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Abstract—Accurate classification of multivariate time series 

data represents a major challenge for scientists and practitioners 

exploring time series data in different domains. LSTM-Auto-

encoders are Deep Learning models that aim to represent input 

data efficiently while minimizing information loss during the 

reconstruction phase. Although they are commonly used for 

Dimensionality Reduction and Data Augmentation, their 

potential in extracting dynamic features and temporal patterns 

for temporal data classification is not fully exploited in contrast 

to the tasks of time-series prediction and anomaly detection.  In 

this article, we present a multi-level hybrid TSC-LSTM-Auto-

Encoder architecture that takes full advantage of the 

incorporation of temporal labels to capture comprehensively 

temporal features and patterns. This approach aims to improve 

the performance of temporal data classification using this 

additional information. We evaluated the proposed architecture 

for Human activity Recognition (HAR) using the UCI-HAR and 

WISDM public benchmark datasets. The achieved performance 

outperforms the current state-of-the-art methods. 

Keywords—Deep Learning (DL); multivariate time series; Time 

Series Classification (TSC); Human Activity Recognition (HAR) 

I. INTRODUCTION 

Time series classification (TSC) [1] holds crucial 
significance in machine learning, providing various advantages 
and significant applications. The main objective of TSC is to 
assigning a category or class to a time series based on its 
temporal characteristics and dynamic. In terms of processed 
data, each time series constitutes a sequence of temporal data, 
such as univariate or multivariate measurements and values, 
captured and recorded at regular intervals. TSC currently 
occupies a central place in many applications spread across 
various fields: It is used in healthcare to classify medical 
signals such as electrocardiograms (ECG) [2], 
electroencephalograms (EEG) [3], and other medical 
monitoring data [4]. For the financial sector, it makes it 
possible to understand the dynamic developments of financial 
markets, in particular the classification of shares [5]. In 
industry, it is used to analyze sensor data for machine 
monitoring [6], process planning [7], and production quality 
control. In security, it helps protect computer systems against 
advanced cyber-attacks [8] through malware detection [9]. In 
the environmental field, it facilitates climate change detection 
and causal inference analysis [10] in climate science, using 
advanced TSC techniques. Finally, the field of recognition of 
human activity from sensors presents a classification challenge 

based on the analysis of time series, in particular those coming 
from accelerometers and gyroscopes. This field encompasses a 
variety of broad applications in industries such as healthcare, 
personal monitoring, security, physical performance tracking, 
life data recording, elderly care, and home care. Due to its 
critical importance, paving the way for significant progress in 
understanding and improving the human way of life at multiple 
levels, we deliberately chose this area to experiment and 
analyze our DL model. 

Despite the critical importance of implementing temporal 
data classification, this area faces several significant 
challenges. Class imbalance is one such concern, with the 
potential to introduce bias into classification models. 
Extracting relevant dynamic features from temporal data is 
crucial for accurate classification, but it represents an 
extremely complex task. In addition, dealing with missing 
values in time series requires the adoption of suitable 
strategies. Additionally, detecting relevant temporal patterns 
can be difficult, especially when these patterns are subtle with 
noisy data. To overcome these challenges, the scientific 
community is exploring various avenues of research, covering 
both traditional machine learning methods and DL approaches, 
whether supervised or unsupervised. Currently, the use of 
generative model-based approaches such as GANs and auto 
encoders remains limited when it comes to temporal data 
classification. These methods are mainly reserved for data 
augmentation and dimensionality reduction. To use directly 
generative models in the classification of temporal data, we 
have developed a new multi-step approach. This method aims 
to take advantage of the power of generative models, in 
particular those of the auto encoder (AE) type, to extract 
dynamic and temporal characteristics. The goal is to improve 
the classification of time series data. Our work mainly focuses, 
in the first phase, on the integration of a digital time label for 
each class of human activity once determined. 

We integrate this label into the raw data as input for our 
generative model. Subsequently, we train the model to enhance 
its ability to reproduce this information accurately. This 
approach is designed to acquire the skill of extracting dynamic, 
and temporal characteristics, allowing it to generate this label 
even when it is absent during testing. 

In the second phase, we perform classification using the 
labels generated in the preceding phase, following a supervised 
approach guided by a previously validated LSTM model. The 
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following points can mention the main contribution of this 
paper: 

 We conduct a general review of the existing literature 
on DL-based TSC, providing readers with valuable 
insights to understand and contrast the trend axes in this 
area. 

