract—In recent times, the world's growing population, 

coupled with its ever-increasing energy demands, has led to a 

significant rise in the consumption of fossil fuels. Consequently, 

this surge in fossil fuel usage has exacerbated the threat of global 

warming. Building energy consumption represents a significant 

portion of global energy usage. Accurately determining the 

energy consumption of buildings is crucial for effective energy 

management and preventing excessive usage. In pursuit of this 

goal, this study introduces a novel and robust machine learning 

(ML) method based on the K-nearest Neighbor (KNN) algorithm 

for predicting the heating load of residential buildings. While the 

KNN model demonstrates satisfactory performance in predicting 

heating loads, for the attainment of optimal results and accuracy, 

two novel optimizers, the Snake Optimizer (SO) and the Black 

Widow Optimizer (BWO), have been incorporated into the 

hybridization of the KNN model. The results highlight the 

effectiveness of KNSO in predicting heating load, as evidenced by 

its impressive R2 value of 0.986 and the low RMSE value of 1.231. 

This breakthrough contributes significantly to the ever-pressing 

pursuit of energy efficiency in the built environment and its 

pivotal role in addressing global environmental challenges. 

Keywords—Heating load; residential buildings; k-nearest 

neighbor; snake optimizer; black widow optimizers 

I. INTRODUCTION 

Buildings' energy consumption has substantial 
consequences for both the economic and the environmental 
health of a country [1]. The buildings sector is responsible for 
roughly 40% of the total energy consumption [2]. For instance, 
in the United States, the building sector represents 39% of the 
total energy consumption, while residential buildings in the 
European Union account for approximately 40% of the energy 
consumption within the building sector [3]. This significant 
energy usage in the building sector has positioned carbon 
emissions (CO2) as a primary driver of climate change, global 
warming, and air pollution [4], [5]. Consequently, many 
architects, researchers, and engineers have taken up the task of 
investigating models that centre on building envelopes and 
design features with the goal of reducing the negative effects 
associated with energy consumption in buildings [6], [7]. 

The primary elements within a building's envelope and 
design features that influence its energy consumption 
encompass the U-value of the envelope (comprising materials 
such as wall materials, roof materials, and glazing properties), 
the window-to-wall ratio, and the orientation of the façade [8], 
[9]. Hence, to promote sustainability and mitigate negative 
impacts on both the natural and built environments, it is 
essential to consider and comprehend these variables in terms 
of their thermal efficiency and energy consumption [10]. 

Energy prediction tools are essential for enabling well-
informed decision-making aimed at reducing energy 
consumption in buildings [11]. These tools possess the capacity 
to evaluate a broad spectrum of building designs and strategies, 
thereby enhancing energy demand and management [12]. It is 
crucial to acknowledge, however, that factors other than a 
building's envelope and characteristics impact energy 
consumption, such as external weather conditions, occupant 
behaviour, the adoption of technologies, and equipment [13]. 
The task of energy prediction is a complex research challenge. 

Nevertheless, progress has been achieved in the quest for 
sustainable buildings concerning energy demand [14]. 
However, energy forecasting continues to fall behind the rapid 
urbanization and advancements in building design and features 
[15]. The energy efficiency of buildings has garnered 
substantial research attention, with numerous studies 
concentrating on prediction models based on data analysis [16], 
[17]. AI models show substantial potential for both forecasting 
and enhancing building energy usage [18]. These models 
leverage historical data, real-time sensor information, and ML 
algorithms to produce precise predictions, offering valuable 
insights for effective energy management. Over time, the field 
of predicting energy consumption has witnessed notable 
progress. Researchers and industry experts have devised a 
range of methods and strategies to forecast energy utilization 
consistently [19]. Kim and Cho [20] introduced a neural 
network in their study, which combined the characteristics of 
Convolutional Neural Network (CNN) and Long Short-Term 
Memory (LSTM) architectures, tailoring them for accurate 
forecasting of residential energy usage. The fusion of CNN and 
LSTM skillfully harnessed spatial and temporal features, 
enabling the capture of complex energy consumption patterns 
with great proficiency. 

Experimental results showcased the exceptional accuracy 
of the CNN-LSTM approach, especially in the context of 
electric energy usage, surpassing conventional forecasting 
techniques. Roy et al. [1] introduced a tailor-made Deep Neural 
Network (DNN) model that was specifically crafted for 
forecasting heating and cooling loads in residential buildings. 
They proceeded to perform a comparative assessment, pitting 
the DNN model against the gradient-boosted machine (GBM), 
Gaussian process regression (GPR), and minimax probability 
models, particularly machine regression (MPMR). The 
findings revealed that both the DNN and GPR models 
demonstrated the most substantial variance accounted for 
(VAF) when it came to predicting both heating and cooling 
loads. In a study presented by Moradzadeh et al. [15], SVR and 
MLP models were employed to predict Cooling and Heating 
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Loads. The MLP technique yielded impressive outcomes, 
achieving the highest R-value of 0.9993 for Heating Load 
prediction. In contrast, for the Cooling Load prediction, the 
SVR method excelled, attaining the highest R-value of 0.9878. 