 The creation of representative labels and identifiers per 
class in the form of a coherent temporal variable can 
effectively capture dynamic and temporal relational 
characteristics and dependencies. 

 Conduct a series of comparative experiments in order to 
highlight the promising performances of our model 
compared to other well-established models in the field 
of temporal data classification, particularly in the 
context of HAR, such as UCI-HAR, and WISDM. 

The remainder of the paper is organized as follows: Section 
II discusses related work, focusing on methods, and 
architectures machine learning in temporal data classification 
and sensor-based HAR. Section III details the proposed method 
including the process followed for all stages, the architecture 
adapted in three stages carried out. Section IV presents the 
experimental metrics and results, as well as details regarding 
the datasets used. By analyzing the experimental results 
obtained in Section V of discussion. Finally, Section VI 
concludes our article. 

II. RELATED WORK 

Studies on TSC have a rich history, marked by numerous 
proposals for classification approaches over time. We can 
distinguish two main axes of these TSC methods, namely 
Traditional Machine Learning Based Methods, and DL-Based 
models. 

A. Traditional Machine Learning-based Methods 

Traditional ML-based methods deployed for TSC typically 
involve extracting meaningful features from temporal data; 
these methods rely on the application of standard classification 
techniques, including feature engineering, statistical methods 
and metrics measuring the similarity between time series data. 
Traditional ML-based methods are generally classified into two 
distinct groups [11]: On one hand, distance-based approaches 
[12] involve the utilization of classifiers based on distance 
measurements between different time series. These methods 
concentrate on quantifying the similarity between two given 
time series, employing specific metrics for classification, such 
as k-nearest neighbors (KNN) [13] or support vector machines 
(SVM) [14] with similarity-based kernels. Some studies even 
hybridize them with hidden Markov models (HMM) [15], as 
demonstrated by the research [16], which integrates HMM and 
SVM models for the early classification of multivariate time 
series. Furthermore, Notable similarity measures include 
dynamic time warping (DTW) [17], which aligns two time 
series with dynamic deformation to obtain the best fit a process 
easily implemented using dynamic programming. Furthermore, 
in this [18], the Time Series Forest (TSF) method is employed 
as a tree ensemble approach to increase the accuracy of TSC; it 
achieves enhanced precision by combining entropy gain with a 
distance measure for evaluating divisions. TSF stands out for 

its distinctive feature of randomly sampling features at each 
tree node, resulting in linear computational complexity relative 
to time series length and facilitating parallel computing. The 
proposal of a temporal importance curve aims to capture 
relevant temporal features for classification. Experimental 
results demonstrate that TSF, utilizing basic features such as 
mean, standard deviation, and slope, not only excels in 
computational efficiency but also outperforms KNN classifiers 
employing DTW. 

On the other hand, the feature-based approach [19] involves 
the extraction and selection of deterministic features in the 
data, which optimize the classification algorithms [20]. 

Hence, they include a diversity of TSC strategies. The 
feature extraction aspect relies on the use of a restricted set of 
features with a solid and easily interpretable theoretical basis. 
In addition to applying traditional learning algorithms, this 
approach offers the possibility of analyzing the extracted 
parameters to obtain additional information. Feature-based 
approach are divided into three categories: 

Firstly, statistical methods focus on using a set of certain 
statistical characteristics [21], such as the mean, the standard 
deviation, the skewness to assess the asymmetry of the values 
compared to the mean, and the kurtosis to measure the relative 
flatness of the distribution values relative to a normal 
distribution. These parameters are mobilized in order to resolve 
the challenges related to statistical process control models 
intended for classification. Secondly, transformation-based 
methods [22] aim to improve classification performance 
through the transformation of data to another alternative data 
space where discriminatory features are more easily 
determined, This recent survey in [23] give many of several 
examples. By adding, the work in [24] proposes a shapelet 
transformation; this method makes it possible to extract the 
best shapelets (a subsequence of time series identifying 
membership in a class) from a dataset to improve the overall 
accuracy of the classification. Finally, TSC approaches based 
on the fusion of various characteristics [25] to significantly 
improve the accuracy of TSC. In this perspective, we mention 
multi-dimensional [26], multi-channel [27] fusion methods of 
characteristics and data, as well as network fusion techniques 
[28], and adaptive feature fusion [29] to improve the accuracy 
of TSC. 

B. Deep Learning-Based Models 

In the domain of DL and the application of deep neural 
networks [1, 30] for TSC, the processes of feature extraction 
and classification are automated, eliminating the necessity for 
expert intervention. Four key axes emerge from this 
perspective for modeling and solving intricate classification 
tasks. First is the utilization of Convolutional Neural Networks 
(CNN), tailored to the sequential nature of temporal data. 
While CNNs are renowned for their proficiency in recognizing 
spatial patterns in two-dimensional data, such as images, their 
application to time series necessitates adaptation to exploit 
sequential structures and temporal relationships [31, 32]. In this 
context, models like the Multi-Scale Convolutional Neural 
Network (MCNN) [33] illustrate the concept of applying 
diverse transformations, such as varying scales and 
frequencies, to temporal data. This approach enables the model 
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to capture features at multiple levels and scales, enhancing its 
ability to represent complex temporal patterns. Furthermore, 
another MCNN for TSC in this work [34] dynamically extracts 
multi-scale feature representations from time series to classify 
them. 

Secondly, recurrent models, including Recurrent Neural 
Networks (RNN) and architectures based on Long-Short-Term 
Memory (LSTM), play a pivotal role. These models are 
designed to process sequences of data, rendering them 
particularly suitable for time series analysis. RNNs [35] can 
memorize previous contextual information, while LSTMs and 
GRU [36] overcome the limitations of RNNs in classification 
by avoiding gradient vanishing problems. Our expertise lies in 
effectively combining these two components [37], 
demonstrating significant performance improvements in TSC. 

Thirdly, the convergence of the aforementioned axes has 
led to the development of hybrid models such as Recurrent 
Convolutional Neural Networks (CRNN) [38], merging 
convolutional layers to capture spatial patterns with recurrent 
layers to handle temporal dependencies. This amalgamation 
leverages the strengths of both approaches, enhancing the 
model's capacity to extract spatial and temporal characteristics. 
Hybrid models, combining the advantages of CNNs for spatial 
pattern recognition and LSTMs for modeling long-term 
sequential dependencies, are increasingly gaining popularity 
and proving effective in TSC applications such as musical 
classification [39] and electrocardiogram classification [40]. 
Several comparative studies [41, 42] demonstrate that this 
combination constitutes a robust solution to overcome the 
complexity of time series in terms of classification, 
notwithstanding their intricate and heterogeneous nature. 

Finally and recently, several studies have looked into the 
application of generative models such as auto encoders for 
TSC: Research [43] proposed a representation 2D of time 
series by fusing temporal and frequency features using the AE 
model, in order to construct a classification network. Another 
research [44] optimized an LSTM based network layer design 
to create an AE improving ECG signal classification, 
eliminating the need for complex preprocessing. A method 
based on a Conditional Variational AE proposed [45] to solve 
the no distribution problem related to identifying feature 
importance for time series classifiers. Auto encoders based on 
RNN have also been used for TSC [46], where different 
variants of RNN auto encoders were compared for their 
performance in feature extraction. An automated label 
generation method for TSC using representation learning with 
AECS and VAE [47] demonstrated promising results in 
reducing labeling costs for training. This method synthetically 
boosts representative time series using VAE, showing 
performance close to supervised classification and even 
exceeding baseline performance in some cases. Finally, the 
authors of the article [48] introduce a VAE model based on an 
RNN network, incorporating a constrained loss function. This 
model is designed to generate more meaningful EEG features 
from raw data, with the goal of enhancing the performance of 
classification in speech recognition. The approach aims to 
leverage the inherent independence features within the latent 
representation of VAE to improve TSC performance. 

Having carefully reviewed the state of the art of various 
research directions focused on developing approaches for TSC 
in this section, our approach in this work will be to leverage 
multiple methods. We plan to hybridize these concepts to 
create a robust multi-stage method that will take advantage of 
the many advantages offered by this integrative approach. The 
specific details of our method will be explained in the 
following section, highlighting our innovative contribution to 
the advancement of TSC techniques. 

III. PROPOSED METHOD 

In this section, we will describe a multi-stage DL 
framework for multivariate TSC (see Fig. 1). The general 
organization of our proposed model, TSC-LSTM-AE is 
divided into three distinct components: The first component 
concerns the pre-training phase, which encompasses data 
augmentation and creation of identification variables (labels) 
per class. The second component is characterized by the use of 
the “Auto-Encoder” model, designed to extract dynamic 
temporal and relational features. Finally, the third component 
exploits the “Classifiers” model, dedicated to the classification 
task using the raw data and the features extracted during the 
previous phase. 