In this research, a fresh ML approach is presented with the 
objective of attaining accurate and optimal predictive 
outcomes. The hybridization technique employed in this study 
is meticulously designed to boost the effectiveness of KNN 
models, guaranteeing the generation of dependable results. By 
combining two advanced and efficient optimization methods, 
the creation of these novel hybrid models surpassed 
conventional approaches, representing a notable advancement. 
A thorough assessment of these models was carried out, 
covering both their individual and hybrid setups, in order to 
guarantee a fair evaluation of their capabilities. In order to 
ascertain the robustness of the outcomes, the evaluation of 
model effectiveness included well-recognized metrics like R2 
and RMSE. Furthermore, the purposeful choice of two separate 
optimizers, specifically the Snake Optimizer (SO) and the 
Black Widow Optimizer (BWO), for building the hybrid 
models was guided by the objective of harnessing the distinct 
advantages of each optimizer, with the ultimate aim of 
enhancing performance. 

This study significantly contributes to the field of building 
energy efficiency by comparing various predictive models for 
heating load in residential buildings. Furthermore, the study 
elucidates the factors influencing predictive accuracy and 
provides clear visualizations of error distribution patterns, 
aiding researchers and practitioners in selecting appropriate 
modeling approaches. Overall, these contributions advance 
knowledge in building energy efficiency, offering pathways for 
future research and the adoption of more effective predictive 
modeling techniques in practice. 

The rest of the article is organized as follows: 

In section two, the explanations of the materials and the 
methodology which utilized in this study are provided, the 
methodology incudes the descriptions of the fundamental 
framework KNN, and the optimization algorithms SO and 
BWO. Then, in the third section, the performance evaluation 
metrics are defined, along with their formulas Furthermore in 
the section three, the results of the predictive models based on 
the results of evaluators presented. At the end of this section, a 
comparative analysis based on the results of the present study 

and the previous studies is illustrated. In section four, the 
potential future works are identified. Finally, the last section 
includes the conclusion of the study. 

II. MATERIALS AND METHODOLOGY 

A. Materials 

In the realm of predicting heating load for residential 
buildings, the utilization of various input features plays a 
crucial role in model accuracy and performance. As observed 
in Table I, which provides a comprehensive overview of the 
statistical parameters associated with these inputs, these 
features encompass a range of factors, including Relative 
Compactness (RCE), Surface Area (SA), Wall Area (WA), 
Roof Area (RA), Overall-Height (OVH), Orientation (OR), 
Glazing Area (GA), and Glazing Area Distribution (GAD). 

The statistical insights presented in Table I allow 
researchers and practitioners to assess the distribution, 
variability, and characteristics of these features, providing a 
foundation for model development and evaluation. These input 
features serve as the basis for data-driven approaches, where 
ML models, neural networks, and optimization techniques are 
employed to forecast and optimize heating load in residential 
buildings. 

B. KNN for Regression 

1) Theory: The exact process applies to regression, 

attributing the entity's value as the average of its nearest 

neighbours. In reversal, the goal is to predict dependent 

variables from independent ones. The 1 −closest neighbour 

technique, illustrated using KNN, finds the nearest neighbour 

to predict outcomes [21]. 

2) Distance metric: KNN predicts based on the K nearest 

neighbours' outcomes, utilizing distance metrics like 

Euclidean, Euclidean squared, City-block, or Chebyshev: 

𝐷(𝑥, 𝑝) =

{
 
 

 
 √(𝑥 − 𝑝)2     𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑

(𝑥 − 𝑝)2       𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑

|𝑥 − 𝑝|                           𝐶𝑖𝑡𝑦𝑏𝑙𝑜𝑐𝑘

𝑀𝑎𝑥(|𝑥 − 𝑝|)              𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣

 (1) 

In which 𝑥 and 𝑝 represent the inquiry spot and an instance 
from the selection of the illustrations, correspondingly [22], 
[23]. 

TABLE I.  STATISTICAL PROPERTIES OF THE VARIABLES 

Indicator 
Input Output 

RCE SA WA RA OVH OR GA GAD Heating 

Max 0.98 808.5 416.5 220.5 7 5 0.4 5 43.1 

Min 0.62 514.5 245 110.25 3.5 2 0 0 6.01 

Median 0.75 673.75 318.5 183.75 5.25 3.5 0.25 3 18.95 

Avg 0.764 671.708 318.500 176.604 5.250 3.500 0.234 2.813 22.307 

Skew 0.496 -0.125 0.533 -0.163 0.000 0.000 -0.060 -0.089 0.360 

St. Dev 0.106 88.086 43.626 45.166 1.751 1.119 0.133 1.551 10.090 
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3) K-Nearest neighbor predictions: Once the K value has 

been determined, forecasts can be generated using the KNN 

instances. In the context of regression, KNN forecasting is 

equivalent to the average of the results from the K nearest 

neighbours: 

𝑦 =
1

𝐾
∑𝑦𝑖

𝑘

𝑖=1

 (2) 

In which 𝑦 𝑖  represents the 𝑖𝑡ℎ  instance of the sample 
examples, and y is the forecast (result) of the inquiry spot. 
Unlike regression, regarding classification issues, KNN 
prognostications rely on a balloting system where the victor is 
employed to tag the inquiry. KNN analysis, thus far, overlooks 
relative proximity, giving equal influence to K neighbours. An 
alternative uses large K values with distance weighting for 
nearby instances [24]. 

C. Snake Optimization (SO) 

Snake reproduction is influenced by temperature and food 
availability. Mating in cooler regions happens in late spring 
and summer. Female choice, male competition, and egg-laying 
are part of the process [25]. 

1) Inspiration source: SO is inspired by snake mating 

behaviour. Mating occurs in cold conditions with food; 

otherwise, snakes explore for food. During exploitation, stages 

optimize global efficiency. High-temperature prompts feeding, 

while cold environments and food lead to mating, with 

fighting and mating modes, possibly resulting in new snakes 

[26]. 

2) Initialization: Like all metaheuristic algorithms, SO 

commences by creating a uniformly distributed random 

population to initiate the optimization algorithm. The original 

population is acquired using the following equation: 

𝑋𝑖 = 𝑋𝑚𝑖𝑛 + 𝑟 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (3) 

Here, 𝑋𝑖  denotes the location of the 𝑖𝑡ℎ  individual,  𝑟 
represents a random value falling within the range of 0 to 1, 
while 𝑋𝑚𝑖𝑛  and  𝑋𝑚𝑎𝑥  correspond to the inferior and higher 
problem limits. 

3) Diving the swarm into two equal groups, males and 

females Within this research, it is presumed that there is an 

equal distribution, with 50% males and 50% females in the 

population. The population is then categorized into two 

groups: males and females. To divide the swarm, the 

subsequent two Eq. (4) and (5) are employed: 

𝑁𝑚 ≈ 𝑁/2 (4) 

𝑁𝑓 = 𝑁 − 𝑁𝑚 (5) 

Here, 𝑁  stands for the total number of individuals, 𝑁𝑚 
represents the count of male individuals and 𝑁𝑓  signifies the 

count of female individuals. 

4) Evaluate each group defining temperature and food 

quantity 

 Identify the top individual within each cluster and 
determine the best female (𝑓𝑏𝑒𝑠𝑡,𝑓), and the best male 

(𝑓𝑏𝑒𝑠𝑡,𝑚) along with the food position (𝑓𝑓𝑜𝑜𝑑). 

 The temperature, Temp, may be characterized utilizing 
the subsequent equation: 

𝑇𝑒𝑚𝑝 = exp (
−𝑡

𝑇
) (6) 

In this case, 𝑡  alludes to the present repetition, and 𝑇 
represents the utmost count of repetition. 

 Describing the quantity of food (𝑄)  involves 
determining it with the subsequent equation: 

𝑄 = 𝑐1 ∗ exp (
𝑡 − 𝑇

𝑇
) (7) 

The constant 𝑐1 is fixed at a value of 0.5. 

5) Exploration phase (no food): When 𝑄 is less than the 

threshold (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  0.25),  the snakes forage for 

nourishment by picking a random location and adjusting their 

position accordingly. To simulate the exploration phase, the 

subsequent steps are taken: 

𝑋𝑖,𝑚(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑,𝑚(𝑡) ± 𝑐2 × 𝐴𝑚 × ((𝑋𝑚𝑎𝑥
− 𝑋𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑 + 𝑋𝑚𝑖𝑛) 

(8) 

Here, 𝑋𝑖,𝑚 designates the position of the 𝑖𝑡ℎ male, 𝑋𝑟𝑎𝑛𝑑,𝑚 

signifies the random male's position, 𝑟𝑎𝑛𝑑 represents a random 
value ranging from 0  to 1 , and 𝐴𝑚  denotes the male's 
capability to locate food, which can be computed using the 
subsequent equation: 