Our method incorporates an additional variable designed to 
capture temporal and dynamic aspects of sequential data, 
thereby improving feature extraction. Once this identification 
variable (label) is determined for each data class, it is merged 
with the initial sequential data according to their respective 
classes. Then, our Auto-Encoder model is trained to learn to 
reconstruct the initial data combined with the injected data, 
thus generating this label from the raw data, even in the 
absence of this label as input. In this way, we are able to 
generate an identification label rich in meaningful 
characteristics, which we use in the classification phase 
through a classifier to guarantee the improvement of this task. 
We combine this classifier with other classifiers in the 
classifier model, such as LSTM, GRU and CNN. Ultimately, 
aggregating the ratings helps determine the final output class 
more accurately. Next, we will examine each phase in detail, 
presenting its importance, its objectives, and its associated 
steps and methods. 

A. Pre-Processing Phase 

The initial phase of our method consists of preprocessing 
the time series data, comprising four distinct steps:  

1) Synchronized windowing method: To ensure the 

alignment of variables and prevent any temporal overlap 

between the samples, we implemented a unified windowing 

method specifically designed for this purpose, applicable to all 

classes of activities. Our inspiration for this method comes 

from an approach used to estimate an optimal time series 

mean [49], employing a multi-task auto-encoder architecture 

for the estimation. Due to the intricacy of this approach, we 

have limited the variables in this work to three accelerometers. 

The methodology involves calculating the average of these 

three variables for each sample. Subsequently, we extract 100, 

80, and 60 successive variables, respectively, from the 

maximum value of this average. The objective of this method 
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temporally synchronizes the data, considerably reducing the 

gap between the variables of the two samples, two by two. 

In the next section, we will use the t-SNE method to 
approve our choice of the appropriate window size. 

 
Fig. 1. Schema general of TSC-LSTM-AE. 

2) Generate a time label by class: After the temporal 

alignment of all the time series data and the cutting of its data 

to length 80, the second step aims to create a variable λt | 𝐶𝑘 = 

(λ𝑡1, λ𝑡2,  . .  , λ𝑡𝑛) for each class k examined for 

classification. In order to have a variable capable of 

simultaneously capturing the dynamic temporal aspects of 

sequential data and correctly identifying each class studied, it 

is essential that it is consistent with temporal data belonging to 

the same class k. Thus, it can function as a unified time label 

for data of the same class, moreover, in order to minimize as 
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much as possible the negative impact on the relational 

dependencies between the different characteristics, we chose 

average arithmetic as the means of calculation for this 

temporal label per class. In Fig. 2 below, we display the 

calculated time for the “Walking” class. 

 

Fig. 2. The time label for the “WALKING” activity generated. 

3) Data augmentation: Generative GAN models integrate 

temporal dependencies and spatial relationships to generate 

long, high-fidelity time series. Their demonstrated capability 

to surpass standards in terms of fidelity, diversity, and 

predictive performance is noteworthy. Time series GANs have 

achieved considerable success in diverse fields, including 

finance, healthcare, data imputation, and anomaly detection. 

In this step, with a focus on augmenting the quantity of data 

utilized for training DL models, we have opted to adopt and 

customize the TimeGAN [50] generative method. 

4) Concatenation of time series with labels: In order to 

prepare the temporal data for the second phase. We proceeded 

to concatenate the raw data with its previously generated 

temporal labels. The essence of this approach lies in 

scrupulous respect for the belonging of this data to each 

respective class. In other words, each time series was enriched 

by adding its own temporal labels, thus creating a precise link 

between the raw data and their specific temporal context. This 

concatenation operation aims to enrich the dependency 

relationships between the raw data and the joint temporal 

label, thus facilitating the extraction of temporal features and 

adequately preparing the data for the next phase of the 

process. 

B. Feature Extraction Phase 

Having successfully completed the initial data pre-
processing phase, we move on to the second stage of the 
process. This step aims to leverage the AE approach to extract 
the hidden temporal and dynamic characteristics within the 
sequential data. Additionally, a novelty is introduced this time: 
the inclusion of an additional specialized variable for 

classification. This phase is subdivided into two fundamental 
steps: 

The first step is dedicated to the training of an LSTM type 
AE model. The goal here is to establish a model to excel in 
extracting features from time series data, also this model is 
trained to learn the complex dependency relationships between 
raw data and associated labels. This helps enrich the internal 
representation of the model by more precisely capturing the 
nuances and temporal structures present in the data, thus 
facilitating the next step. Our recurrent AE consists of three 
layers of encoding and decoding; we used LSTM layers to 
capture temporal sequences. The objective is to minimize the 
MSE loss between the input and output data to learn a compact 
representation of the input temporal sequences. The first 
coding layer is an LSTM layer composed of 64 units, designed 
to process Input data as a sequence of 80 steps. Then, a second 
LSTM coding layer, consisting of 32 units, is added, followed 
by a third LSTM coding layer with 16 units. This last layer 
generates a latent space (Z) of dimension 16 as output. The 
decoding phase begins with a 'Repeat-Vector' layer, which 
replicates the previous output to obtain a sequence of the same 
length as the input. This creates a link between the encoding 
and decoding stages of the model. The three layers of the 
decoder are also LSTM type, comprising 16, 32 and 64 units 
respectively. Finally, the model ends with a Time Distributed 
layer wrapping a dense layer of four units. This configuration 
allows the application of a dense operation at each time step of 
the output sequence. 

After training our auto encoder, the second step of this 
phase focuses on testing the AE model. Our main contribution 
lies in using the AE model to extract features to reconstruct the 
data. However, this time we leverage these capabilities to 
generate our injected variable in the absence of it at the input. 
In order to capture the extracted features in the temporal labels, 
we eliminate the label values at the input by replacing them 
with zero values. Then, we recover at the output the 
reconstructed label with dynamic and temporal characteristics. 
These characteristics used to identify and recognize the class of 
membership in the next phase. 

C. Classification Phase 

In the final phase of our approach, we will develop our 
classifier using three different classification models: 

Classifier 1: The first classifier adopted is a hybrid CNN-
LSTM model. This model initially consists of a convolutional 
layer with filters of size 128. Continuing with this, we have 
five successive layers of LSTM, each having a size equal to 64 
units. To regularize the model, a dropout layer with a rate of 
30% is introduced after the LSTM layers. Then, three fully 
connected (FC) layers follow, with respective sizes of 100, 32, 
and 10. This hybrid model allows capturing complex patterns 
both spatial and temporal in the raw input data. The 
convolutional layer acts as an initial feature extractor, while the 
sequential LSTM layers process the temporal sequence, thus 
preserving important temporal dependencies. The introduction 
of a dropout layer contributes to the regularization of the model 
by reducing over fitting; the two fully connected layers at the 
end of the model allow classification to be carried out by 
consolidating the information extracted in the previous layers. 
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The first FC layer reduces the dimensionality, while the second 
layer produces the outputs corresponding to the target classes. 
By combining these different layers, our CNN-LSTM classifier 
is designed to provide a robust representation of the input data, 
taking advantage of the model's spatial and temporal 
processing capabilities, while minimizing the risks of over 
fitting thanks to built-in regularization. 

Classifier 2: The second selected classifier adopts a more 
simplified approach than the first, mainly due to the reduced 
dimension of the input data, structured in the form of a vector 
of 16 values. The objective of this classifier is to optimize the 
overall performance of the model while considering the 
particular nature of the input data, which represents the latent 
space of the AE model with the essential features extracted. 
With an input of dimension 16, the second classifier is more 
efficient in terms of computational resources, while offering 
adequate classification capacity for the characteristics 
contained in this restricted vector. The simplicity of the model 
also helps reduce the risk of over fitting, which is particularly 
important when input data is limited. Despite its simplicity, the 
second classifier is designed to extract discriminant 
information from the input vector and produce accurate class 
predictions. The architecture of the model includes a Conv1d 
convolution layer with 16 Kernels, activation is ‘Relu' ,and a 
single layer of FC neurons of size 32 units adapted to the size 
of the input, then a Dense layer of 10 neurons. 

Classifier 3: The third classifier stands out for its use to 
classify temporal data through the temporal labels generated 
during the previous phase. We opted for adopting the same 
structure as the first classifier in order to maintain consistency 
in the classification approach. This structural consistency 
between the first and third classifiers arises for several reasons; 
they have the same structure and dimensionality of the data at 
the input and the results at the output. Furthermore, the reuse of 
the structure of the first classifier demonstrates its robustness 
and efficiency, which motivated the decision to apply it for the 
classification of temporal data. By adapting the same 
architecture, including a convolutional layer followed by five 
LSTM layers, a dropout layer, and finally two fully connected 
layers, the third classifier is able to capture the complex 
temporal features captured by the temporal labels. This 
structure makes it possible to take advantage of CNN and 
LSTM mechanisms for better representation of temporal 
dependencies, thus contributing to accurate classification of 
time series data. 