𝐴𝑚 = exp (
−𝑓𝑟𝑎𝑛𝑑,𝑚
𝑓𝑖,𝑚

) (9) 

Here, −𝑓𝑟𝑎𝑛𝑑,𝑚 stands for the fitness of 𝑋𝑟𝑎𝑛𝑑,𝑚 , while 

𝑓𝑖,𝑚 represents the fitness of the ith individual within the group 

of males, and C2 is an unchanging continuous set at 0.05: 

𝑋𝑖,𝑓 = 𝑋𝑟𝑎𝑛𝑑,𝑓(𝑡 + 1) ± 𝑐2 × 𝐴𝑓 × ((𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)

× 𝑟𝑎𝑛𝑑 + 𝑋𝑚𝑖𝑛) 
(10) 

Here, the position of the  𝑖𝑡ℎ  female is denoted by 𝑋𝑖,𝑓 , 
while the location of a random female is indicated by 𝑋𝑟𝑎𝑛𝑑,𝑓 . 
A random value between 0 and 1 is represented by rand, and 
the female's capacity to locate food is signified by 𝐴𝑓  which 

can be computed as follows: 

𝐴𝑓 = exp (
−𝑓𝑟𝑎𝑛𝑑,𝑓

𝑓𝑖,𝑓
) (11) 

In this case, −𝑓𝑟𝑎𝑛𝑑,𝑓  represents the fitness of 𝑋𝑟𝑎𝑛𝑑,𝑓  and 

𝑓𝑖,𝑓 denotes the fitness of the 𝑖𝑡ℎ individual within the group of 

females. 

6) Exploitation phase (food exists) 

If 𝑄 > Boundary 

If the Heat > Boundary (0.6)% (hot) 

The snakes will exclusively relocate toward the sustenance:  
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𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑓𝑜𝑜𝑑 ± 𝑐3 × 𝑇𝑒𝑚𝑝 × 𝑟𝑎𝑛𝑑

× (𝑋𝑓𝑜𝑜𝑑𝑋𝑖,𝑗(𝑡)) 
(12) 

If the Heat < Boundary (0.6) %cold 

The snake will either engage in combat or enter the mating 
phase. 

 Combat Mode: 

𝑋𝑖,𝑚(𝑡 + 1) = 𝑋𝑖,𝑚(𝑡) + 𝑐3 × 𝐹𝑀 × 𝑟𝑎𝑛𝑑 × (𝑄
× 𝑋𝑏𝑒𝑠𝑡,𝑓 − 𝑋𝑖,𝑚(𝑡)) 

(13) 

Here, 𝑋𝑖,𝑚  pertains to the mode of the male in the  𝑖𝑡ℎ 

mode, 𝑋𝑏𝑒𝑠𝑡,𝑓  signifies the location of the superior individual 

within the female group, and 𝐹𝑀 represents the male agent's 
combat proficiency: 

𝑋𝑖,𝑓(𝑡 + 1) = 𝑋𝑖,𝑓(𝑡 + 1) + 𝑐3 × 𝐹𝐹 × 𝑟𝑎𝑛𝑑 × (𝑄

× 𝑋𝑏𝑒𝑠𝑡,𝑚 − 𝑋𝑖,𝐹(𝑡)) 
(14) 

In this scenario, 𝑋𝑖,𝑓 designates the location of the female at 

the ith position, 𝑋𝑏𝑒𝑠𝑡,𝑚  points to the location of the top 

individual within the male group, and 𝐹𝐹 signifies the female 
agent's combat aptitude. 

𝐹𝑀 and 𝐹𝐹 are derivable from the subsequent equation: 

𝐹𝑀 = exp (
𝑓𝑏𝑒𝑠𝑡,𝑓

𝑓𝑖
) (15) 

𝐹𝐹 = exp (
−𝑓𝑏𝑒𝑠𝑡,𝑚

𝑓𝑖
) (16) 

In this context, 𝑓𝑏𝑒𝑠𝑡,𝑓 represents the fitness of the top agent 

in the female group, −𝑓𝑏𝑒𝑠𝑡,𝑚  signifies the fitness of the 

foremost agent in the male group, and fi denotes the fitness of 
an individual agent. 