IV. PERFORMANCE EVALUATION 

A. Dataset 

1) Here is a brief overview of the standard datasets we 

used: UCI-HAR dataset [51]: Comes from the public 

repository “Machine Learning at the University of California, 

Irvine (UCI)”.This dataset was constituted from the activity of 

30 participants aged between 19 and 48 years, who carried out 

several activities of daily life of the following six activities: 

‘Sitting’, ‘Standing’, ‘Walking’ , ‘Lying’ , ‘Walking Upstairs’, 

and ‘Walking Downstairs’. Data collection was carried out 

using a waist-mounted Samsung Galaxy smartphone equipped 

with a built-in accelerometer and gyroscope. The dataset was 

collected in a laboratory environment under appropriate 

supervision. In total, this dataset has 10.299 examples. The 3D 

linear acceleration and angular velocity measurements were 

recorded at a constant sampling rate of 50 instances per 

second. 

2) Wireless Sensor Data Mining dataset (WISDM) [52]: 

characterized by imbalance, comprising almost a million 

samples. The most common activities represent almost 39% of 

the total, while the least frequent account for almost 4%. 

Additionally, 36 subjects were selected to perform specific 

daily tasks, while carrying an Android phone in their front 

pocket, which made them the participants of the WISDM 

experiment. A 3D accelerometer operating at a sampling rate 

of 20 instances per second was used as a sensor, also being a 

motion sensor integrated into smartphones. The activities 

recorded in this dataset include six different activities: 

‘Standing’, ‘Sitting’, ’Walking’, ‘Upstairs’ , ‘Downstairs’, and 

‘Jogging’. To ensure complete capture of each activity, the 

length of each sample was set to 128 consecutive instances, 

which equates to approximately “seconds. This duration is 

considered sufficient to adequately represent the activity 

performed. The data partitioning following activities for the 

two datasets used illustrate in Fig. 3. 

 
Fig. 3. Percentage of different activities (a) in the UCI-HAR and (b) in the 

WISDM dataset. 

B. Metrics Used 

The multiclass classification problem, commonly 
encountered in the field of TSC in general, and more 
specifically in HAR using sensors, is generally solved using 
approaches supervised learning. Each processed data is 
assigned to one of the classes of human activities and is labeled 
accordingly. To evaluate the performance of these approaches 
in our current work, we used the following metrics: Precision 
(P), F1 score (F1), Recall (R), accuracy, and Confusion Matrix 
(CM).These metrics are the most commonly used in this 
research area. The standard equations corresponding to these 
performance measures are as follows: 

 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
∑ 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛𝑖 

𝑛
𝑖=1

𝑛
                     (1)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛𝑖 

𝑛
𝑖=1

𝑛
                           (2)

 𝐹1𝑠𝑐𝑜𝑟𝑒
 =

2 × 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                     (3)

The multi-class confusion matrix is an extension of the 
confusion matrix used in the context of multiclass classification 
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problems. Unlike the binary confusion matrix, which is used to 
evaluate a model's performance in two-class scenarios, the 
multiclass confusion matrix helps visualize a model's 
performance when confronted with multiple classes. 

For a multi-class classification problem, the confusion 
matrix is a rectangular table with rows and columns, where 
each row corresponds to the actual class and each column 
corresponds to the class predicted by the model. The matrix 
entries represent the number of observations belonging to a 
particular class. The main elements of the multiclass confusion 
matrix are: 

True positives (TP): The number of observations for which 
the model correctly predicted the positive class. 

True negatives (TN): The number of observations for 
which the model correctly predicted a negative class. 

False Positives (FP): The number of observations for which 
the model incorrectly predicted a positive class. 

False Negatives (FN): The number of observations for 
which the model wrongly omitted a positive class. 

Each cell of the matrix represents an actual and predicted 
class pair. The objective is to maximize diagonal elements 
(true positives) while minimizing classification errors (false 
positives and false negatives). This matrix is useful for 
evaluating the performance of the model on each class 
individually and for identifying classes for which the model 
has difficulty. 

C. Experimental Results 

In this section, we will present the results obtained on the 
UCI-HAR data set during the experimental phase, detailing 
each phase and its steps carried out to evaluate and validate our 
method. During the first "Synchronized Windowing" step of 
the pre-training phase, we used the t-SNE (t-distributed 
stochastic neighbor embedding) technique to determine the 
optimal size of the data to cut. This was done by setting three 
different configurations, namely 60, 80 and 100 length units. 
Fig. 4 visually presents the corresponding t-SNE 
representations for each of these configurations, illustrating the 
dispersion of the sliced data. Visualization of t-SNE provides a 
graphical understanding of relationships between data in a 
reduced-dimensional space, making it easier to select the 
optimal size for cutting. Looking at Fig. 4, we assess that the 
division into 80 sizes is preferred due to the accumulated 
clarity of the t-SNE representation at this scale, thus allowing 
clearer distinction of data by class compared to other sizes. 
This technique made it possible to optimize the division of the 
data, thus contributing to a better representation of the essential 
characteristics during the following phases of the experiment. 

 
Fig. 4. t-SNE extracted data of size 60, 80 and 100. 

In the first preprocessing stage of our method, we sought to 
improve the classification performance of temporal data by 
integrating the TimeGAN data augmentation method, a 
generative approach. The objective was to enrich our dataset 
and strengthen the robustness of our classification model. To 
assess the impact of this increase, we used the t-SNE plot and 
principal component analysis (PCA) to visualize the spatial 
distribution of the data generated (synthetic) by TimeGAN 
compared to the real data (see Fig. 5). In summary, the 
incorporation of TimeGAN in the preprocessing phase aimed 
to strengthen the ability of our model to effectively deal with 
temporal variability in the data. PCA and t-SNE visualizations 
provide visual tools demonstrating the superior quality of the 
data generated. 

In the experiments we conducted to establish, train and test 
the two DL models in the last two stages, we use the Google 
Colaboratory platform with the GPU T4 execution type. We 
leverage Tensorflow 2.9.2 and Keras API to perform 
everything from data preprocessing to final evaluation. We 
build the DL models by Keras sequential model based on 
Tensorflow python architecture as backend. 

In the second stage, to calculate the errors between the 
input data and the reconstructed data, we used the "cross 
entropy error", with a learning rate equal to 0.0001, with a rate 
of training set to 0.0025, a learning loss set to 0.0015 and the 
batch size is set to 128. Additionally, we apply a mean square 
loss function “MSE” with the “Adam” optimizer to back 
propagation errors across network layers in order to improve 
the hyper-parameters of the objective function of two 
composite models of our proposed model. 

The final results of our method is displayed in Fig. 6 and 7, 
we present the two confusion matrices obtained when testing 
the UCI-HAR and WISDM datasets. 

In Table I, we display the Classification report for our 
model TSC-LSTM-AE model with two used in this work: 
UCI-HAR dataset, and WISDM Dataset. 

 

Fig. 5. Qualitative Assessment of Diversity of data generated. 
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TABLE II. CLASSIFICATION REPORT FOR TSC-LSTM-AE MODEL WITH 

UCI-HAR DATASET 

Class P R F1 Class P R F1 

WALK 0.97 0.98 0.97 DOWNS 0.94 0.98 0.94 

WALK_U 0.98 0.95 0.97 JOGG 0.99 0.99 0.99 

WALK_D 0.99 0.98 0.99 SITT 0.91 0.96 0.91 

SITTING 0.97 0.93 0.95 STAND 0.98 0.99 0.98 

STAND 0.89 0.91 0.9 UPSTAIR 0.96 0.95 0.96 

LAYING 0.98 0.99 0.99 WALK 0.97 0.95 0.97 

Accuracy 96,1% 
 

96,5% 

Dataset UCI-HAR WISDM 

 
Fig. 6. Confusion Matrix of testing for UCI-HAR Dataset. 

 
Fig. 7. Confusion Matrix of testing for WISDM Dataset. 

In Table II, we compare the average accuracy of our TSC-
LSTM-AE model with that of the mentioned approaches. 
TSCLSTM-AE achieved the best human activity recognition 
accuracy 96.1% among all the tested approaches for the UCI-
HAR dataset and similarly 96.5% for the WISDM dataset. 

In Table III, we show the results illustrating the impact of 
data augmentation performed by TimeGAN on the 
classification accuracy of temporal data. Data augmentation, in 
this context, refers to the creation of additional synthetic data 
through the TimeGAN algorithm, designed specifically to 
generate realistic time series. 