 Coupling Mode: 

𝑋𝑖,𝑚(𝑡 + 1) = 𝑋𝑖,𝑚(𝑡)𝑐3 ×𝑀𝑚 × 𝑟𝑎𝑛𝑑 × (𝑄
× 𝑋𝑖,𝑓(𝑡) − 𝑋𝑖,𝑚(𝑡)) 

(17) 

𝑋𝑖,𝑓(𝑡 + 1) = 𝑋𝑖,𝑓(𝑡) + 𝑐3 ×𝑀𝑓 × 𝑟𝑎𝑛𝑑 × (𝑄

× 𝑋𝑖,𝑚(𝑡) − 𝑋𝑖,𝑓(𝑡)) 
(18) 

𝑋𝑖,𝑓 represents the 𝑖𝑡ℎ agent's location in the female group 

and 𝑋𝑖,𝑚  denotes the  𝑖𝑡ℎ  agent's position in the male group. 

Mm and Mf indicate the reproductive capacity of males and 
females, respectively, which can be computed as follows: 

(19) 𝑀𝑚 = exp (
−𝑓𝑖,𝑓

𝑓𝑖,𝑚
) 

(20) 𝑀𝑓 = exp (
−𝑓𝑖,𝑚
𝑓𝑖,𝑓

) 

If the eggs hatch, pick the least competent male and female 
and substitute them: 

𝑋𝑤𝑜𝑟𝑠𝑡,𝑚 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (21) 

𝑋𝑤𝑜𝑟𝑠𝑡,𝑓 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑋𝑚𝑎𝑥 − 𝑋min ) (22) 

The operator ± , or diversity factor, influences solution 
positions, enhancing exploration in various directions. It is a 
common element in metaheuristic algorithms, as seen in 
Hunger Games Search and others. 

D. Black Widow Optimization Algorithm 

The black widow spider in Mediterranean Europe uses 
Cannibalism in its lifecycle. In 2020, researchers developed the 
Black Widow Optimization (BWO) algorithm inspired by this 
behaviour, which has four key stages [27]. 

1) Initialization: 𝑊𝑁,𝐷 = [𝑋1, 𝑋2, … , 𝑋𝑁]  represents a 

group of N black widow spiders 𝑋1, 𝑋2, … , 𝑋𝑁 . 𝐷 signifies the 

dimension relevant to an optimization problem within the 

given population 𝑋𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝐷](1 ≤ 𝑖 ≤ 𝑁)  denotes 

the 𝑖 − 𝑡ℎ widow. Every component within an individual 𝑋𝑖 =
[𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝐷](1 ≤ 𝑖 ≤ 𝑁)  each element is initialized 

using the formula provided in Eq. (23): 

𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑(0,1). (𝑢𝑗 − 𝑙𝑗), 1 ≤ 𝑗 ≤ 𝐷 (23) 

Here 𝐿 = [𝑙1, 𝑙2, … , 𝑙𝐷], 𝑈 = [𝑢1, 𝑢2, … , 𝑢𝐷], which do the 
minimum and maximum limits of the parameters in the 
optimization model. 

2) Procreate: The new generation is created through 

unique breeding behaviour in black spiders, randomly 

selecting maternal and paternal spiders to reproduce based on 

a specified proportion (Pp) using Eq. (24): 

{
𝑌𝑖 = 𝑎𝑋𝑖 + (1 − 𝑎)𝑋𝑖
𝑌𝑗 = 𝑎𝑋𝑗 + (1 − 𝑎)𝑋𝑖

 (24) 

In which 𝑋𝑖  and 𝑋𝑗  stand as maternal and paternal 
arachnids correspondingly. 𝑌𝑖  and 𝑌𝑗  signify the descendants 
resulting from mating. Additionally, 𝛼  comprises a 
𝐷 −dimensional assortment featuring chance figures. 

E. Performance Evaluator 

In this segment, a series of metrics (R2, RMSE, MSE, n10-
index, and MRAE) has been developed to assess the hybrid 
models. These metrics gauge both the degree of error and 
correlation, providing valuable insights into the models' 
performance. 

1) R2 (Coefficient of Determination): 

 R2 measures the proportion of the variance in the 
dependent variable (target) that can be explained by the 
independent variables (features) in the model. 

 It ranges from 0 to 1, where 1 indicates a perfect fit and 
0 indicates no correlation. 

 A higher R2 value suggests better model performance. 

2) RMSE (Root Mean Squared Error): 

 RMSE quantifies the average magnitude of errors 
between predicted values and actual values. 

 It is calculated as the square root of the average of 
squared differences between predicted and actual 
values. 
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 Smaller RMSE values indicate better model accuracy. 

3) MSE (Mean Squared Error): 

 MSE is similar to RMSE but without the square root 
operation. 

 It represents the average of squared errors. 

 Like RMSE, smaller MSE values indicate better model 
performance. 

4) n10-index: 

 The n10-index assesses the model’s ability to predict 
extreme values. 

 It focuses on the top 10% of predictions (highest or 
lowest). 

 A higher n10-index indicates better performance in 
capturing extreme events. 

5) MRAE (Mean Relative Absolute Error): 

 MRAE measures the average relative difference 
between predicted and actual values. 

 It considers the magnitude of errors relative to the 
actual values. 

 Smaller MRAE values imply better model accuracy. 

These metrics collectively provide valuable insights into 
the hybrid models’ performance, considering both error and 
correlation aspects. 

The equations for these metrics, which were employed in 
this study, can be found in Table II [28]. 

TABLE II.  MATHEMATIC EQUATIONS OF THE PERFORMANCE METRICS 

Coefficient Correlation (R2): 𝑹𝟐 =

(

 
∑ (𝒃𝒊 − �̅�)(𝒎𝒊 − �̅�)
𝒏
𝒊=𝟏

√[∑ (𝒃𝒊 − �̅�)
𝟐𝒏

𝒊=𝟏 ] [∑ (𝒎𝒊 − �̅�)
𝟐𝒏

𝒊=𝟏 ]
)

 

𝟐

 (25) 

Root Mean Square Error (RMSE): 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑚𝑖 − 𝑏𝑖)

2

𝑛

𝑖=1

 (26) 

Mean Square Error (MSE): MSE = 
1

𝑛
∑ (𝑚𝑖 − 𝑏𝑖)

2𝑛
𝑗=1  (27) 

𝒏𝟏𝟎 − 𝒊𝒏𝒅𝒆𝒙: 𝑛10 − 𝑖𝑛𝑑𝑒𝑥 =
𝑛10

𝑛
 (28) 

Mean Relative Absolute Error (MRAE) 𝑀𝑅𝐴𝐸 =
1

𝑛
∑

|𝑚𝑖 − 𝑏𝑖|

|𝑏𝑖 − �̅�|

𝑛

𝑖=1

 (29) 

Where: 

 The measured value is indicated by 𝑚𝑖. 

 Predicted values are expressed as 𝑏𝑖. 

 The 𝑛 denotes the sample size. 

 The means of the measured and predicted values are 
represented as m̅ and b̅, respectively. 

 The mean of the predictor variable in the dataset is 
symbolized as x̄. 

III. RESULT AND DISCUSSION 

A. Results of the Evaluation Metrics 

The results presented in Table III illustrate the effectiveness 
of the developed models for predicting heating load in 
residential buildings. Specifically, the KNSO model, which 
integrates the SO, emerges as the frontrunner across various 
performance metrics. Its low RMSE values in the training, 
validation, and test phases, along with high R2 values, reflect 
its capacity to provide accurate forecasts. The consistency of 
the KNSO model in maintaining low MARE values across all 
phases underscores its reliability in capturing the actual heating 
load values. Additionally, the high n10_index observed in the 
training phase suggests that a significant portion of the 
predicted values falls within a tolerance band of actual heating 
load values. This reflects the KNSO model's ability to match 
real-world heating load data closely. 

Comparatively, the traditional KNN and KNBW models 
exhibit commendable performance, but the KNSO model 
stands out as the superior choice, particularly in terms of 
precision and accuracy in heating load prediction. The 
integration of the SO Optimizer effectively refines the KNN 
model, providing a valuable tool for optimizing energy 
management and enhancing sustainability in residential 
buildings. These findings emphasize the significance of 
optimization techniques in enhancing the predictive 
capabilities of ML models for energy consumption. The results 
have practical implications for energy-efficient building design 
and the reduction of heating load, contributing to both 
economic and environmental sustainability. In conclusion, the 
KNSO model, when applied to heating load prediction in 
residential buildings, demonstrates outstanding performance 
and offers substantial promise for improving energy efficiency 
in the built environment. 

In order to delve deeper into the distinctions and levels of 
accuracy exhibited by the various models, it is crucial to turn 
attention to Fig. 1. This figure offers a comprehensive 
comparative analysis of critical evaluation metrics, namely R2 
values, RMSE, and MSE, which are indispensable for 
assessing the precision of these models in predicting heating 
load. As previously mentioned, the KNSO model emerges as 
the star performer among the models. This distinction is 
exceptionally evident in Fig. 1, where its results consistently 
demonstrate the lowest values across these metrics. The 
exceptionally low values of RMSE and MSE and the high R2 
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score underscore the remarkable precision of the KNSO model 
in predicting heating load, making it the standout choice. In 
contrast, the KNN base models exhibit comparatively weaker 
results when scrutinized through the lens of these metrics. 