TABLE III. AVERAGE ACCURACY COMPARISON OUR MODEL WITH THREE 

OTHER MODELS 

 Dataset Use Our model SVM 
CNN-

LSTM 
KNN 

Testing 

accuracy 

UCI -HAR 96,1% 93,6% 95 % 94,3% 

WISDM 96,5 % 95,1% 96,2% 94,9% 

TABLE IV. COMPARISON OF AVERAGE ACCURACY BETWEEN OUR MODEL 

WITH, AND WITHOUT DATA AUGMENTATION 

 Dataset Use 
With data 

augmentation 

Without data 

augmentation 

Testing 

accuracy 

UCI -HAR 96,1% 91,3% 

WISDM 96,5 % 89,5 % 

V. DISCUSSION 

In this research, we present a Deep Learning method with 
several steps and components. This method merges 
unsupervised learning to extract dynamic features using an 
LSTM AE model [44], with the supervised approach to classify 
time series, focusing on recognizing human activity at Using 
smartphone sensors, in this hybrid way, we take advantage of 
the advantages of supervised learning and those of 
unsupervised learning and generative models to improve the 
performance of TSC. 

On the one hand, the AE approach enables the complete 
extraction of various features and the reconstruction of 
synthetic data similar to the original multivariate data. This is 
why we combine the power of LSTM blocks with the 
architecture of auto encoders in an innovative structure. This 
structure teaches the model to reconstruct appropriate and 
identifiable temporal labels for the classes. We then 
intelligently remove this variable from the model input, which 
prompts the model to complete this variable in the output based 
solely on the other variables and the relational dependencies 
captured. In this way, we adopt a method that uses an auto-
encoder to extract dynamic features and functional 
interdependencies between various variables. This strategy 
aims to considerably strengthen the classification task. The 
results presented in Table I demonstrate the performance and 
effectiveness of our proposed model in recognizing both static 
and dynamic human activities. Our model achieves 
classification rates surpassing 96% on data from two datasets. 
All these layers, including the fully connected (FC) layers, 
have undergone training and fine-tuning to classify the input 
data proficiently. Our proposed model surpasses other machine 
learning models including SVM [14], KNN [13] and CNN-
LSTM (Classifier 1) [41] models. The results presented in 
Table II clearly illustrate that our model exhibits significantly 
improved performance quality and accuracy. Furthermore, our 
approach is highly recommended for the recognition of human 
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activities, especially in emergencies, such as the automated 
monitoring of Parkinson's disease and the elderly. 

On the other hand, to considerably improve the efficiency 
and performance of our model, we have incorporated data 
augmentation through the TimeGAN model, improving. The 
application of the TimeGAN algorithm [50] aims to increase 
the original dataset, introducing more diversity and 
representativeness in the classification models. The results in 
Table III demonstrate the significant impact of integrating 
realistic synthetic data on the accuracy of the classification 
process. This comparative analysis sheds light on the 
effectiveness of the data augmentation approach proposed by 
TimeGAN, resulting in an improvement of TSC accuracy by 
approximately 7% for both balanced and unbalanced datasets. 

In this research, we introduce a comprehensive DL method 
that combines unsupervised learning with an LSTM AE model 
for dynamic feature extraction and a supervised approach for 
TSC, specifically targeting human activity recognition using 
smartphone sensors. The innovative structure incorporates 
LSTM blocks and auto encoders to reconstruct temporal labels, 
strategically removing a variable to prompt the model to 
predict it based on relational dependencies. Classification 
further validates the model's ability to capture dynamic 
features. Based on the experimental results, we can conclude 
that our proposed approach enhances the prediction accuracy 
of temporal data classification on datasets well recognized in 
the literature. 

VI. CONCLUSION 

In conclusion, this study introduces TSC-LSTM-AE, a 
novel method designed for the classification of multivariate 
time series in the realm of human activity recognition utilizing 
sensor data. The efficacy of our proposed approach is evident 
through its superior performance in comparison to alternative 
methods, showcasing its proficiency in handling temporal data 
across various evaluation criteria. The results obtained 
underscore the superiority of our methodology over other 
experimental benchmarks. As our approach remains dynamic, 
continual refinement can be achieved through additional 
experimental studies to comprehensively address diverse 
aspects. In light of these findings, we advocate for the further 
development and integration of real-time capabilities, aiming 
to enhance the responsiveness of our approach for both 
professional and personal applications that demand swift and 
efficient processing. 

In future work, we plan to explore the applicability of this 
approach to other application domains. In addition, we plan to 
improve our method to better handle real-time aspects. Finally, 
we will seek to refine our model so that it is more sensitive to 
subtle variations in the data, which could lead to significant 
improvements in classification robustness. 
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