They demonstrate higher RMSE and MSE values and lower R2 
scores, signifying a lower level of accuracy in their predictions 
compared to the KNSO model. 

TABLE III.  THE RESULT OF DEVELOPED MODELS FOR KNN 

Model Phase 
Index values 

RMSE R2 MSE n10_index MARE 

KNN 

Train 1.878 0.966 3.527 0.747 0.080 

Validation 2.254 0.952 5.080 0.635 0.101 

Test 2.145 0.956 4.603 0.696 0.085 

All 1.980 0.963 3.921 0.723 0.084 

KNSO 

Train 1.231 0.986 1.515 0.796 0.059 

Validation 1.422 0.979 2.021 0.896 0.059 

Test 1.500 0.977 2.251 0.922 0.058 

All 1.304 0.984 1.701 0.829 0.059 

KNBW 

Train 1.549 0.977 2.399 0.725 0.074 

Validation 1.803 0.967 3.251 0.661 0.078 

Test 1.729 0.970 2.988 0.774 0.064 

All 1.617 0.975 2.615 0.723 0.073 

 

 

Fig. 1. Comparison between models based on RMSE, R2, and MSE. 
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Fig. 2. Scatter plot for developed models. 

In Fig. 2, a scatter plot is presented to visually illustrate the 
performance of the models concerning their R2 and RMSE 
values. Each model, in both the training and validation phases, 
is represented by distinct circular markers distinguished by 
various colours. These markers converge towards a central 
line, symbolizing the ideal R2 value of 1, signifying a perfect 
alignment between the predicted and actual values. A more in-
depth examination of the data points associated with the KNSO 
model within the scatter plot reveals a closely-knit cluster 
positioned near the central line. The tight clustering of data 
points around this central line serves as compelling evidence of 
the KNSO model's precision in prediction, consistently 
remaining in proximity to the ideal R2 value. In contrast, the 
KNBW and KNN models exhibit scattered data points, 
indicative of a broader spread of values. This dispersion within 
the scatter plot implies that these models show less consistency 
and accuracy in predicting heating load, as their data points 
deviate more widely from the ideal R2 value of 1. 

Carrying out a comprehensive error analysis is essential to 
gain a more profound understanding of the distinctive 
attributes and accuracy of the models under scrutiny. Such an 
analysis allows us to delve into the complexities of their 
performance. In this endeavour, Fig. 3 plays a pivotal role, 

offering valuable insights into the models' performance in 
terms of errors. Of particular note, the graph underscores the 
noteworthy error rate associated with the KNN model, which 
was particularly prominent during the testing phase. This 
observation serves as a crucial reference point for evaluating 
the model's performance in real-world scenarios, shedding light 
on areas where improvements may be necessary. The 
maximum error rate reached as high as 30%, highlighting the 
challenges faced by the KNN model, particularly when it 
comes to accurately predicting heating load (HL) values within 
this specific range of samples. In contrast, a more detailed 
examination of the KNSO model reveals an exceptional level 
of precision in the training phase, where the majority of data 
points exhibit nearly negligible errors, staying close to 0%. 

This demonstrates the KNSO model's proficiency in 
accurately forecasting HL values during the training phase. 
However, the testing phase presents a slightly different 
scenario, with some errors emerging, although they remain 
relatively lower than those observed in the KNN model. 
Conversely, the performance of the KNBW model displays 
distinct characteristics. During the training phase, it registered 
a peak error of 50%, signifying a certain degree of 
inconsistency in its predictive accuracy. Remarkably, these 
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errors persist across all three phases: training, testing, and 
validation, further emphasizing its unique behaviour. 

In Fig. 4, the distribution characteristics of the proposed 
models are visually represented through a scatter interval plot, 
encompassing the three distinct phases: training, validation, 
and testing. Particularly noteworthy is the scattering of data 
points that correspond to the KNN model, which spans a broad 
range of error percentages, extending from 60 to -20. This 
dispersion is most conspicuous during the training phase. To 
effectively identify outlier data points for comparative analysis 
among the models, a range equivalent to 1.5 times the 
Interquartile Range (IQR) is employed. In contrast, the data 
points associated with the KNSO model are notably 
concentrated within a relatively narrow range of error 
percentages, which extends from 20 to -20. This concentration 
signifies a higher degree of consistency in the predictions 
generated by the KNGO model. On the other hand, the data 
points for KNBW have contained a range of -40 to 40 per cent 

errors, indicating a distinct distribution pattern when compared 
to both the KNN and KNSO models. 

B. Comparison between the Outcomes of Present Study and 

the Existing Studies 

Heating Load prediction has been the subject of numerous 
studies, including those conducted by Afzal et al. [29], utilizing 
the MLP model, and Gong et al. [30], employing the GBM 
technique. Notably, among the various studies referenced in 
Table IV, superior performance was demonstrated by the GPR 
model, achieving an R2 value of 0.99 and an RMSE value of 
0.059 in research conducted by Roy et al. [31]. In the current 
study, the foundational framework adopted was the KNN 
model, which was enhanced through hybridization with BWO 
and SO algorithms. Upon evaluating the results obtained, it 
was found that the integration of SO into the KNN model 
demonstrated exceptional applicability, yielding an R2 value of 
0.986 and an RMSE of 1.231, surpassing the performance of 
the other two models in this study. 

  

 

Fig. 3. The models' error percentage based on the Radial Staked Bar plot. 

 
Fig. 4. The Bar Overlap of errors among the developed models. 
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TABLE IV.  THE COMPARATIVE ANALYSIS BETWEEN EXISTING PUBLICATIONS AND CURRENT STUDY 

Name Model 
Results 

RMSE R2 

Roy et al. [31] GPR 0.059 0.99 

Gong et al. [30] GBM 0.1929 0.9882 

Afzal et al. [29] MLP 1.4122 0.9806 

Present study KNSO 1.231 0.986 
 

IV. CONCLUSION 

The article discussed herein delves into the realm of 
predictive modelling for heating load in residential buildings, 
focusing on the performance of various models. This 
exploration of the models' precision and characteristics has 
revealed several key insights. One of the most prominent 
findings is the substantial variation in accuracy across the 
models. The KNSO model, enhanced by the Snake Optimizer, 
emerges as the star performer. This model consistently 
exhibited the lowest RMSE and MARE values and the highest 
R2 scores. These results indicate the remarkable precision of 
the KNSO model in predicting heating load, which holds 
significant promise for improving energy efficiency and 
sustainability in building design and management. Conversely, 
the KNN model, serving as the baseline, demonstrated weaker 
performance, with notably higher RMSE and MARE values 
and lower R2 scores. This performance divergence emphasizes 
the significance of optimization techniques, such as the Snake 
Optimizer, in enhancing predictive capabilities. The KNBW 
model, while not reaching the same level of accuracy as the 
KNSO model, displayed moderate performance. Its 
performance characteristics, including errors and consistency, 
were distinct from both the KNN and KNSO models. This 
suggests that the optimization techniques applied in each 
model have a significant impact on their predictive accuracy. 
Furthermore, the distribution patterns of error percentages 
among the models, visualized in the scatter interval plot, 
underline the consistency and accuracy disparities. The KNSO 
model exhibited a notably concentrated distribution within a 
narrow range of error percentages, reflecting its consistent and 
precise predictions. In contrast, the KNN model showed a wide 
scattering of data points with a broader range of errors, 
particularly during the training phase. KNBW had its distinct 
distribution pattern, encompassing a specific range of errors. In 
conclusion, this study underscores the pivotal role of 
optimization techniques in refining predictive models for 
heating load. The KNSO model, with the Snake Optimizer, 
stands out as a powerful tool for accurate heating load 
prediction, offering valuable insights for sustainable building 
design. These findings hold significant implications for energy 
efficiency and environmental sustainability in the construction 
and management of residential buildings. By harnessing the 
capabilities of advanced optimization techniques, substantial 
strides could be made toward more energy-efficient and 
environmentally friendly building practices, contributing to a 
greener and more sustainable future. 

V. FUTURE WORK 

To enhance the effectiveness of predictive modeling for 
heating load in residential buildings, a multifaceted approach is 
warranted. Firstly, an in-depth exploration into the integration 
of additional variables, such as occupancy patterns, weather 

forecasts, and building materials, holds promise for refining 
prediction accuracy and capturing the intricacies of real-world 
scenarios more comprehensively. Moreover, delving into the 
application of a broader spectrum of ML algorithms, beyond 
those examined in this study, could yield fresh perspectives 
and potentially unveil more efficient models. Concurrently, 
conducting rigorous field studies to validate predictive model 
performance in authentic settings would furnish invaluable 
practical insights, substantiating the conclusions drawn from 
this research. Furthermore, a longitudinal analysis of optimized 
models, assessing their adaptability to evolving environmental 
conditions and shifting building usage patterns, stands to offer 
crucial data for informing sustainable building management 
strategies. Lastly, integrating cutting-edge advancements in 
optimization techniques and data analytics methodologies 
holds the potential to usher in a new era of even more robust 
and precise predictive models, thereby advancing the 
overarching objective of fostering energy-efficient and 
environmentally sustainable residential constructions. 
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